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1 Supplementary theory

1.1 The likelihood in the case of ambiguous axial depolariza-

tions

Here, we treat the general case of ambiguous axial fluorescence depolarizations 〈dxi 〉,

which occur if the residual fluorescence anisotropies are small enough so that Equation

(1) in the main text possesses two solutions. This happens if ri,∞/ri,0 < 1/4 and hence

the sign of the axial depolarization si := sgn(〈dxi 〉) is ambiguous.1

As the axial depolarization is a physical property of each dye, we must account for

each possible combination of axial depolarizations of all dyes in the likelihood. In that

case Equation (9) in the main text is generalized to

p ({Eij}, {Aij}| {xi,Ωi} , I) = 1∏
k Sk

∑
{sk}

∏
ij∈M

L
sisj

ij (xi,Ωi,xj,Ωj), (1)

where the ambiguities of Eij and Aij and hence also of Lij (Equation (10) in the main

text) are symbolized by the superscript (.)sisj . {sk} denotes one possible combination

of the signs sk, while
∏
k Sk is the number of all possible combinations calculated by

setting Sk = 2 when 〈dxk〉 is ambiguous and otherwise Sk = 1.

Although it is not possible to factorize equation (1) completely, even a partial

factorization should be considered to speed up the calculation.
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1.2 Average TDM orientation and reference frame orientation

priors

A flat prior in the average TDM orientation Ωi = (− cos θi, φi) of the fluorophore i,

p (Ωi|I) = p (− cos θi, φi|I) = (2π)−1 for − 1 ≤ − cos θi < 1 and 0 ≤ φi < π, (2)

does not favor any particular orientation. θi and φi are the polar and azimuthal angle,

respectively (main text, Figure 1a). This parametrization of Ωi was chosen because

a flat prior in − cos θi and φi is invariant under rotations of the laboratory reference

frame.

In analogy, we assign a flat prior in the docking reference frame orientation Ξ(k)

parametrized by Ξ(k) = (ρ(k),− cos θ(k), φ(k)), where ρ(k), θ(k) and φ(k) are the angles of 3

subsequent rotations (main text, Figure 2b). The prior is constant within −π ≤ ρ(k) <

π, −π ≤ φ(k) < π and −1 ≤ − cos θ(k) < 1. This prior is also invariant under rotations

of the laboratory coordinate system and does not favor any particular orientation.

1.3 Position - Förster distance NPS as a special case of posi-

tion - orientation NPS

Given the antenna position xa and average TDM orientation Ωa, as well as the po-

sitions {xi} and average TDM orientations {Ωi} of an arbitrary number of satellites,

the position - Förster distance NPS can be derived in two steps: First, we express the

average TDM orientations in terms of the Förster distances Rai (eqs. (2) and (3) in the

main text) and use {Rai} as model parameters together with the satellite and antenna

positions. Second, in the respective prior, p (xa, {xi}, {Rai}|I), the approximation of
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independent Förster distances is made, which, in reality, are coupled by the average

TDM orientation Ωa of the antenna dye. By using this approximation, the prior can

be factorized,

p (xa, {xi}, {Rai}|I) ≈ p (xa|I)
∏
i

p (xi|I) p (Rai|I) , (3)

where the Förster distance prior is given by

p (Rai|I) =
∫
dΩa

∫
dΩi δ

(
Rai −R

(
Riso
ai ,Ωa,Ωi

))
p (Ωa|I) p (Ωi|I) . (4)

In the above equation δ(.) denotes the Dirac point measure. R(.) is the Förster distance

as function of the isotropic Förster distance, the average TDM orientations (Equation

(4) in the main text), and the average TDM orientation priors are defined as in the

position - orientation NPS. The independent Förster distance approximation enables us

to do the analysis almost entirely on an analytical basis2 by simplifying the calculation

of the marginal antenna position posterior (main text, Equation (8)).

2 Supplementary methods

2.1 Calculation of the marginal position density of arbitrary

points

The marginal posterior PDF of the “laboratory” coordinates q of an arbitrary point

Q having the coordinates q(k) in the docked reference frame k is calculated as follows
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from the marginal posterior PDF of reference frame origins o(k) and orientations Ξ(k):

p (q|{Eij}, {Aij}, I) =∫
do(k)

∫
dΞ(k) δ

[
q − To(k),Ξ(k)

(
q(k)

)]
p
(
o(k),Ξ(k)|{Eij}, {Aij}, I

)
, (5)

where δ(.) is the Dirac point measure in three dimensions and To(k),Ξ(k)(.) is the co-

ordinate transformation converting the coordinates of the reference frame k into the

laboratory reference frame.

