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pharmacokinetic and 
pharmacodynamic actions of 
clozapine-N-oxide, clozapine, and 
compound 21 in DREADD-based 
chemogenetics in mice
Martin Jendryka1,2, Monika palchaudhuri1, Daniel Ursu1, Bastiaan van der Veen2, Birgit Liss2, 
Dennis Kätzel2, Wiebke Nissen1 & Anton pekcec1

Muscarinic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) gated by clozapine-
N-oxide (CNO) allow selective G-protein cascade activation in genetically specified cell-types in vivo. 
Here we compare the pharmacokinetics, off-target effects and efficacy of CNO, clozapine (CLZ) 
and compound 21 (Cmpd-21) at the inhibitory DREADD human Gi-coupled M4 muscarinic receptor 
(hM4Di). The half maximal effective concentration (EC50) of CLZ was substantially lower (0.42 nM) than 
CNO (8.1 nM); Cmpd-21 was intermediate (2.95 nM). CNO was back-converted to CLZ in mice, and 
CLZ accumulated in brain tissue. However, CNO itself also entered the brain, and free cerebrospinal 
fluid (CSF) levels were within the range to activate hM4Di directly, while free (CSF) CLZ levels 
remained below the detection limit. Furthermore, directly injected CLZ was strongly converted to its 
pharmacologically active metabolite, norclozapine. Cmpd-21 showed a superior brain penetration 
and long-lasting presence. Although we identified a wide range of CNO and Cmpd-21 off-targets, 
there was hardly any nonspecific behavioural effects among the parameters assessed by the 5-choice-
serial-reaction-time task. Our results suggest that CNO (3–5 mg/kg) and Cmpd-21 (0.4–1 mg/kg) are 
suitable DREADD agonists, effective at latest 15 min after intraperitoneal application, but both require 
between-subject controls for unspecific effects.

Designer Receptors Exclusively Activated by Designer Drugs (DREADD) enable the direct modulation of cellu-
lar activity by activation of the Gi-, Gq- or Gs-protein-coupled signalling pathways. DREADDs have therefore 
emerged as a frequently used tool to dissect the neural underpinnings of behavioural functions1. The most widely 
applied DREADDs were derived from different types of muscarinic receptors and have been engineered to lose 
their affinity for acetylcholine, but to gain responsiveness to clozapine-N-oxide (CNO), a metabolite of the atyp-
ical antipsychotic clozapine (CLZ)2,3.

The value proposition and functionality of such DREADDs rests upon the assumption that their synthetic 
agonist is pharmacologically inert and has a reasonably high in vivo bioavailability in brain tissue after systemic 
application, two criteria that were often not met by the non-muscarinic predecessors of current DREADDs4,5. 
Recent data have questioned whether CNO does indeed fulfil these two criteria, as originally suggested3,6. Firstly, 
it has been reported that CNO can bind to alternative targets at concentrations required for DREADD activation7. 
Secondly, a study in rats raised concerns of the ability of CNO to penetrate into the brain7. It has been suggested 
that systemically applied CNO is instead converted into CLZ, and it is this CLZ, rather than CNO, that acts as 
the DREADD activator in brain tissue due to its strong potency at the two DREADDs, human Gq-coupled M3 
muscarinic receptor (hM3Dq) and human Gi-coupled M4 muscarinic receptor (hM4Di), and its substantially 
higher blood-brain barrier permeability7. Enzymatic and non-enzymatic reduction of CNO to its corresponding 
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base, CLZ8, has been demonstrated in humans9–11, monkeys12, guinea pigs10, rats7,13–15 and, recently, in mice15,16. 
Naturally, this back-conversion of CNO to CLZ, an antagonist at a wide range of G-protein coupled receptors 
(GPCRs), adds another source of possible off-target effects which may confound findings from in vivo studies – a 
critical issue that has been previously identified8. Many chemogenetic studies have not detected unspecific effects 
of CNO at the behavioural level in their control experiments in non-DREADD-transfected rodents2,17. However, 
a recent publication demonstrated elegantly that mice trained to report their interoceptive sensation produced 
by 1.25 mg/kg CLZ report such sensations after being injected with 10 mg/kg (but not 5 mg/kg or lower doses) 
of CNO15. Moreover, this back-conversion introduces difficulties in the rational design of in vivo studies, given 
that drug conversion is a factor that may vary between species, strains and sex, and depends on many additional 
external and intrinsic factors including metabolic capacity of the liver or health status.

To circumvent this issue, some laboratories have started using CLZ as a DREADD agonist directly, instead of 
CNO, at doses that do not usually cause any detectable behavioural effects in untransfected rodents. Alternatively, 
the recently introduced DREADD ligand, compound 21 (Cmpd-21), which is more potent than CNO at the excit-
atory DREADD hM3Dq, may be used18. A recent assessment of Cmpd-21 brain availability, behavioural off-target 
effects and potency at various DREADDs yielded encouraging results16.

However, avoiding the use of CNO as a DREADD ligand completely appears somewhat premature, especially 
given the dozens of successful neuroscience studies using CNO. For example, it has not yet been demonstrated 
that CNO itself does not enter the brain in mice. Furthermore, it has not been shown that the back-converted CLZ 
entering the brain is freely available to activate the DREADD (not unspecifically bound), a finding which could 
be more accurately measured using CNO concentration in cerebral spinal fluid (CSF) rather than in total brain 
tissue, as done previously7.

In order to enable a rational choice between the three alternative DREADD ligands (CNO, CLZ and Cmpd-21)  
for chemogenetic experiments in mice, we here present a large-scale pharmacokinetic, pharmacodynamic and 
behavioural comparison of these agents. Specifically, we directly compare efficacy at hM4Di in vitro, and screen 
for off-target binding of CNO at a large number of endogenous GPCRs. We also assess the degree and time-course 
of forward- and back-conversion between CNO and CLZ and measure the bioavailability of all three compounds 
in the brain and, importantly, CSF at multiple time points post injection. Finally, we assess unspecific effects in the 
5-choice-serial-reation-time task, a test that measures a wide variety of behavioural functions.

