

ulm university universität

uulm

Raphael Peter Institute of Epidemiology and Medical Biometry Investigating trajectories in observational studies using joint latent class mixture time-to-event models

Common situation in longitudinal observational studies

Time

Outline

1. Proof of Concept - Example using generated data

2. Depression trajectories and risk of cardiovascular events KAROLA study - competing events

3. Physical activity trajectories and mortality

ActiFE Ulm study

- covariates in longitudinal sub-model
- alternative time scale
- special link function

4. Pros and Cons

Software used

Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm

Cécile Proust-Lima Inserm U1219 Université de Bordeaux Viviane Philipps Inserm U1219 Université de Bordeaux Benoit Liquet LMAP, UMR CNRS 5142 Université de Pau et des Pays de L'Adour

doi:10.18637/jss.v078.i02

1. Proof of Concept

Assumed trajectory classes

Individual trajectories within classes

Measurements, including additional error

Inducing mortality

Seite 9

Available information for modeling

Expectations

Correct

- identification of trajectory classes
- estimation of mortality associated with each class
- estimation of class size/share/prevalence
- correct classification of individuals into classes

Model call

Jointlcmm(fixed= value~time, random= ~time, mixture= ~time, subject='id', survival= Surv(censT, event) ~ 1, hazard="Weibull"¬, hazardtype="PH", ng=3, data=ds.alive)¬

id 🔷	time 🍦	value 🍦	censT 🗧 🌣	event	*
1	0.000000	366.7588	10.0000000		0
1	3.823100	341.4190	10.0000000		0
1	8.051839	294.5118	10.0000000		0
2	0.000000	358.8987	2.5436578		1
3	0.000000	331.8055	10.0000000		0
3	4.027998	281.7174	10.0000000		0
3	7.637723	344.7937	10.0000000		0

Model output

Parameters in the proportional hazard model:

	coef	Se	Wald	p-value
<pre>event1 +/-sqrt(Weibu]</pre>	111) 0.30483	0.01627	18.737	0.00000
event1 +/-sqrt(Weibu]	1.03208	0.01780	57.968	0.00000
event1 SurvPH class1	1.06880	0.17238	6.200	0.00000
event1 SurvPH class2	-0.58125	0.13223	-4.396	0.00001

Fixed effects in the longitudinal model:

	coef	Se	Wald	p-value
intercept class1	163.41029	5.58704	29.248	0.00000
intercept class2	309.68170	1.47689	209.684	0.00000
intercept class3	218.41689	4.04109	54.049	0.00000
time class1	-13.75126	1.52353	-9.026	0.00000
time class2	-0.87654	0.22359	-3.920	0.00009
time class3	-7.42482	0.57591	-12.892	0.00000

Estimated trajectory classes

Years

Estimated trajectory classes

Years

Class-specific baseline risk functions

Time

Classification performance

Estimated class	2	3	1
True class			
1	977	23	0
2	64	243	43
3	0	38	112

Agreement= 0.89 Kappa= 0.74

in those with baseline measurement only (n=370)

Estimated class	2	3	1
True class			
1	162	6	0
2	31	50	32
3	0	22	67

Agreement= 0.75 Kappa= 0.55

Expectations

Correct

- identification of trajectory classes
- estimation of mortality associated with each class
- estimation of class size/share/prevalence
- correct classification of individuals into classes

2. Depression trajectories and risk of cardiovascular events

KAROLA study

- Coronary heart disease patients participating in an in-patient rehabilitation program
- Followed after 1, 3, 6, 8, 10, 13, and 15 years
- Completed HADS at 1, 3, 6, 8 and 15 years
 - HADS Depression sub-scale 0-21 (7 items x 0-3) points (higher is worse)

Are depression trajectories associated with risk of subsequent CV-Events?