The marginal posterior PDF of reference frame origins and orientations is computed

by integrating out all fluorophore positions and average TDM orientations, as well as

the positions and orientations of other reference frames,

p
(
o(k),Ξ(k)|{Eij}, {Aij}, I

)
=∫

d{x(m)
i ,Ω(m)

i }
∫
d{o(m 6=k),Ξ(m 6=k)} p

({
x

(m)
i ,Ω(m)

i

}
, {o(m),Ξ(m)}|{Eij}, {Aij}, I

)
.

(6)

In the position - orientation NPS, the PDF at the left-hand side of Equation (5) is

computed approximately by creating a three-dimensional histogram of samples qi from

p (q|{Eij}, {Aij}, I). The samples qi are computed by transforming the coordinates q(k)

of the point Q with To(k),i,Ξ(k),i
(.), which is defined for each posterior sample i by the

position o(k),i and orientation Ξ(k),i of the kth reference frame.

2.2 Credible volumes

It is easy to show that for a differentiable probability density p (x) satisfying ∇xp (x) 6=

0 at almost every position x satisfying the condition p (x) > 0, the credible volume at
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the level P is bounded by an iso-surface SP := {x|p (x) = pP} at probability density

pP , so that

P =
∫

p(x)≥pP

p (x)dx. (7)

Instead of using p (x) and pP that still depend on the PDF, we utilize the cumulative

distribution function c(x) and define it as the probability accumulated in the parameter

space region where the PDF exceeds the value p (x),

c(x) =
∫

p(x′)≥p(x)

p (x′)dx′. (8)

An iso-surface SP of the cumulative distribution function at the level P , i.e.

SP = {x|c(x) = P}, (9)

encloses the smallest volume containing the probability P , which is equivalent to the

credible volume.

In order to display a credible volume we computed c(x) of the probability density

p (x) at the supporting points x = xm. xm were spaced on a cubic grid with constant

spacing δx, and the size of the spacing was chosen so that the displayed iso-surfaces

were looking smooth. Here, δx varied between 0.5 and 14Å for the displayed densities.

To compute c(xm), the probability density p (xm) was sorted in descending order,

so that

p (ξ) ≡ p
(
xm(ξ)

)
≥ p

(
xm(ξ+1)

)
, (10)

where ξ and m are the voxel indices after and before the sorting, respectively, m(ξ) is

the sorting operation, and p (ξ) denotes the sorted probability density. Thereafter, the
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Suppl. Figure 1: Computation of the cumulative distribution function. The position space (left)
and the sorted voxel space (right) are shown. The cumulative distribution function c(x) used to
display credible volumes is calculated from the position probability density p (x) (yellow fog) by
sorting, calculation of cumulative probabilities, and re-mapping of the cumulative probabilities into
the position space. The sorted probability density, p (ξ), and its cumulative distribution, P (ξ), are
shown on the right side as functions of the voxel index ξ. Three voxels in the position space are
symbolized by white cubes. The cumulative distribution function c(x) contoured at the level P (cyan
mesh) is the surface of the credible volume corresponding to the probability P .

cumulative sorted probabilities, P (ξ), defined as

P (ξ) = (δx)3
ξ∑

ξ′=1
p (ξ′) , (11)

were calculated and mapped back into the three-dimensional position space (Suppl.

Figure 1).
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2.3 Displaying of NPS calculations

Marginal posterior PDFs of fluorophore positions were saved in MRC/CCP4 format

(referred to as MAPFORMAT in3) and displayed as “solid” (i.e. with an intensity

proportional to the PDF) with the UCSF Chimera software package4,5.

For better visualization of the PDFs, the credible volumes (Suppl. methods 2.2)

at the level P were shown either as “surface” or “mesh” in Chimera. To this end we

computed the cumulative distribution function c(xm) of the marginal posterior of a

fluorophore position or, alternatively, of the PDF of an arbitrary point q(k) in a docked

reference frame. We saved c(xm) in the MRC/CCP4 format and displayed the credible

volume at level P by showing an iso-surface of c(xm) at the level P in Chimera.