Results
In vitro potency of CNO, CLZ and Cmpd-21 at the hM4Di receptor. A comparative assessment of 
the activities of CNO, CLZ and Cmpd-21 at the inhibitory DREADD hM4Di has not previously been conducted, 
despite the wide usage of hM4Di for silencing of neurons and/or synapses in behaving animals. Therefore, we first 
conducted live calcium flux measurements via a fluorescent imaging plate reader (FLIPR) assay to evaluate the 
indirect activity of the above three compounds on spontaneous network activity in rat primary cultured neurons 
transduced with hM4Di. The potency of each agonist was measured by assessing the effect on reducing the spon-
taneous phasic increase in intracellular calcium (Ca2+ oscillations) caused by synchronous electrical activity19. 
By fitting the resulting dose-frequency curves with the Hill function (Fig. 1a), we obtained half maximal effective 
concentration (EC50)-values of 8.1 nM, 2.95 nM and 0.42 nM for CNO, Cmpd-21 and CLZ, respectively. This 
revealed that CNO was almost 20 times less potent than CLZ and approximately 2.7 times less potent than Cmpd-
21 at hM4Di. These data are similar to EC50 values derived previously for hM3Dq in a FLIPR assay for CNO 
(6.0 nM) and Cmpd-21 (1.7 nM), but not for CLZ (1.1 nM)18. Application of any of the DREADD agonists alone 
(i.e. if neurons had not been transfected by hM4DI) had no effect on Ca2+oscillations in the FLIPR assay (Fig. 1b).

Pharmacokinetic profile of CNO and CLZ after CNO application in mice. Recently, it was ques-
tioned whether CNO can efficiently penetrate the central nervous system (CNS) to activate DREADDs in rats7, 
but this has never been examined in mice. Therefore, we systematically estimated free drug levels of CNO and 
CLZ in the CNS from concentrations in CSF, in addition to measuring their concentrations in cortical brain tissue 
and blood plasma.

We found that, in mice, CNO does enter the brain. After systemic administration of 3.5 mg/kg CNO, free CNO 
levels (in CSF) and total brain concentration were both higher than the EC50 at hM4Di and hM3Dq (see above) 
from at least 15 min post injection until at least 30 min post injection (Fig. 2b). By 60 min post injection, however, 
free CNO levels had dropped surprisingly sharply, to about half the EC50 at hM4Di, 4.05 nM. In cortex tissue, 
CNO could not be detected at the final time point (Fig. 2c).

We also confirmed the recent observation that CNO is back-converted to CLZ in mice15,16. Such 
back-conversion is known to occur in humans and is likely of hepatic nature (i.e. CYP enzyme-mediated)9,10. 
In mice, this back-conversion appears to occur quickly. Mean CLZ concentrations, as with mean CNO concen-
trations, reached maximum plasma concentrations (Cmax) at the first sampling time point, 15 min post injection 
(Fig. 2a).

Our data also confirmed that CLZ penetrates the brain to a greater extent than CNO7, appearing to accumu-
late in the brain tissue. While the mean CLZ plasma concentration corresponded to approximately 3.3% of the 
mean CNO plasma concentration 15 min post 3.5 mg/kg CNO injection, the mean brain CLZ concentration was 
approximately 20 times the mean brain CNO concentration at this time point (Fig. 2c). Furthermore, the absolute 
CLZ levels in brain after injection of 3.5 mg/kg CNO, approximately 427 nM, or more than 1000 times the EC50 at 
hM4Di, were barely diminished at the 60-min time point (mean, 406 nM).

At all sampling points, CLZ concentration in CSF remained below the detection limit of 1–2.5 nM. However, 
since this is in the range of the EC50 at both hM4Di and hM3Dq18, we cannot rule out that there would still be 
enough free CLZ to activate both DREADDs efficiently. Nevertheless, we can conclude that the very high levels 
of CLZ in the brain do not translate proportionally into CSF levels, while the comparatively lower brain levels of 
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CNO do (mean CNO concentration in brain: 23.8 and 18.5 nM at 15 and 30 min, respectively; mean CNO con-
centration in CSF: 11.2 and 10.8 nM at 15 and 30 min, respectively; Fig. 2b,c).

Pharmacokinetic profile of CLZ after direct application in mice. To determine the suitable dose 
range for application of CLZ as a DREADD agonist, we repeated the in vivo pharmacokinetic assessment pre-
sented above after intraperitoneal (i.p.) injection of 1 mg/kg CLZ. As seen with CNO, levels of CLZ peaked at 
the first point of measurement, 15 min post injection, in plasma (344 nM), brain (2063 nM) and CSF (1.9 nM, 
Fig. 2d–f). While CSF concentrations remained largely constant across all time points of sampling, plasma and 
brain levels decreased linearly across those time points reaching 123 nM (plasma) and 1016 nM (brain), respec-
tively, at 60 min (Fig. 2d,f). The absolute concentrations and their kinetics were in line with an accumulation and 
potentially unspecific binding of CLZ in the brain, as seen after CNO injection.

Additionally, we found a small degree of conversion of CLZ to CNO, exclusively at the first time point (15 min) 
in plasma, where the mean CNO concentration reached approximately 1.1% of the CLZ concentration in plasma 
(Fig. 2g). At all other time points and in the other sample types, no CNO was detectable (Fig. 2g–i). In contrast, 
the alternative CLZ metabolite norclozapine (NorCLZ) was detectable in all plasma samples, a minority of CSF 
samples, and, especially at later time points, in brain tissue samples (Fig. 2g–i). Given that the mean brain con-
centration of CLZ was nearly 6 times higher than the plasma concentration at the first time point, the absence of 
CNO in brain tissue suggests a lack of CLZ-to-CNO forward-conversion in the CNS.

Pharmacokinetic profile of Cmpd-21 in mice. To complete the comparative analysis, the pharmacoki-
netic assessment was repeated using 3.0 mg/kg Cmpd-21. Plasma and CSF levels peaked at the earliest time point 
of measurement, 15 min post injection, with mean concentrations of 5833 nM and 52 nM, respectively (Fig. 2j,k). 
The plasma and CSF concentrations decreased gradually reaching 57% and 54% of peak values at 60 min post 
injection, respectively. Mean brain concentrations, in turn, increased over time from 722 nM (15 min post injec-
tion) to 1273 nM (60 min post injection; Fig. 2l). This demonstrates that Cmpd-21 re-distributes in the body and 
enriches in the CNS compartment. Finally, we did not detect any conversion of Cmpd-21 to CLZ or CNO in mice 
(data not shown).