Study population

TABLE 1 Characteristics of the study population

	Ν		
Age (years), mean (SD)	1,109	59.4 (8.0)	
Female sex, n (%)	1,109	171 (15.4)	
Education <10 years, n (%)	1,109	663 (59.8)	
Former/current smoker, n (%)	1,109	759 (68.4)	
Body mass index, mean (SD)	1,109	26.9 (3.3)	
Physical activity, n (%) Up to 3 hr per week More than 3 hr per week Not answered	1,109 1,109 1,109	512 (46.2) 569 (51.3) 28 (2.5)	
History of myocardial infarction, n (%)	1,109	650 (58.6)	
History of type 2 diabetes, n (%)	1,109	195 (17.6)	
Clinical score (angiographic evaluation), n	(%)		
0- or 1-vessel disease	1,109	287 (25.9)	
2-vessel disease	1,109	291 (26.2)	
3-vessel disease	1,109	476 (42.9)	
Unknown	1,109	55 (5.0)	

Depression score, mean (SD)					
Baseline	1,093	4.4 (3.5)			
1-year follow-up	975	4.7 (3.8)			
3-year follow-up	809	4.7 (3.7)			
6-year follow-up	784	4.3 (3.7)			
8-year follow-up	711	4.4 (3.7)			
15-year follow-up	408	4.6 (3.6)			
Follow-up for CV events/non-CV mortality					
Follow-up time (years), median (Q1; Q3) ^a	1,109	14.8 (13.3; 14.9)			
CV events, n (%)	1,109	324 (29.2)			
Non-CV mortality, n (%)	1,109	147 (13.3)			
Lost before last follow-up, n (%)	1,109	232 (20.9)			

Peter et al., 2020

Selecting the number of classes

> summaryt	tał	ole(lcmm1.0	dep,	<pre>lcmm2.dep</pre>	o, lcmm3.dep	o, lcmm4.c	dep, lcmm5	j.dep)	
	G	loglik	npm	BIC	%class1	%class2	%class3	%class4	%class5
<pre>lcmm1.dep</pre>	1	-14102.37	34	28443.12	100.000000				
<pre>lcmm2.dep</pre>	2	-14021.68	39	28316.80	87.466186	12.53381			
<pre>lcmm3.dep</pre>	3	-13971.88	44	28252.26	4.598738	84.49053	10.91073		
lcmm4.dep	4	-13938.72	49	28220.98	3.246168	69.61226	23.80523	3.336339	
<pre>lcmm5.dep</pre>	5	-13948.64	54	28275.88	4.508566	0.00000	82.14608	5.410280	7.935077

Model call

Results

FIGURE 1 Identified anxiety and depression trajectories and event incidence. Left panels: identified anxiety and depression trajectory classes (means with corresponding 95% confidence bands); middle panels: cumulative CV event incidence by follow-up time for mean covariate levels; right panels: cumulative non-CV mortality for mean covariate levels. CV, cardiovascular; HADS, Hospital Anxiety and Depression Scale

Results

TABLE 2 Risk of subsequent CV events and non-CV mortality by trajectory class (*n* = 1,109)

		CV events		Non-CV mortality	
Trajectory	Class share in %	Cumulative 15-year incidence ^a	HR (95% CI) ^a	Cumulative 15-year mortality ^a	HR (95% CI) ^a
Depression					
Class 1 (low-stable)	69.6	28.8%	(Ref.) 1.00	10.7%	(Ref.) 1.00
Class 2 (moderate-stable)	23.8	31.7%	1.18 (0.34; 4.07)	18.8%	1.94 (0.21; 17.5)
Class 3 (increasing)	3.3	39.7%	1.65 (0.44; 6.15)	23.1%	2.76 (0.31; 24.7)
Class 4 (high-stable)	3.3	53.7%	2.47 (1.35; 4.54)	16.6%	2.26 (0.77; 6.65)

Abbreviations: CI, confidence interval; CV, cardiovascular; HR, hazard ratio.

