DPG Frühjahrestagung Regensburg, 2022 **Bioimaging and Biospectroscopy BP 12.62**

Fast sorting of microfluidic droplets by content type with combined bright field and fluorescence detection

Jonas Pfeil^{1,2}, Patricia Schwilling¹, and Othmar Marti¹

¹Institute of Experimental Physics, Ulm University, Ulm Germany ²Sensific GmbH, Ulm, Germany

Abstract

Droplet-based microfluidics in context of fluorescent imaging can be used for a multitude of applications in biophysics, medicine, and lab-ona-chip. One remaining issue in the encapsulation process of particle-like objects is that the number of encapsulated objects is Poisson or Poisson-like distributed. A sorting step immediately after the

Time multiplexed setup

- Alternating between different illumination settings
- Pulsed illumination
 - Enhancing contrast
 - Eliminating motion blur
 - Minimizing bleaching

encapsulation reduces the number of falsely-laden droplets.

Here, we present results of the detection of beads with different diameters and different fluorescent signals. Therefore, we encapsulate 10 μ m blank beads and 15 μ m fluorescent beads and detect them using a time multiplexed imaging approach to simultaneously detect the population for each bead type. Thereby, we show that it is possible to achieve a user-defined, homogeneous configuration of fluorescent and non fluorescent particles in droplets.

Minimizing light damage

- Can be extended to up to four different settings
- 10 kHz capture rate
- 3000 droplets per second
- 500 Hz sorting rate

Detection results

- User defined parameter combinations \bullet
- Freely chooseable sorting polygons \bullet
- Enrichtment of arbitrary combinations can reach up to 25
- Very high specificity of > 99 %

scene		n=4033	2BF/2FL	2BF/0FL	OBF/2FL	3BF/1FL	1BF/3FL
ores		Specificity [%]	99.23	99.52	99.68	99.42	99.51
		Sensitivity [%]	82.88	97.32	96.02	91.74	86.67
3 -		Rel. Abundance	6.37	7.39	5.60	5.41	3.35
2 -		[%] Rel.					
1 -		Abundance in Polygon [%]	88.02	94.16	94.76	90.09	86.03
0	^{0.05} Brightfield / a.u.	Factor of Enrichment	13.81	12.74	16.91	16.67	25.70

Acknowledgement

Ulm University

- Lisa Kwapich \bullet
- Ralf Schuster
- Dr. Jochen Scharpf \bullet
- Karolina Zeh \bullet
- Nebal Altabl

Max Planck Institute for Medical Research Heidelberg

- Prof. Joachim Spatz
- Dr. Ilia Platzman
 - Dr. Christoph Frey
 - Manuel Baumann • Florian Aubermann

Funding by Ulm University via the research grant ProTrainU Anschubfinanzierung A and B.

Conclusion

With this experiments we validated the fast detection of complex droplets in microfluidic systems with high specificity, high sensitivity and a large enrichment factor.

Literature

[1] Frey C, Pfeil J, Neckernuss T, et al. Label-free monitoring and manipulation of microfluidic water-in-oil droplets. VIEW. 2020;1:20200101.https://doi.org/10.1002/VIW.20200101