Off-target effects of CNO. Due to the comparatively high EC50 at DREADDs and low bioavailability in 
the brain, the use of CNO requires relatively high doses, which in turn poses the risk of off-target effects on other 
receptors. While the first publication introducing DREADDs suggested a lack of significant off-target effects of 

Figure 1. In vitro potency of CNO, CLZ and Cmpd-21 at hM4Di on primary embryonic rat neuronal cultures. 
(a,b) FLIPR assay data for measuring Ca2+ oscillations in (a) Fluo4-loaded primary rat neuronal cultures which 
were transduced with hM4Di-mCherry-AVV or (b) in control untransduced cultures. In separate experiments, 
CNO (purple), CLZ (orange) or Cmpd-21 (blue) were added at the indicated concentrations. The frequency of 
Ca2+ oscillations was normalised to data recorded in control wells where compounds were replaced with assay 
buffer. The potassium-channel opener retigabine (30 μM) was applied in control wells and served as positive 
control for blocking Ca2+ oscillations. Error bars indicate s.e.m. Each compound dose was repeated on three 
individual plates in duplicates. CLZ, clozapine; CNO, clozapine-N-oxide; Cmpd-21, compound 21; FLIPR, 
fluorescence imaging plate reader; s.e.m., standard error of the mean.
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Figure 2. In vivo pharmacokinetic profile of CNO, CLZ and Cmpd-21. (a–c): Concentration (nM) of CNO 
(purple) and CLZ (orange) at 15, 30 and 60 min after i.p. injection of 3.5 mg/kg CNO measured in (a) plasma, 
(b) CSF, and (c) cortical brain tissue. (d–f): Concentration (nM) of CLZ (orange) at 15, 30 and 60 min after 
i.p. injection of 1.0 mg/kg CLZ in (d) plasma, (e) CSF, and (f) cortical brain tissue. (g–i): Concentration (nM) 
of CNO (purple) and NorCLZ (green) at 15, 30 and 60 min after i.p. injection of 1.0 mg/kg CLZ in (g) plasma, 
(h) CSF, and (i) cortical brain tissue. (j–l): Concentration (nM) of Cmpd-21 (blue) at 15, 30 and 60 min after 
i.p. injection of 3.0 mg/kg Cmpd-21 in (j) plasma, (k) CSF, and (l) cortical brain tissue. Mostly, for each drug 
and time point n = 6 animals were used and analysed, except for the 15 min time-point after CNO application 
(n = 5) and the CSF samples after CLZ injection (e,h) where 5 samples were taken at 30 min and 7 samples at 
60 min. Each sample is displayed as an individual dot in the respective graph. Concentrations of CNO (purple) 
and CLZ (orange) were measured in all (a–l) samples, but were not detected (n.d.) in the number of samples 
stated in the respective panel for the respective compound (CNO: purple font; CLZ: orange font; NorCLZ: green 
font, only measured after CLZ injection), as either no clear peak was identified or the concentration remained 
below the detection limit. The detection limit for CNO and CLZ was 1–2.5 nM depending on sample quality, 
and for NorCLZ was 15 nM. Additionally, CSF sampling failed in 3 animals (no s., black font), as indicated in 
(b). Significant differences represent pair-wise Tukey post hoc tests conducted after a significant result in the 
one-way ANOVA across all time points. *p < 0.05, **p < 0.01, ***p < 0.001. Horizontal bars represent mean 
(wide) and s.e.m. (narrow); they are omitted if the respective substance remained undetectable in >50% of 
samples. ANOVA, analysis of variance; CLZ, clozapine; CNO, clozapine-N-oxide; Cmpd-21, compound 21; 
CSF, cerebrospinal fluid; i.p., intraperitoneal; NorCLZ, norclozapine; s.e.m., standard error of the mean.
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nanomolar concentrations of CNO3, a more recent investigation concluded that 10 μM CNO may competitively 
inhibit binding of ligands to a range of endogenous GPCRs7. However, according to our data, this concentration 
is more than 10 times the brain concentrations and 1000 times the CSF concentrations that are reached after 
injection of 3.5 mg/kg CNO in mice.

We therefore comprehensively evaluated the potential for off-target effects following CNO administration in 
our experimental model. Firstly, we re-assessed the potential of 10 μM CNO to bind to 44 potential alternative 

Figure 3. Off-target screen for CNO. (a) Radioligand assay determining the % inhibition of binding of the 
indicated test ligand to the stated target caused by 10 μM CNO. Results showing an inhibition >50% (crossing 
the orange vertical line) are considered to represent significant effects of CNO, and thereby highlight potential 
off-target effects (orange font). Note that 6 enzymes, COX1, COX2, PDE3A, PDE4O2, Lck kinase, and AChE, 
were probed in the same assay, but all resulted in an inhibition <20% (not shown). All values are the mean of 2 
replicates of the assay. (b) Ki of CNO at the 8 significant off-target receptors identified in screen (a), as derived 
from concentration binding assays and calculated using the Cheng-Prusoff equation. Orange font indicates 
targets with a Ki < 100 nM. Values have been derived by non-linear regression of the competition curves 
generated with mean values of 2 replicates at 8 different concentrations of CNO (3*10−10–1*10−4 M) using 
Hill equation curve fitting. 4-DAMP, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide; 5-HT, serotonin; 
A2A, adenosine; AChE, acetylcholinesterase; AR, androgen receptor; AVP, arginine vasopressin; BTCP, 
1-[1-(2-Benzo[b]thiopheneyl)cyclohexyl]piperidine hydrochloride; BZD, benzodiazepine; CB, cannabinoid 
receptor; CCK, cholecystokinin; CGS 19755, selfotel; CNO, clozapine-N-oxide; COX, cyclooxygenase; 
D, dopamine; DAMGO, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DPDPE, [D-Pen2, D-Pen5]enkephalin; 
DOI, 2,5-Dimethoxy-4-iodoamphetamine; ETA, endothelin receptor; GR, glucocorticoid receptor; H, 
histamine; hERG, human ether-a-go-go-related gene; Ki, inhibition constant; KV, potassium channel; MAO-
A, monoamine oxidase A; M, muscarinic; MDL 72222, bemesetron; NMDA, N-methyl-D-aspartate; NECA, 
N-Ethyl-5′-carboxamido adenosine; PDE, phosphodiesterase; SCH 23390, halobenzazepine; V1A, vasopressin 
receptor 1 A.
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targets (Fig. 3a), confirming previously published targets and identifying further GPCRs at which CNO showed 
over 50% competitive inhibition of ligand binding. These included α1 A and α2 A adrenoreceptors, H1 histamine 
receptor, M1, M2 and M3 muscarinic receptors, 5-HT1A, 5-HT1B, 5-HT2A and 5-HT2B serotonin receptors, D1 
and D2 dopamine receptors (Fig. 3a). We then identified the inhibitory constant (Ki) for CNO at the 12 identified 
GPCRs. Particularly high, namely sub-μM, affinities of CNO were found at α1A, H1, M1, 5-HT2A and 5-HT2B 
receptors (Fig. 3b).