^aAdjusted for baseline sex, age, education, smoking status, body mass index, physical activity, history of myocardial infarction, history of type 2 diabetes, and angiographic evaluation.

3. Physical activity trajectories and mortality

ActiFE UIm study

- population-based cohort study in older people ≥65 years, randomly selected in the Ulm region
- activPAL was worn for seven consecutive days at baseline and follow-up
 - Baseline 2009/10: 1335
 - FU 1 2012/13: 790
 - FU 2 2017/18: 508
 - -> 16 761 measurement days in total

Are objectively measured physical activity trajectories associated with mortality?

Important: need to correct for weather conditions (Klenk et al. 2012) and Sunday-effect (Klenk et al., 2019)

Baseline characteristics

	,
	Total (n=1.406)
	10001(11-1,400)
Age (years), mean (SD)	75.4 (6.52)
Female, n (%)	616 (43.8)
Duration of school education ≤9 yrs, n (%)	788 (56.1)
Former/current smoker, n (%)	671 (49.5)
Daily alcohol consumption, n (%)	427 (30.4)
BMI (kg/m²), mean (SD)	27.6 (4.16)
Habitual gait seed (m/s), mean (SD)	1.04 (0.33)
Hand grip strength (kg), mean (SD)	32.2 (11.1)
Walking duration (min), mean (SD)	104.1 (40.3)
Number of deaths, n (%)	390 (27.7)
Follow-up duration (years), median (Q1-Q3)	9.10 (8.55-9.46)
	••••••••••••••••••••••••••••••••••••••

F**Table 1**: Baseline characteristics for the total cohort and stratified by trajectory class

S	ei	te	30)	

Investigating trajectories sid texit death2019 walkd tentry m_age sday temp sex 1 20034 96.995000 70.13973 7.95 70.13973 79.35890 0 0 1 139.021667 2 20034 70.14247 0 5.36 1 70.13973 79.35890 0 Data 3 20034 98.745000 70.14521 6.04 70.13973 79.35890 0 1 1 106.675000 70.14795 4 20034 8.86 1 70.13973 79.35890 0 0 5 20034 153.481667 70.15068 70.13973 79.35890 0 0 10.61 1 138.410000 70.15342 70.13973 79.35890 0 6 20034 0 7.38 1 7 20034 82.668333 73.40822 0 -1.54 70.13973 79.35890 0 1 111.035000 8 20034 73.41096 0 -1.60 1 70.13973 79.35890 0 9 20034 73.41370 70.13973 79.35890 0 87.820000 0 -4.05 1 58.900000 73.41644 -5.76 70.13973 79.35890 0 10 20034 0 1 11 20034 66.213333 73.41918 -5.06 1 70.13973 79.35890 0 0 12 20034 75.576667 73.42192 -4.07 70.13973 79.35890 0 1 1 90.933333 73.42466 -2.79 70.13973 79.35890 0 13 20034 0 1 14 20034 65.501667 77.62740 8.55 1 70.13973 79.35890 0 0 15 20034 63.966667 77.63014 12.26 1 70.13973 79.35890 0 0 16 20034 51.816667 77.63288 0 14.38 1 70.13973 79.35890 0 17 20034 75.048333 77.63562 0 14.43 1 70.13973 79.35890 0 56.315000 77.63836 13.76 70.13973 79.35890 0 18 20034 1 1 19 20034 71.115000 77.64110 0 13.40 1 70.13973 79.35890 0 131.445000 20 20034 77.64384 14.11 70.13973 79.35890 0 0 1

1.1.

1.1.1.10.

Model call

```
Jointlcmm(fixed= walkd~ m_age + sday + temp, random=~ m_age, mixture=~ m_age, -
....subject='sid', link="3-quant-splines", -
....survival = Surv(tentry, texit, death2019)~ sex, -
....hazard="Weibull", hazardtype="PH", ng=3, data=ds)-
```

Results

Figure 1: Identified walking duration trajectories over age (left panel) and corresponding cumulative mortality over age (right panel). Trajectories are adjusted for measurement day (Sunday vs. other weekdays) and maximum daily temperature and presented for a non-Sunday weekday of average maximum temperature (7.8 °C). Mortality curves are adjusted for sex and presented for a population of 50% men and 50% women.