2.4 Quantification of average TDM orientation estimates

The average TDM orientation was calculated directly from reweighted posterior sam-

ples obtained by nested sampling. In order to deal with spherical topology the average

orientation of the TDM of the fluorophore i of each sample was represented as the

3-dimensional coordinates of the two intersections of the line defined by the average

TDM orientation and the unit sphere. By construction, the center of mass of these

points {sl} is the origin. In order to determine the mean average TDM orientation 〈Ωi〉

and the corresponding orientation uncertainty, we first computed the covariance matrix

Cori
i = 〈slsT

l 〉, diagonalized it, and obtained 3 principal directions and variances. We

defined 〈Ωi〉 as the principal direction with the largest variance, and obtained two stan-

dard deviations σΩi
1 and σΩi

2 in the remaining principal directions, which quantify the

uncertainty of 〈Ωi〉. In order to summarize the uncertainty of 〈Ωi〉 in one number, we

computed the geometric mean σΩi = (σΩi
1 σΩi

2 )1/2. By averaging σΩi over all antennas
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of the FRET network, we computed the mean average TDM orientation uncertainty

〈σΩ〉, which was used to compare the different analysis scenarios based on the spread

of the average TDM orientation estimates (Figure 5 in the main text).
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3 Supplementary results

Suppl. Figure 2: Influence of combined FRET efficiency and anisotropy measurements in separate
NPS. In separate analysis of the FRET network, the additional measurement of FRET anisotropy
improved localization accuracy only slightly (b) when compared to the results obtained by separately
analyzing FRET efficiency data only (a). The mean localization uncertainty 〈σx〉 was 11.8Å in (a)
and 9.5Å in (b).
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4 Supplementary discussion

4.1 Förster distance priors in position - Förster distance NPS

In the derivation of the position - Förster distance NPS2 we assumed that the Förster

distances of different satellite/antenna pairs are mutually independent and were thus

able to calculate the marginal antenna position posterior almost entirely on an analyti-

cal basis. However, this assumption needs to be tested as the Förster distances Rij and

Rik of two FRET efficiency measurements between the antenna i and the satellites j

and k depend on the position and average TDM orientation of the antenna, and hence

should be correlated.

To test our assumption we computed the normalized mutual information (NMI)6

I(Rij, Rik) of the distribution of Förster distances

p (Rij, Rik|xi,xj,xk, I) of two FRET pairs that share one fluorophore (Suppl. Figure

3). The NMI is a measure of the statistical dependency of two random variables, here

Rij and Rik, and ranges from 0 (completely independent) to 1 (completely dependent).

In more detail, the NMI I(X, Y ) is the normalized dissimilarity of the joint dis-

tribution of p (X, Y |I) compared to a reconstruction from the marginal distributions

p (X|I) p (Y |I). It is computed by means of the Kullback-Leibler divergence DKL[.||.]7

and normalized with the geometric mean of the Shannon informations H[.] of the

marginal distributions.

Explicitly, the NMI for the Förster distances Rij and Rik of two FRET pairs with

a common fluorophore i is given by

I(Rij, Rik) = DKL [p (Rij, Rik|xi,xj,xk, I) || p (Rij|xi,xj, I) p (Rik|xi,xk, I)]√
H [p (Rij|xi,xj, I)]H [p (Rik|xi,xk, I)]

(12)
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Suppl. Figure 3: Simulation of the joint Förster distance density. We investigated the Förster
distances Rij and Rik of the FRET efficiencies measured between three fluorophores, i, j and k (double
arrows) constituting two FRET pairs (FRET efficiency measurements are shown as dashed lines). Both
Förster distances Rij and Rik are correlated by the position and average TDM orientation of the dye
i. In the simulation it was assumed that the isotropic Förster distances of both FRET efficiency
measurements are equal, Riso

ij = Riso
ik = Riso. The positions of the fluorophores j and k was kept fixed

and their distance was set to d, while the position of the third fluorophore, i, was varied in the (x, z)-
plane. To obtain the density p (Rij , Rik|xi,xj ,xk, I) conditional only on the fluorophore positions,
the density p (Rij , Rik|xi,Ωi,xj ,Ωj ,xk,Ωk, I), which is conditional on the average transition dipole
moment orientations, was marginalized with a uniform prior in the orientations.