Additionally, we re-assessed the potency of CNO and CLZ at the parent receptor of hM4Di, the human M4 
muscarinic receptor, and found EC50 values of 6300 nM and 21 nM, respectively (data not shown). These corre-
spond to 777 times and 52 times the EC50 values at hM4Di for CNO and CLZ, respectively, leaving sufficient room 
for selective DREADD activation by both compounds.

Off-target effects of Cmpd-21. Cmpd-21 has previously been suggested to be favourable to CNO due to 
the lack of back-conversion to CLZ or significant off-target effects, relative to its high potency at DREADDs18. 
A previous study, however, found evidence for competitive binding to D1, D2 and M4 receptors16. We therefore 
evaluated the binding of Cmpd-21 to a wide range of GPCR and non-GPCR targets using 10 μM Cmpd-21. 
Surprisingly, this dose produced a significant (>50%) competitive inhibition of binding to a wide range of endog-
enous GPCRs, including the α1A-adrenoreceptor, the H1 histamine receptor, and all tested dopamine (D1, D2), 
muscarinic (M1, M2, M3), opioid (δ, κ, μ), and serotonin (5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT3) recep-
tors (Fig. 4).

Effects of CNO, CLZ and Cmpd-21 in the 5-CSRTT. Given the potential of off-target effects of all three 
compounds, we assessed the influence of CNO, CLZ and Cmpd-21 on a wide range of behavioural measures, 
including sustained attention, inattentiveness, impulsivity, locomotor activity, motivation and perseveration using 
the 5-choice serial-reaction-time task (5-CSRTT)20. On days of drug injection, a behavioural protocol was applied 
that challenged attention and impulsivity by decreasing the presentation time of the stimulus from 2 s to 0.8 s and 
increasing the waiting time before stimulus onset from 5 s to 7 s (relative to the baseline protocol).

CNO, at doses of 3.5 or 10 mg/kg tested in two consecutive between-subject experiments, did not produce any 
significant behavioural changes in most 5-CSRTT parameters relative to the combined vehicle-group from both 
experiments. The only notable effect was a modest increase of the number of perseverative responses at the inter-
mediate dose (p = 0.0142, Dunnett’s post hoc test; p = 0.0196 for one-way analysis of variance [ANOVA] across all 
three conditions), but not at the highest dose (Fig. 5a–h).

0.1, 0.3 and 1 mg/kg of CLZ did not produce any significant behavioural changes in most 5-CSRTT param-
eters, except for a mild decrease of attentional accuracy at 0.1 mg/kg (p = 0.0439, paired Dunnett’s post hoc test 
conducted after significant effect of dose in the repeated-measures ANOVA) and a mild increase of omissions, 
indicating inattentiveness, at 1 mg/kg (p = 0.0108, as before) compared with vehicle (Fig. 6a–h).

0.3, 1 and 3 mg/kg of Cmpd-21 did not produce any significant behavioural changes in any 5-CSRTT param-
eters assessed (Fig. 7a–h).

During the 5-CSRTT task, plasma concentrations for all drugs were determined 45 min post injection (Figs 5i, 
6i, 7i) and corresponded generally well with the pharmacokinetic profiles obtained separately before (Fig. 2) and 
with the expected dose-related concentration differences.

Discussion
Here, we conducted the first systematic comparative assessment of the pharmacokinetics and unspecific behav-
ioural effects of the DREADD agonists CNO, CLZ, and Cmpd-21 in mice, and related it to measurements of their 
efficacy at the inhibitory DREADD hM4Di.

Our data strengthens the notion that CNO is back-converted to CLZ in mice15,16, as recently also shown in 
rats7. However, in contrast to the conclusion from a previous study on this back-conversion in rats7, our data 
does not support the view that the gating of DREADDs expressed in the CNS results solely from back-converted 
CLZ after CNO application. Instead, our study shows that, in mice, unbound CNO is present in the brain at 
sufficient levels to activate the DREADDs directly, after injection of a 3.5 mg/kg dose. While some publications 
using the excitatory DREADD hMD3q report behavioural effects of CNO at doses less than 0.5 mg/kg2, studies 
using hM4Di usually apply doses between 0.5 and 10 mg/kg2,17,20,21 (i.e. a dose range at which CNO itself could 
act as the agonist in brain tissue). One explanation for this discrepancy is that, although the concentrations of 
back-converted CLZ in brain tissue after CNO administration are impressively high, the vast majority of this CLZ 
might be bound unspecifically to tissue and not be actually available for DREADD activation. This interpretation 
is supported by our measurement of both compounds in CSF, which approximates the proportion of free ligand 
levels in the brain more accurately than total brain or plasma concentrations22. Therefore, our data supports the 
hypothesis that certainly CNO, and only potentially back-converted CLZ, contribute to DREADD activation in 
the CNS of mice after systemic application of CNO. A DREADD engagement of both CNO and its active metab-
olite CLZ is specifically conceivable when using higher CNO doses (>1–2 mg/kg) administered intraperitoneally. 
Against the backdrop of the current literature, our data underlines that the degree of back-conversion of CNO to 
CLZ and the brain availability of both compounds is species-specific7,15.

The in vivo pharmacokinetic assessment of CLZ on its own, administered as an i.p. injection of 1 mg/kg, 
indicated an accumulation of CLZ in the brain. This fast penetration into the brain is likely because it is highly 
lipophilic, implying that it binds unspecifically to the tissue parenchyma, resulting in initially high brain con-
centrations. The observation that the free (CSF) concentration of CLZ corresponds to approximately 0.1% of 
the brain concentration and 1% of the plasma concentration suggests that the CLZ CSF levels after injection of 
3.5 mg/kg CNO would unlikely exceed the EC50 of hM4Di (0.4 nM). Assuming a linear increase in the kinetic 
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profile by dose, our data indicate that a dose range between 0.2 and 0.5 mg/kg of CLZ should be used in experi-
ments involving hM4Di and between 0.5–1 mg/kg should be used to activate hM3Dq.

