

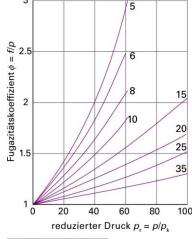
Seminar zur Vorlesung Physikalische Chemie I Sommersemester 2015

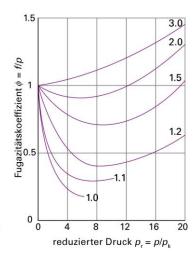
Prof. Dr. Timo Jacob, Institut für Elektrochemie Übungsblatt 9, Aufgaben 64–71

Seminartermine: Dienstag, 16. Juni, Freitag, 19. Juni und Montag, 22. Juni 2015

Aufgabe 64

- a) Geben Sie den Zusammenhang zwischen der Fugazität eines Van-der-Waals-Gases und dem Druck an. Nehmen Sie dazu an, dass die zwischenmolekulare Anziehung zwischen den Gasteilchen vernachlässigbar gering ist.
- b) Leiten Sie einen Ausdruck für den Fugazitätskoeffizienten γ eines Gases ab, welches die Zustandsgleichung $pV_m = RT\left(1 + \frac{B}{V_m} + ...\right) = RT\left(1 + B'p + ...\right)$ erfüllt.
- c) Bestimmen Sie mithilfe Ihres Resultats von (b) die Fugazität von Argon bei 1,00 bar und 100 K. $B_{Ar} = -21,13 \text{ cm}^3 \text{ mol}^{-1}$.


Aufgabe 65


Für reduzierte Größen gilt $p_r = \frac{p}{p_{krit}}$, $V_r = \frac{V_m}{V_{krit}}$ und $T_r = \frac{T}{T_{krit}}$, d.h. sie werden durch Normieren auf die kritischen Größen erhalten.

a) Zeigen Sie, dass man die Van-der-Waals-Gleichung mit reduzierten Variablen schreiben

kann:
$$p_r = \frac{8T_r}{3V_r - 1} - \frac{3}{V_r^2}$$

- b) Geben Sie einen Ausdruck für den Kompressionsfaktor Z als Funktion vom reduzierten Volumen und der reduzierten Temperatur an.
- c) Diskutieren Sie nebenstehende Graphiken.

Aufgabe 66

Wie hängt das chemische Potential einer Komponente bei konstanter Temperatur vom Druck ab? Zeichnen Sie eine entsprechende Graphik.

Aufgabe 67

Wie lautet die Gleichgewichtsbedingung für die Reaktion $N_2O_{4(g)} \longrightarrow 2NO_{2(g)}$?

Aufgabe 68

Experimentell wurde die Verdampfungsenthalpie einer flüssigen Probe an ihrem Siedepunkt bei 1 atm (180 K) zu 14.4 kJ mol⁻¹ bestimmt. Das molare Volumen der Flüssigkeit und des Dampfs am Siedepunkt beträgt 115 cm³ mol⁻¹ bzw. 14.5 dm³ mol⁻¹. Bestimmen Sie die Ableitung dp/dT aus der Clapeyron'schen Gleichung.

Aufgabe 69

Richtig oder Falsch? Begründen Sie jeweils.

- (a) Die Größen U, H, A (bzw. F) und G besitzen alle dieselbe Einheit.
- (b) Die Beziehung $\Delta G = \Delta H T \Delta S$ gilt für jeden beliebigen Prozess.
- (c) G = A + pV
- (d) Die freie Enthalpie von 12 g Eis bei 0°C und 1 atm ist kleiner als die freie Enthalpie von 12 g flüssigem Wasser bei 0°C und 1 atm.
- (e) Die Größen SdT, TdS, Vdp und $\int_{1}^{2} Vdp$ besitzen alle die Dimension einer Energie.

Aufgabe 70

Berechnen Sie ΔG , ΔA und $\Delta S_{Universum}$ für jeden der folgenden Prozesse. Schlagen Sie die benötigten Dichten bitte selbst nach.

- (a) Reversibles Schmelzen von 36,0 g Eis bei 0°C und 1 atm.
- (b) Reversibles Verdampfen von 39 g C₆H₆ beim Siedepunkt 80,1°C und 1 atm.
- (c) Adiabatische Expansion von 0,100 mol eines idealen Gases ins Vakuum (Joule Experiment). Anfangstemperatur 300 K; Anfangsvolumen 2,00 L; Endvolumen 6,00 L.

Aufgabe 71

Die Beziehung $\left(\frac{\partial U}{\partial S}\right)_V = T$ ist erwähnenswert, weil sie drei grundlegende Zustandsfunktionen

miteinander in Beziehung bringt. Die reziproke Beziehung $\left(\frac{\partial S}{\partial U}\right)_V = \frac{1}{T}$ zeigt, dass die Entropie

immer größer wird, wenn die innere Energie bei konstantem Volumen größer wird.

Benutzen Sie die Fundamentalgleichung für dU um zu zeigen: $\left(\frac{\partial S}{\partial V}\right)_{U} = \frac{p}{T}$.

Dr. Ludwig Kibler, 10. Juni 2015 ludwig.kibler@uni-ulm.de