We computed I(Rij, Rik) given various fluorophore positions xi,xj and xk, fluorescence

anisotropies r∞,i, r∞,j and r∞,k, and under the assumption of an isotropic prior for the

average transition dipole orientations of the fluorophores. We assumed further that the

fluorescence anisotropies are equal, i.e. r∞,i = r∞,j = r∞,k = r. In the simulations, a

maximum NMI of 5 · 10−2 was achieved when fluorescence anisotropies were very small

(r = 0.01) and orientation effects should be negligible (Suppl. Figure 4). For larger

anisotropies (r = 0.05, . . . , 0.4) the NMI ranged from 0.025 to 0.009 and indicated that

Förster distances coupled by one fluorophore only are statistically almost independent

as assumed in the position - Förster distance NPS (Suppl. Figure 4). This finding clearly

breaks down when a complete FRET network is analyzed globally as we observed by
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improvement of the localization accuracy in the globally analyzed data (see results &

discussion in the main text).

Suppl. Figure 4: Normalized mutual information (NMI), I(Rij , Rik), of two correlated Förster
distances, Rij and Rik. The dependence of the NMI on the position xi = (x, 0, z) of the fluorophore i
is shown in each panel. The residual fluorescence anisotropies of all fluorophores were set to the same
value r, i.e. r∞,i = r∞,j = r∞,k = r, which was varied from 0.01 to 0.4.
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4.2 Coupling of NPS with FRET data pre-processing

In the context of NPS, pre-processing of FRET data one needs to extract FRET ef-

ficiencies and FRET anisotropies of molecular species from the measured data, and

one must know the number of conformational states of the studied macromolecule. At

the same time, also other important quantities like transition rates between different

macromolecular conformations can be inferred by pre-processing, which cannot be an-

alyzed by NPS, but nevertheless, this can help to determine the number of states. It

is thus necessary to derive how the results of pre-processing approaches and NPS can

be used together in order to determine the correct number of conformational states.

4.2.1 General derivation

In this section, we address formally how pre-processing of FRET data can be coupled

to NPS. After having performed the measurements usually one is confronted with the

problem of how many states are needed to explain the experimental data. This question

is crucial as it usually will have a large impact on the biological interpretation of the

experiment.

In Bayesian data analysis this problem is referred to as “model selection”.8 Ch.4 One

can propose several models explaining the observations and compute the probability of

each model given the measured data. Based thereon one can decide whether the data

is sufficient to support mainly one of the initially proposed models, or whether more

experiments should be performed in order to answer this question unambiguously.

In our case, the measured FRET data is described by using the model M , in which

the macromolecule and the attached fluorophores can exist in KM states. The model

probability given the experimental data will be denoted as p (M |{Oij(t)}, I). Here we

assume that the data is usually available as several time series Oij(t) of observables
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measured for the fluorophore pairs ij. The observables are in our case FRET efficiency

or/and FRET anisotropy, and by using Bayes theorem we can relate p (M |{Oij(t)}, I)

and the evidence p ({Oij(t)}|M, I),

p (M |{Oij(t)}, I) ∝ p ({Oij(t)}|M, I) p (M |I) = ZM p (M |I) , (13)

where p (M |I) is the prior probability of the model, ZM := p ({Oij(t)}|M, I) is its

evidence. Usually, p (M |I) is assumed to be constant, assuming that initially each

model is equally likely, so that the posterior probability of the model is proportional

to the evidence ZM , which can be calculated by integration of the posterior over the

model parameters,

ZM =
∫
d{xi,k}

∫
d{Ωi,k}

∑
{si,k}

p ({Oij(t)}|{si}, {xi,k}, {Ωi,k},M, I)

× p ({si,k}, {xi,k}, {Ωi,k}|M, I) . (14)

In the above equation {si,k} are the signs of the depolarizations and {xi,k} and {Ωi,k}

are the positions and average TDM orientations of the dyes in state k.

We will show now that the likelihood in equation 14 can be obtained from the result

of commonly used data pre-processing procedures. We assume that the model used

for pre-processing comprises the vector of additional hidden parameters hM and the

“true” values {Õij,k}, i.e. the set of the observables (i.e. FRET efficiencies and FRET

anisotropies) of all measured FRET pairs ij in all states k = 1, . . . , KM . The hidden pa-

rameters denote all model parameters except the NPS observables FRET efficiency and