Interestingly, we also found some evidence of a forward-conversion of CLZ to CNO. However, the CNO 
doses were only detectable at 15 min post injection in plasma and were too low to hypothesize a competition 
for DREADD activation in the CNS. Also, given that the mean brain concentration of CLZ was nearly 6 times 
higher than the plasma concentration at that first time point, the absence of CNO in brain tissue suggests a lack 
of CLZ-to-CNO forward-conversion in the CNS. In contrast, the degree of conversion of CLZ to its alternative 
and pharmacologically active metabolite, NorCLZ, was substantially higher than its conversion to CNO. Notably, 
this differs from data using rats showing a preferential conversion of CLZ into CNO rather than NorCLZ15. In 
humans, NorCLZ and CNO are the two primary active metabolites created through hepatic metabolism, with the 
former being more active23. NorCLZ has been shown to have higher antagonist activity at 5-HT1C and 5-HT2C 
serotonin receptors, as well as D1 and D2 dopamine receptors, compared with the parent compound. It also 
has additional activity as an M1 muscarinic receptor partial agonist (reviewed in Ellison & Dufresne, 201524). 

Figure 4. Off-target screen for Cmpd-21. (a) Radioligand assay determining the % inhibition of binding of 
the indicated test ligand to the stated target caused by 10 μM Cmpd-21. Results showing an inhibition >50% 
(crossing the orange vertical line) are considered to represent significant effects of Cmpd-21, and thereby 
highlight potential off- target effects (orange font). Note that 6 enzymes, COX1, COX2, PDE3A, PDE4D2, 
Lck kinase and AChE, were probed in the same assay, with all but one showing an inhibition <25%; at COX2 
Cmpd-21 exerted 60% inhibition of ligand binding (not shown). All values are the mean of 2 replicates of 
the assay. 4-DAMP, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide; 5-HT, serotonin; A2A, adenosine; 
AChE, acetylcholinesterase; AR, androgen receptor; AVP, arginine vasopressin; BTCP, 1-[1-(2-Benzo[b]
thiopheneyl)cyclohexyl]piperidine hydrochloride; BZD, benzodiazepine; CB, cannabinoid receptor; CCK, 
cholecystokinin; CGS 19755, selfotel; CNO, clozapine-N-oxide; COX, cyclooxygenase; D, dopamine; DAMGO, 
[D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DPDPE, [D-Pen2, D-Pen5]enkephalin; DOI, 2,5-Dimethoxy-4-
iodoamphetamine; ETA, endothelin receptor; GR, glucocorticoid receptor; H, histamine; hERG, human 
ether-a-go-go-related gene;Ki, inhibition constant; KV, potassium channel; MAO-A, monoamine oxidase A; 
M, muscarinic; MDL 72222, bemesetron; NMDA, N-methyl-D-aspartate; NECA, N-Ethyl-5′-carboxamido 
adenosine; PDE, phosphodiesterase; SCH 23390, halobenzazepine; V1A, vasopressin receptor 1A.
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Considering this distinct off-target activity and considering that the pharmacokinetic profile and brain tissue 
penetration rate of NorCLZ differs from that of CLZ in humans23, it is at least conceivable that the formation of 
NorCLZ in mice may confound the behavioural readout. Based on these data, CNO and Cmpd-21 may be pre-
ferred as DREADD ligands in mice, at least until the potency of NorCLZ on DREADDs and its pharmacokinetic 
profile in mice has been fully elucidated.

Notably, the kinetics of CLZ differed depending on whether it was applied directly or originated from injected 
CNO. A single injection of CLZ resulted in initially high plasma and brain concentrations that decreased rela-
tively quickly over time due to its clearance. In our experiments, the decline within 60 min in plasma and brain 
tissue was approximately 2-fold. However, in the case of CNO administration, CLZ plasma levels proved to be 
relatively stable over the course of 60 min, which in turn, was mirrored by a stable CLZ brain tissue concentration. 
This is likely due to the fact that the CNO-to-CLZ back-conversion happens at a constant rate over time in mice, 
as in humans9. Thereby, CNO generation and clearance should reach an equilibrium, and the supply of CLZ 
occurs akin to a continuous infusion rather than a single injection.

The pharmacokinetic profile of Cmpd-21 indicated that CSF levels were almost 10 times the measured EC50 
at hM4Di and about 16 times the published EC50 at hM3Dq18 (1.7 nM) after systemic administration of a dose 
of 3 mg/kg. Therefore, doses between 0.4 and 1 mg/kg should be sufficient to render a strong activation of both 
DREADDs in mice for approximately 1 h post injection. Furthermore, we did not observe any conversion to CLZ 
or CNO, which makes Cmpd-21 an attractive alternative DREADD agonist.

In addition to the off-target effects potentially resulting from back-converted CLZ, CNO itself might also act 
on alternative endogenous receptors7. We found that the Ki of CNO binding reaches <100 nM at some GPCRs, 
including most notably the H1 histamine, the 5-HT2A and the 5-HT2B serotonin receptors. Interestingly, we 
also found strong competitive binding of Cmpd-21 to receptor sites of dopamine, serotonin, opioid, muscarinic, 

Figure 5. Assessment of unspecific behavioural effects of CNO in the 5-CSRTT. (a) Attentional accuracy (%); 
(b) relative number of omitted responses (%); (c) relative number of premature responses (%); (d) latency 
to collect the reward after correct responses (s); (e) latency to make a correct response after the onset of the 
stimulus (s); (f) number of beam breaks caused by movement between the 5-choice wall and the receptacle; 
(g) number of perseverative (repeated) responses into the same correct hole; and (h) total number of trials 
conducted by the animal within a 30-min session during the 5-CSRTT started 10 min after i.p. injection of 
either vehicle (Veh, black), 3.5 (pink) or 10 mg/kg CNO (purple), as indicated. (i) Plasma concentrations of 
CNO (nM), determined 45 min after i.p. injection; statistical differences not indicated. *p < 0.05, Dunnett’s post 
hoc test comparing the value under 3.5 or 10 mg/kg CNO to the vehicle value after significant one-way ANOVA 
across all three groups. Note that experiments using 3.5 vs 10 mg/kg were conducted separately, each following a 
between-subject design; data from both vehicle groups were combined. The starting dose was counter-balanced 
across animals, in each case. Results are shown as data from individual animals (dots) and as population 
mean ± s.e.m. (horizontal lines). 5-CSRTT, five-choice serial-reaction time task; ANOVA, analysis of variance; 
CNO, clozapine-N-oxide; i.p., intraperitoneal; s.e.m., standard error of the mean.
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histamine and adrenoreceptors. Despite the surprisingly large range of off-targets for all three DREADD agonists, 
we found only very subtle, if any, behavioural alterations in our assessment using the 5-CSRTT14,15. This suggests 
that the doses used for DREADD activation are still lower than would be required for modulation of endogenous 
receptors. For example, even the highest doses of CNO used in the literature, 10 mg/kg21, would not lead to brain 
concentrations of above 70 nM and free (CSF) CNO levels above 30 nM, according to linear extrapolation of our 
data, which would still have minimal off-target effects.