Results

Table 2: Mortality by trajectory class (N=1,406, Nevents=390)

	Class share	Life expectancy,	Hazard ratio
	IN % *	median age in years (95%-Cl) ²	(95%-CI) ³
Class 1	87.1	92.4 (91.4; 93.4)	1.0 (ref)
Class 2	11.2	84.8 (83.4; 86.4)	4.96 (3.37; 7.32)
Class 3	1.7	73.8 (71.1; 76.2)	68.7 (29.0; 162.6)

¹ posterior classification based on longitudinal and time-to-event data

² for a population of 50% men and 50% women

³ adjusted for age and sex

Associations with class membership

Table 3: Relative probability and 95% confidence intervals of class membership by baseline characteristics (n=1,398) and biomarkers (n=1,345), adjusted for age and sex

		RR (95%-CI)	
	Class 1	Class 2	Class 3
Clinical characteristics			
Education < 10 years	1.00 (Ref.)	1.05 (0.83; 1.32)	0.84 (0.36; 1.94)
Former/current smoker	1.00 (Ref.)	1.27 (0.85; 1.90)	2.64 (0.98; 7.13)
Daily alcohol consumption	1.00 (Ref.)	1.18 (0.92; 1.53)	1.41 (0.58; 3.43)
Body mass index (per 2.5 kg/m²)	1.00 (Ref.)	1.17 (1.11; 1.23)	1.16 (0.95; 1.42)
Biomarkers (per standard deviation)			
CRP [mg/L]	1.00 (Ref.)	1.23 (1.10; 1.37)	2.06 (1.42; 3.01)
IL-6 [pg/ml]	1.00 (Ref.)	1.27 (1.14; 1.40)	2.26 (1.65; 3.10)
NT pro BNP [pg/ml]	1.00 (Ref.)	1.31 (1.16; 1.47)	2.34 (1.72; 3.17)
hs Troponin T [ng/L]	1.00 (Ref.)	1.35 (1.21; 1.51)	2.36 (1.77; 3.15)
իչ Troponin I [ng/L]	1.00 (Ref.)	1.23 (1.12; 1.35)	1.81 (1.46; 2.25)
Cholesterol [mmol/L]	1.00 (Ref.)	0.83 (0.73; 0.94)	0.58 (0.37; 0.92)
HDL cholesterol [mmol/L]	1.00 (Ref.)	0.80 (0.70; 0.91)	0.43 (0.24; 0.76)
LDL cholesterol [mmol/L]	1.00 (Ref.)	0.85 (0.76; 0.96)	0.62 (0.39; 0.98)
γ-GT [U/I]	1.00 (Ref.)	1.23 (1.10; 1.38)	2.08 (1.39; 3.10)
Glucose [mg/dl]	1.00 (Ref.)	1.13 (1.02; 1.25)	1.42 (1.06; 1.91)
Creatinine serum [µmol/L]	1.00 (Ref.)	1.20 (1.10; 1.30)	1.48 (1.23; 1.77)
<u>Cystatin</u> C <u>serum</u> [mg/L]	1.00 (Ref.)	1.22 (1.11; 1.33)	1.52 (1.29; 1.79)
GDF-15 [pg/ml]	1.00 (Ref.)	1.36 (1.22; 1.51)	2.27 (1.69; 3.06)

4. Pros & Cons

Pro

- Use of all information
 - also including individuals with one measurement only
 - including all events

leading to

- less selection bias
- higher power
- Adjustment in both sub-models possible

Contra

- Computationally expensive
- Small classes are no exception
- Adjustment sets are fixed