FRET anisotropy, like for example the widths of peaks in histograms or the transition

rates of a hidden Markov model. With these definitions we introduce the pre-processing
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parameters {Õij,k} and hM into the likelihood p ({Oij(t)}|{si,k}, {xi,k}, {Ωi,k},M, I) by

marginalizing the joint likelihood of {Oij(t)} and the pre-processing parameters, and

by subsequently applying Bayes’ theorem,

p ({Oij(t)}|{si,k}, {xi,k}, {Ωi,k},M, I) =∫
d{Õij,k}

∫
dhMp

(
{Oij(t)}, {Õij,k},hM |{si,k}, {xi,k}, {Ωi,k},M, I

)
=∫

d{Õij,k}
∫
dhMp

(
{Oij(t)}|{Õij,k},hM , {si,k}, {xi,k}, {Ωi,k},M, I

)
× p

(
{Õij,k},hM |{si,k}, {xi,k}, {Ωi,k},M, I

)
. (15)

Since the data {Oij(t)} depends directly only on the “true” observables {Õij,k} (but not

on the NPS parameters) we can cancel the NPS parameters in the third line of equation

(15). If {Õij,k} and hM are independent a priori, we can factorize the probability in

the last line of equation (15), and if the hidden parameters do not depend on {si,k},

{xi,k} and {Ωi,k} a priori, we can finally write

p ({Oij(t)}|{si,k}, {xi,k}, {Ωi,k},M, I) =∫
d{Õij,k}

∫
dhMp

(
{Oij(t)}|{Õij,k},hM ,M, I

)
× p (hM |M, I) p

(
{Õij,k}|{si,k}, {xi,k}, {Ωi,k},M, I

)
. (16)

The term p
(
{Õij,k}|{si,k}, {xi,k}, {Ωi,k},M, I

)
in the above equation can be iden-

tified with a product of Dirac δ distributions since the “true” value of the observables

must be identical with the observables Oij,k (i.e. E or/and A) expected from the de-

polarization signs as well as from the fluorophore positions and orientations. We will
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abbreviate this term by δ({Õij,k} − {Oij,k}), which is defined by

δ({Õij,k} − {Oij,k}) =
∏
ij,k

δ
(
Õij,k −O′ij,k

)
, (17)

so that we get the following expression for the likelihood:

p ({Oij(t)}|{si,k}, {xi,k}, {Ωi,k},M, I) =∫
d{Õij,k}

∫
dhMp

(
{Oij(t)}|{Õij,k},hM ,M, I

)
p (hM |M, I) δ({Õij,k} − {Oij,k}).

(18)

It is important to note that by doing so we implicitly assumed that we can uniquely

assign each molecular state k to a set of “true” observables Õij,k. This is for example

the case if each state can be uniquely identified by the average fraction of the time a

molecule spends in it, e.g. as in every experiment ij a small and a large fraction of

molecules is observed. If this is not possible, as for instance the population of two or

more states are very similar in all measured pairs of labeling sites ij, one must treat

every possible assignment of the “true” observables Õij,k obtained in the pre-processing

to the observables Oij,k expected from NPS as a separate model.

Next, we discuss the special case of a pre-processing method, in which a flat prior

p
(
Õij,k|M, IPP

)
=: πPP,Õ

M is used in the “true” observables. In this case, we can use

Bayes theorem and rewrite Equation 18 in order to introduce the posterior PDF of the

data pre-processing problem, p
(
hM , {Õij,k}|{Oij(t)},M, I

)
, together with the respec-

tive evidence, ZPP
M ,
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p ({Oij(t)}|{si,k}, {xi,k}, {Ωi,k},M, I) =

ZPP
M

πPP,Õ
M

∫
d{Õij,k}

∫
dhMp

(
hM , {Õij,k}|{Oij(t)},M, I

)
δ({Õij,k} − {Oij,k}) =

ZPP
M

πPP,Õ
M

∫
d{Õij,k}p

(
{Õij,k}|{Oij(t)},M, I

)
δ({Õij,k} − {Oij,k}) =

ZPP
M

πPP,Õ
M

p
(
{Õij,k}|{Oij(t)},M, I

)∣∣∣
{Õij,k}={Oij,k}

. (19)

As we see in the above equation, the likelihood of the NPS problem can be obtained by

weighting the posterior of the pre-processing problem by ZPP
M /πPP,Õ

M . The likelihood

derived here will replace the product over the likelihood factors in Equation (9) in the

main text because there we did not yet treat the ambiguity introduced by the sign of

the depolarizations. p
(
{Õij,k}|{Oij(t)},M, I

)∣∣∣
{Õij,k}={Oij,k}

is also clearly multimodal,

as it is invariant under arbitrary permutations of (Oij,1, . . . ,Oij,KM
). This has to be

accounted for by ab additional factor of KM ! in the total evidence of the model M ,9

which is given by

ZM = ZPP
M

πPP,Õ
M

KM ! ZNPS
M . (20)

ZNPS
M is the evidence of the NPS problem calculated (without accounting for the permu-

tation symmetry) by using the function p
(
{Õij,k}|{Oij(t)},M, I

)∣∣∣
{Õij,k}={Oij,k}

instead

of the likelihood from Equation (9) in the main text. Using the likelihood above is

important because in general there will be correlations between the observables of dif-

ferent states Õij,k for the same pair of labeling sites, which are not accounted for in

equation (9) in the main text.