In summary, our data highlight that CNO and Cmpd-21 would be suitable DREADD ligands and behavioural 
effects induced via DREADDs can be expected at latest from 15 min post injection onwards. Dose ranges of 
3–5 mg/kg for CNO and 0.4–1.0 mg/kg for Cmpd-21 should be effective to activate hM4Di in mice in vivo and 
avoid unspecific behavioural effects. A dose range of 0.2–0.5 mg/kg for CLZ should be sufficient to activate the 
hM4Di in mice in vivo without inducing unspecific behavioural side effects. However, caution should be taken 
until any potential relative contribution of NorCLZ to the in vivo effects of CLZ in mice have been elucidated, 
to exclude NorCLZ as a confounding factor. In addition, proper between-subject controls are required to detect 
potential unspecific effects evoked by modulation of endogenous GPCRs by all three compounds.

Figure 6. Assessment of unspecific behavioural effects of CLZ in the 5-CSRTT. (a) Attentional accuracy (%); 
(b) relative number of omitted responses (%); (c) relative number of premature responses (%); (d) latency 
to collect the reward after correct responses (s); (e) latency to make a correct response after the onset of the 
stimulus (s); (f) number of beam breaks caused by movement between the 5-choice wall and the receptacle; 
(g) number of perseverative (repeated) responses into the same correct hole; and (h) total number of trials 
conducted by the animal within a 30-min session during the 5-CSRTT started 10 min after i.p. injection 
of either vehicle (Veh, black), 0.1 (yellow), 3.5 (orange) or 10 mg/kg CLZ (red), as indicated. (i) Plasma 
concentrations (nM) of CLZ determined 45 min after i.p. injection; statistical differences not indicated. Note 
that all doses were tested within one within-subject experiment, following a latin-square design in which the 
starting dose was counter-balanced across animals. *p < 0.05; indicated are pairwise differences assessed after 
a significant effect of dose in a repeated-measures ANOVA using Dunnett’s post hoc test comparing the value 
under a given dose of CLZ to the vehicle value. Results are shown as data from individual animals (dots) and as 
population mean ± s.e.m. (horizontal lines). 5-CSRTT, five-choice serial-reaction time task; ANOVA, analysis of 
variance; CLZ, clozapine; i.p., intraperitoneal; s.e.m., standard error of the mean.
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Methods
Subjects. Thirty-two male C57BL/6 J mice (Charles River, Germany) were used in the behavioural experi-
ments, which started at eight weeks of age. For the pharmacokinetic studies, eighteen 14–16-week-old C57BL/6 J 
mice (Charles River, Germany) were analysed. All mice were housed in groups of 2–4 in individually ventilated 
cages (IVC GM 500, Tecniplast, Germany) in a humidity- and temperature-controlled holding room under a 12 h 
light/dark cycle with food and water initially available ad libitum. Mice were permitted at least 5 days acclimatisa-
tion before handling and start of the behavioural study. Food restriction was initiated 3 days before the start of the 
behavioural training and was set to maintain the mice at 85–90% of their free-feeding weight.

All experimental procedures were authorised by the Local Animal Care and Use Committee 
(Regierungspräsidium Tübingen, approval number: 16–017-G) and were in accordance with local animal care 
guidelines and the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) reg-
ulations, the German Animal Rights Law (Tierschutzgesetz 2013), and the EU Directive 2010/63/EU, as well as 
the United States Department of Agriculture Animal Welfare Act. All experimental studies were performed in an 
AAALAC certified facility and all experiments are reported in accordance with the Animal Research: Reporting 
of In Vivo Experiments Guidelines25.

Measurement of efficacy at hM4Di. Primary neuronal culture. For the determination of the potency of 
CNO, CLZ, and Cmpd-21 at hM4Di in vitro, primary cortical neurons were prepared from brains of embryonic 

Figure 7. Assessment of unspecific behavioural effects of Cmpd-21 in the 5-CSRTT. (a) Attentional accuracy 
(%); (b) relative number of omitted responses (%); (c) relative number of premature responses (%); (d) latency 
to collect the reward after correct responses (s); (e) latency to make a correct response after the onset of the 
stimulus (s); (f) number of beam breaks caused by movement between the 5-choice wall and the receptacle; 
(g) number of perseverative (repeated) responses into the same correct hole, and (h) total number of trials 
conducted by the animal within a 30-min session during the 5-CSRTT started 10 min after i.p. injection of either 
vehicle (Veh, black), 0.3 (light blue), 1.0 (green) or 3.0 mg/kg compound 21 (Cmpd-21, blue), as indicated. (i) 
Plasma levels of Cmpd-21 determined 45 min after i.p. injection; statistical differences not indicated. Note that 
the plots contain combined data from two separate, consecutive experiments, one applying 3 mg/kg and the 
other applying 0.3 and 1.0 mg/kg Cmpd-21, whereby each had its own within-subject vehicle control. Hence, 
for statistical analysis, behavioural data is not compared between the dose levels of those separate experiments. 
Instead, a repeated-measures ANOVA was conducted for the experiment including 0.3 and 1.0 mg/kg, and a 
paired t-test was done to analyse the experiment including 3.0 mg/kg Cmpd-21. No significant differences were 
found for any measures. For both within-subject experiments the starting dose was counter-balanced across 
animals. Results are shown as data from individual animals (dots) and as population mean ± s.e.m. (horizontal 
lines). 5-CSRTT, five-choice serial-reaction time task; ANOVA, analysis of variance; Cmpd-21, compound 21; 
i.p., intraperitoneal; s.e.m., standard error of the mean.
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(E18) Sprague-Dawley rats (Janvier Labs, France)19. Briefly, cortices were dissected from embryonic brains, 
meninges were removed, and cortices transferred into ice-cold dissociation buffer (2 mM kynurenic acid, 10 mM 
HEPES, 20 mM MgCl2 (Fluka, Germany) and 33.4 mM Glucose in Hank’s Balanced Salt Solution (HBSS), pH 7.4 
(Gibco, Thermo Fischer Scientific, Massachusetts, USA). Cortices were then dissociated in 20 units/ml papain 
solution (5.5 mM L- Cysteine hydrochloride, 1.1 mM ethylenediamine tetra-acetic acid [EDTA], 0.067 mM 
2-Mercaptoethanol in Minimum Essential Medium [MEM]) for 15 min at 37 °C. Cortices were washed twice 
by adding 20 ml plating medium (1:50 foetal calve serum, 1:100 penicillin/streptomycin and 1:100 GlutaMax 
in MEM) followed by cell filtration using a 70 µm cell strainer (Corning, model #352350, Merck, Germany) to 
obtain a single-cell suspension. Dissociated cells were re-suspended in serum-free Neurobasal medium with 
Glutamax and B27 supplement (Gibco) and plated on PDL-coated 96 MTPs (Corning #356640). Virus (ssAAV-
1/2-hSyn1-hM4D[Gi]_mCherry-WPRE-hGHp[A]) transduction was performed immediately after plating. Cells 
were maintained at 37 °C (5% CO2 and 10% O2) in a humidified incubator. A half feed medium change was done 
on DIV8. Final assay conditions used for evaluating activity of compounds were 0.95 × 105 cells/cm2, transduced 
with 10.000 multiplicity of infection and measured on DIV9.