We stress again that equation (20) is valid for any pre-processing method working
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with FRET efficiency and/or FRET anisotropy as model parameters and essentially

assuming a flat prior in these observables. This applies particularly to least-squares

histogram fits as well as to maximum likelihood estimates, and although these methods

lack an explicit prior, they can be regarded as special cases of Bayesian data analy-

sis.8 Ch.3.5].

4.2.2 Application to least-squares histogram fitting

In the following, we apply equation (20) to the popular pre-processing of data by

least-squares fitting of FRET histograms. First, the data Oij(t) obtained in a FRET

experiment between the labeling sites i and j is binned and displayed as a histogram,

so that the time dependence is lost and does not need to be analyzed. However, we

will keep the time dependence in the notation to indicate that Oij(t) consists of many

data points.

In the model M , each histogram of Oij(t) is described by NO,ij
M FRET species (i.e.

peaks in the histogram). Each peak k in the histogram is usually parameterized by

a center position (i.e. Ẽij,k or Ãij,k) and a parameter modeling the width of the peak

(i.e. wẼij,k or wÃij,k). We will abbreviate the center positions and widths by [Õij,k] :=

(Õij,1, . . . , Õij,NO,ij
M

) and [wÕij,k] := (wÕij,1, . . . , wÕij,NO,ij
M

), respectively1. The widths [wÕij,k],

which are not processed directly in the NPS, are treated as hidden parameters and are

part of the vector of hidden parameters, hK (see equations (18) and (19)).

We emphasize that the number of FRET species NO,ij
M does not necessarily have to

be equal to the number of states of the macromolecule, KM , since it is possible that

several macromolecule conformations lead to the same value of the observable Õij,k

because the position and average TDM orientation of the fluorophores stays the same.
1 Note that the brackets denote a set of observables or widths, which extends over all states k and

in which the FRET pair ij stays the same.
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It is also possible that more than KM FRET species are observed if experimental

artifacts need to be accounted for, e.g. donor-only labeled molecules, which causes

typically a peak at 0 FRET efficiency. Similar to the peak widths we will consider

the model parameters needed to explain experimental artifacts as part of the “hidden”

parameters hM . In the notation they will therefore not appear as “true” observables

{Õij,k} in the following.

Next, we will discuss least-squares fitting of the histograms of Oij(t) from a Bayesian

point of view. The likelihood of a Bayesian calculation corresponding to a least-square

fit is given by8 Ch.3.5

p
(
Oij(t)|[Õij,k], [wÕij,k],M, I

)
∝ exp

[
−
χ2
O,ij

2

]
, (21)

where χ2
O,ij is the sum of the normalized errors squared, here given by

χ2
O,ij =

∑
b

(
HO,ij
b − FO,ij

b

εO,ijb

)2

. (22)

In the above equation, the number of counts in the bin b of the histogram of the data

is given by HO,ij
b , and FO,ij

b denotes the average number of counts expected from the

relevant model parameters [Õij,k] and [wÕij,k]. As each H ij
b should follow a Poissonian

distribution, the expected error in each bin, εO,ijb , can be assumed to be approximately

εO,ijb ∝
√
FO,ij
b ≈

√
HO,ij
b if all HO,ij

b � 1.8 Ch.3.5

By minimizing χ2
O,ij and therefore by performing a least-square fit we maximize

the likelihood in equation (21). If we assume a flat prior p
(
[Õij,k], [wÕij,k]|M, I

)
in

all fit parameters, the posterior p
(
[Õij,k], [wÕij,k]|Oij(t),M, I

)
will be proportional to

the likelihood, and thus minimizing χ2
O,ij corresponds to finding the maximum of the
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posterior. This holds approximately even for non-uniform priors if the prior is varying

slowly as a function of the parameters in the proximity of the likelihood maximum, so

that the main variability of the posterior can be attributed to the likelihood and the

prior can be approximated by its nearly constant value at the likelihood maximum.