FLIPR assay. Medium was removed and cells were incubated in assay buffer (HBSS, Gibco, 10 mM HEPES, pH 
7.4) containing 4 µM Fluo-4AM (Thermo Fischer Scientific) and 0.1% Pluronic F-127 (Thermo Fischer Scientific 
#P3000MP) for 1 h at room temperature in the dark. Loading buffer was then replaced with assay buffer. After 
10 min, assay plates were measured in the FLIPR tetra (Molecular Devices, California, USA) using green fluo-
rescence filter settings (excitation 470–495 nm, emission 515–575 nm). Fluorescence signals were recorded at 1 s 
intervals (0.4 s exposure time). Compound addition was automated in a single addition protocol. Tested com-
pounds (concentrations:0.3 nM–1 µM; retigabine at 30 µM) were added after recording a baseline response for 
5 min followed by another 5 min for recording compound effects on Ca2+ oscillations. Each compound dose was 
repeated on three individual plates in duplicates.

Assessment of pharmacokinetic properties of CNO, CLZ, and Cmpd-21. The pharmacokinetic 
properties of 3.5 mg/kg CNO, 1 mg/kg CLZ and 3 mg/kg Cmpd-21 were assessed by collecting blood, CSF and 
brain samples at 15, 30 and 60 min after i.p. drug administration. Mostly, for each drug and time point six animals 
were used and analyzed, except for the 15 min time-point after CNO application (n = 5) and the CSF samples 
after CLZ injection where 5 samples were taken at 30 min and 7 samples at 60 min. Blood (approximately 100 µl) 
was collected from the vena facialis in anaesthetised animals, followed by CSF sampling (approximately 10 µl) 
from the cisterna magna under pentobarbital anaesthesia (1:25 in saline, 10 ml/kg, i.p., Narcoren, Boehringer 
Ingelheim, Germany). Subsequently, the brain was removed and its anterior third (including the medial pre-
frontal and anterior cingulate cortices) dissected and transferred into Precellys tubes cooled in liquid nitrogen. 
For plasma extraction, blood was transferred to EDTA coated tubes and centrifuged for 10 min at 10,000 rpm at 
4 °C. Maximal plasma concentration (Cmax), time taken to reach maximal plasma concentration (Tmax) and mean 
residence time were assessed using liquid chromatography–mass spectrometry analysis executed on the HP1200 
(Agilent, CA, USA) coupled to the API 6500 (AB Sciex, Germany) using BI00001052 (Boehringer Ingelheim) 
as internal standard. In short, 5 µl of plasma or CSF sample were mixed with 10 nl internal standard. 70 µl ace-
tonitrile (ACN)/methanol (1:1) was added, kept at −20 °C for 15 min and centrifuged for 4 min at 4000 rpm at 
4 °C. 30 µl of the supernatant was mixed with 170 µl 0.1% formic acid. Brain homogenization was executed by 
Precellys Evolution (Bertin) after adding ACN/methanol (1:1)/aq.dest. (3:1) to each brain sample with a volume 
corresponding to 4 parts of the brain weight, followed by centrifugation for 1 min at 4000 rpm at 4 °C. 5 µl of the 
supernatant was mixed with 10 nl of internal standard. A serial dilution was made by diluting the stock solution 
(2 mM, in dimethyl sulfoxide [DMSO]) of the compound to be tested, yielding concentrations of 0.5, 0.05, 0.005 
and 0.0005 mM.

Off-target screen. CNO and Cmpd-21 (at 10 µM, diluted in DMSO) were tested in binding and enzyme 
assays on 44 potential off-targets (Figs. 3 and 4). Receptors and transporters of interest were overexpressed in 
either human recombinant human embryonic kidney (HEK)-293 or Chinese hamster ovary (CHO) cells. 
Radio-labelled ligands (Figs. 3 and 4) were used to assess the binding ability of CNO and Cmpd-21 by scintilla-
tion counting. For ion channels, selective radio-labelled ligands (Figs. 3 and 4) were used and the binding ability 
of CNO and Cmpd-21 assessed using rat cerebral cortex tissue. Results are expressed as percent inhibition of 
control-specific binding of the radioactively labelled ligand specific for the respective target. For enzyme inhi-
bition, the effect was calculated as a percent inhibition of control enzyme activity. Results showing an inhibition 
>50% were considered to represent significant effects of CNO or Cmpd-21. All presented values are the mean of 
two experiments.

For CNO, a dose-response follow-up study was conducted on the target receptors with > 50% inhibition 
of control specific binding (α1A, α2 A, dopamine D1, dopamine D2, histamine H1, muscarinic M1, M2 and 
M3, serotonergic 5-HT1A, 1B, 2B and 2A receptors). Ki was determined by calculating the values by non-linear 
regression of the competition curves generated with mean values of two replicates at eight different concentra-
tions of CNO (0.3 nM–100 μM) using Hill equation curve fitting or using the Cheng-Prusoff equation.