In the following, we use a flat prior in the peak center parameters, [Õij,k], and a

Jeffreys prior10 in the peak width parameters [wÕij,k],

p
(
[Õij,k], [wÕij,k]|M, I

)
∝

N
O,ij
M∏
k=1

(
Õmax − Õmin

)
wÕij,k


−1

. (23)

In the above equation, the possible range of the “true” observable values (Õmin, Õmax)

is given by Ẽmin = 0 and Ẽmax = 1 for FRET efficiencies, and by Ãmin = −1/5 and

Ãmax = 2/5 for FRET anisotropies.

The evidence ZO,ij
M is given by the product of prior and likelihood integrated over

the model parameters,

ZO,ij
M ∝

∫
d[Õij,k]

∫
d[wÕij,k]


N

O,ij
M∏
k=1

(
Õmax − Õmin

)
wÕij,k


−1

× exp
[
−
χ2
O,ij

2

] , (24)

and by assuming that the prior is approximately constant in the proximity of the

likelihood maximum located at [Õ∗ij,k] and [w∗Õij,k] we can take the prior out of the

integral and get finally

ZO,ij
M ∝̃

N
O,ij
M∏
k=1

(
Õmax − Õmin

)
w∗Õij,k


−1

×
∫
d[Õij,k]

∫
d[wÕij,k] exp

[
−
χ2
O,ij

2

]
. (25)

Oftentimes it might be possible to approximate the posterior and, given a constant

prior, also the likelihood exp
[
−χ2

O,ij/2
]
by a multivariate normal distribution, which
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is characterized by its amplitude calculated from χ2 evaluated at the minimum, χ2,min
O,ij ,

and by its width, which can be calculated from the covariance matrix CO,ij 8 Ch.3.2 and App.3.

In this case, the evidence is given by

ZO,ij
M ∝̃

N
O,ij
M∏
k=1

(
Õmax − Õmin

)
w∗Õij,k


−1

(2π)N
O,ij
M

√
detCO,ij exp

−χ2,min
O,ij

2

 . (26)

As the pre-processing of each histogram is clearly done independently, the evidence of

the complete pre-processing, ZPP
M , can be calculated from the product of all ZO,ij

M ,

ZPP
M =

∏
O,ij

ZO,ij
M . (27)

Since in equation (20) the pre-processing prior πPP,Õ
M for the “true” observables is flat

within (Õmin, Õmax), we can write explicitly

πPP,Õ
M =

∏
O,ij

N
O,ij
M∏
k=1

(
Õmax − Õmin

)
−1

, (28)

we can substitute equations (26), (27) and (28) into equation (20), so that we finally

get

ZM∝̃
∏
O,ij


N

O,ij
M∏
k=1

w∗Õij,k


−1

(2π)N
O,ij
M

√
detCO,ij exp

−χ2,min
O,ij

2


×KM ! ZNPS

M . (29)

We write this equation in a more compact form

ZM∝̃W−1 (2π)NM
√

detC exp
[
−χ

2
min
2

]
×KM ! ZNPS

M (30)
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by introducing the following abbreviations:

W−1 =
∏
O,ij

NO,ij
M∏
k=1

(
w∗Õij,k

)−1
(31)

NM =
∑
O,ij

NO,ij
M (32)

detC =
∏
O,ij

detCO,ij (33)

χ2
min =

∑
O,ij

χ2,min
O,ij , (34)

i.e.W−1 is the product of the inverse widths of all peaks in all fits (both FRET efficiency

and FRET anisotropy), NM is the total number of peaks, detC is the product of all

determinants of covariance matrices, and χ2
min is the total of all minimized χ2 values

obtained.
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5 Supplementary Tables

fluorophore i xi/Å yi/Å zi/Å θi/rad φi/rad r∞,i
sat. 1 36.7 12.0 27.2 3.01 0.78 0.31
sat. 2 23.2 46.9 3.4 1.53 0.37 0.31
sat. 3 45.7 31.3 3.6 1.11 3.00 0.15
sat. 4 8.5 36.3 44.9 0.46 0.07 0.32
sat. 5 46.9 3.0 2.0 1.44 2.54 0.24
sat. 6 5.0 5.3 48.9 2.69 0.17 0.22
sat. 7 4.4 56.4 18.6 1.16 0.12 0.29
sat. 8∗ 49.9 -27.3 30.2 2.52 0.73 0.24
sat. 9∗ 44.2 61.6 -24.7 0.73 1.99 0.21
ant. 1 56.5 49.7 75.6 1.52 0.91 0.31
ant. 2 89.7 47.0 36.6 1.42 2.26 0.18
ant. 3 65.1 5.7 82.0 2.55 1.29 0.31
ant. 4 72.6 77.4 28.4 0.61 2.07 0.27
ant. 5 81.1 2.1 54.1 2.43 2.05 0.27
ant. 6 86.6 11.1 27.0 1.04 2.29 0.23
ant. 7 49.8 78.9 17.0 0.47 1.69 0.22