5-Choice Serial Reaction Time Task. Training was performed in 16 standard mouse Bussey-Saksida 
touchscreen chambers (model #80614, Campden Instruments Ltd., UK), previously described in detail26. In short, 
each trapezoidal operant chamber was placed in a sound- and light- attenuating box individually equipped with 
a house light, a reward magazine with light, a liquid reward dispenser, a sound generator, a perforated stainless 
steel floor, and a touchscreen placed at the wide end of the chamber and covered permanently by a black acrylic 
glass 5-hole mask. The reward magazine, located opposite the touchscreen, was connected to a liquid dispenser 
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delivering strawberry milk (Yazoo®). Infrared break-beam sensors located inside and on the front of the food 
magazine as well as on the touch-screen walls allowed the detection of reward delivery and the animal’s locomo-
tor activity, respectively. Four individual chambers were connected to one computer for controlling the task flow 
using the graphical task design software ABET II Touch (model #89505, Campden Instruments Ltd., UK) and the 
WhiskerServer software (Cambridge University Technical Services Ltd., UK)27.

Mice were habituated to the chambers for three consecutive 20-min sessions during which the house light 
and magazine light were permanently on. At the start of each session, 30 µl strawberry milk was delivered. Every 
15 s after head entry into the magazine, an additional 30 µl strawberry milk was delivered. Head entry turned the 
magazine light off.

The 5-CSRTT training protocol, originally designed for rats28, was similar as that previously described for 
mice29–31. The training comprised six stages with 30-min sessions initiated by the illumination of the house and 
magazine lights and delivery of 20 µl strawberry milk. Collection of the reward switched the magazine light off 
and started the first trial.

In the first stage, the middle window was permanently illuminated, which was turned off when touched, fol-
lowed by reward delivery (20 µl) with illumination of the magazine light. Head entry switched off the magazine 
light. Mice performing 30 trials in a session continued to the next stage. Training sessions in stages 2–6 comprised 
a maximum of 120 trials. Collection of the reward initiated the inter-trial interval (ITI) followed by the illumina-
tion of one pseudo-randomly selected aperture for a fixed stimulus duration (SD). Any touch to the screen during 
the ITI was classified as a premature response which was not counted as a trial and terminated the current trial. 
Following stimulus detection, a nose poke to the corresponding aperture within a fixed time interval (limited 
hold; LH) was required for reward delivery. Premature responses made during the ITI, incorrect responses, and 
the omission of a response within the LH led to a timeout (TO, house light switched off for 4 s) instead of delivery 
of reward. Correct, incorrect and omitted responses defined the total number of trials. During stages 2–6, SD 
and LH were gradually decreased (SD: 32 s to 2 s, LH: 34 s to 4 s), whereas the ITI was increased once from 2 s 
to 5 s from stage 4 onwards. The criteria to pass the last stage and reach baseline performance were to complete 
>30 correct trials, with ≥80% accuracy and ≤30% omissions. Percentage accuracy was defined as the number 
of correct trials divided by the sum of correct and incorrect trials. Percentage omissions were calculated in terms 
of the number of completed trials. Premature responding was calculated as a percentage of completed trials. 
Perseveration was calculated as the number of additional responses made in the same aperture following a correct 
response. Additionally, the correct-response latency (time from stimulus presentation to correct response) and 
reward latency (time from correct response to reward collection) were measured across all trials.

To assess the effects of CNO, CLZ and Cmpd-21 on the cognitive domains of sustained attention and waiting 
impulsivity, mice performed 30-min challenge sessions with a reduced SD (0.8 s) and increased ITI (7 s). Either 
one or up to three days before, as well as one day after the task challenge, mice were trained at baseline conditions 
to check for any unexpected changes in task performance (e.g. by long lasting drug- or challenge-induced effects). 
Only mice reaching baseline performance before the challenge were included into the data analysis.

Drugs. Drugs were administered according to a randomised latin-square design. CNO (Enzo 
Lifesciences, NY, USA) and CLZ (Sigma Aldrich, UK) were dissolved in hydrochloric acid (1:15) and 40% 
hydroxypropyl-β-cyclodextrine (1:10). The pH was adjusted to 6.5–7.5. Cmpd-21 (HelloBio, UK) was dissolved 
in 0.9% saline. The dose range and pre-treatment time were selected based on in-house pharmacokinetic data and 
published literature32. Since a fully automated data acquisition system was used, the experimenter was not blinded 
to treatment. All drugs were administered i.p. at a volume of 10 ml/kg 10 min before the start of the behavioural 
test. The applied doses were 3.5 or 10 mg/kg for CNO, 0.1, 0.3 or 1 mg/kg for CLZ, and 0.3, 1 or 3 mg/kg for 
Cmpd-21, in addition to vehicle in each case. Mice were habituated to injections by i.p. administration of 0.9% 
saline 3–5 days before drug administration.

Data analysis. Time-series raw fluorescence traces recorded from the FLIPR assay were analysed by detect-
ing Ca2+ peaks based on a fixed amplitude threshold19. The change in oscillation frequency was determined by 
counting the number of peaks in a defined time interval (5 min) before and after addition of the tested compound 
and calculating the Ca2+ oscillations frequency from their number. All data were normalised to baseline counts 
and then normalised to give a percentage response compared with vehicle control wells. For visualisation, all data 
were transferred to GraphPad Prism 7 (Graphpad Software, Inc., CA, USA).

Behavioural and pharmacokinetic data were analysed using GraphPad Prism 7. Pharmacokinetic data was col-
lected in a between-subject design at multiple time points and analysed by one-way ANOVA and pairwise Tukey 
post hoc tests. Behavioural CNO data were analysed by pooling two independent experiments of which each had 
their own vehicle-controls and were conducted consecutively. Behavioural pharmacology data was analysed by 
repeated-measures ANOVA and Dunnett’s post hoc test in the case of within-subject designs with more than one 
dose of the agonist (CLZ, Cmpd-21 at the two lowest doses) or in the case of a within-subject design, where only 
one dose was tested against vehicle, a paired t-test was used (highest dose of Cmpd-21). Otherwise, an unpaired 
t-test was used (CNO). For repeated-measures ANOVAs, the Greenhouse-Geisser correction to the degrees of 
freedom and the p-values was applied, in case of a violation of sphericity indicated by Mauchly’s test.

Statistical significance was set at p < 0.05. Data are presented as mean ± standard error of the mean, individual 
data points are displayed wherever applicable.

Data Availability
All data generated and analysed during this study are included in this article. Numeric source data for the pre-
sented figures are available from the corresponding authors on reasonable request at the desired level of analysis.
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