∗) used in extended FRET network only

Suppl. Table 1: Fluorophore data. Exact fluorophore positions xi = (xi, yi, zi)
and average TDM orientations Ωi = (− cos θi, φi) together with residual fluorescence
anisotropy r∞,i.

Riso
ij /Å ant. 1 ant. 2 ant. 3 ant. 4 ant. 5 ant. 6 ant. 7

sat. 1 56.7 62.3 57.7 56.7 56.3 55.2 58.6
sat. 2 57.4 64.3 62.7 57.8 60.0 56.6 64.4
sat. 3 64.1 64.8 58.2 59.6 61.9 64.2 64.8
sat. 4 63.5 64.6 58.2 63.0 63.9 63.4 59.4
sat. 5 60.8 56.0 63.4 60.9 55.2 57.1 56.0
sat. 6 60.6 61.2 64.1 57.1 64.1 64.8 61.3
sat. 7 64.0 57.2 64.3 55.4 63.3 57.8 63.2
sat. 8 - - 60.5∗ - 61.6∗ 8.3∗ -
sat. 9 - 63.2∗ - 64.8∗ - - 55.2∗

∗) used in extended FRET network only

Suppl. Table 2: Isotropic Förster distances in Å.
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Eij ant. 1 ant. 2 ant. 3 ant. 4 ant. 5 ant. 6 ant. 7
sat. 1 0.5516 0.1688 0.4556 0.1684 0.3280 0.3773 0.3356
sat. 2 0.0501 0.3696 0.0866 0.4617 0.1382 0.1544 0.9560
sat. 3 0.2306 0.5455 0.0642 0.5336 0.3407 0.6438 0.7262
sat. 4 0.8171 0.1009 0.1183 0.1647 0.0603 0.1334 0.2951
sat. 5 0.0623 0.2111 0.0709 0.0502 0.2089 0.7019 0.0946
sat. 6 0.1512 0.0289 0.3600 0.0286 0.2969 0.1339 0.0758
sat. 7 0.1187 0.1656 0.1430 0.0727 0.1313 0.1295 0.6309
sat. 8 - - 0.1871∗ - 0.6646∗ 0.2966∗ -
sat. 9 - 0.2714∗ - 0.4459∗ - - 0.9042∗

∗) used in extended FRET network only

Suppl. Table 3: FRET efficiencies.

Aij ant. 1 ant. 2 ant. 3 ant. 4 ant. 5 ant. 6 ant. 7
sat. 1 −0.1516 −0.1113 0.2124 0.1290 0.1173 −0.0363 0.1478
sat. 2 0.1888 −0.0839 −0.1131 −0.1453 −0.1392 −0.1036 −0.1211
sat. 3 −0.0505 0.0470 −0.0450 0.0379 −0.1011 0.0940 −0.0219
sat. 4 −0.1036 −0.1137 0.0494 0.0298 0.1305 −0.1158 0.1153
sat. 5 −0.1338 0.1825 −0.1327 0.0174 −0.0429 0.1660 −0.0541
sat. 6 −0.0992 −0.0628 0.1538 0.1243 0.0086 0.0308 0.0952
sat. 7 0.0480 −0.0490 −0.1419 −0.1342 −0.0278 −0.1066 −0.0778
sat. 8 - - 0.0483∗ - 0.1651∗ −0.1189∗ -
sat. 9 - 0.0637∗ - 0.2335∗ - - 0.1840∗

∗) used in extended FRET network only

Suppl. Table 4: FRET anisotropies.
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calculation lnZ
FRET efficiency only 8.3± 0.1
FRET efficiency only,
extended network

9.5± 0.3

FRET efficiency and
anisotropy

133.5± 0.4

FRET efficiency and
anisotropy, finite sat.
prior

125.0± 0.3

Suppl. Table 5: Evidences of global NPS calculations. The natural logarithm of the
evidence (lnZ) and its error listed for the global NPS calculations.
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