Fast sorting of microfluidic droplets by content type with combined bright field and fluorescence detection

Jonas Pfeil1,2, Patricia Schwilling1, and Othmar Marti1

1Institute of Experimental Physics, Ulm University, Ulm Germany
2Sensific GmbH, Ulm, Germany

DPG Frühjahrestagung
Regensburg, 2022
Bioimaging and Biospectroscopy
BP 12.62

Abstract

Droplet-based microfluidics in context of fluorescent imaging can be used for a multitude of applications in biophysics, medicine, and lab-on-a-chip. One remaining issue in the encapsulation process of particle-like objects is that the number of encapsulated objects is Poisson or Poisson-like distributed. A sorting step immediately after the encapsulation reduces the number of falsely laden droplets.

Here, we present results of the detection of beads with different diameters and different fluorescent signals. Therefore, we encapsulate 10 µm blank beads and 15 µm fluorescent beads and detect them using a time multiplexed imaging approach to simultaneously detect the population for each bead type. Thereby, we show that it is possible to achieve a user-defined, homogeneous configuration of fluorescent and non fluorescent particles in droplets.

Time multiplexed setup

- Alternating between different illumination settings
- Pulsed illumination
- Enhancing contrast
- Eliminating motion blur
- Minimizing bleaching
- Minimizing light damage
- Can be extended to up to four different settings
- 10 kHz capture rate
- 3000 droplets per second
- 500 Hz sorting rate

Detection results

- User defined parameter combinations
- Freely chooseable sorting polygons
- Enrichment of arbitrary combinations can reach up to 25
- Very high specificity of > 99 %

<table>
<thead>
<tr>
<th>n=4033</th>
<th>2BF/2FL</th>
<th>2BF/2FL</th>
<th>2BF/2FL</th>
<th>3BF/1FL</th>
<th>1BF/3FL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity [%]</td>
<td>99.23</td>
<td>99.52</td>
<td>99.68</td>
<td>99.42</td>
<td>99.51</td>
</tr>
<tr>
<td>Sensitivity [%]</td>
<td>82.88</td>
<td>97.32</td>
<td>96.02</td>
<td>91.74</td>
<td>86.67</td>
</tr>
<tr>
<td>Abundance [%] Rel.</td>
<td>6.37</td>
<td>7.39</td>
<td>5.60</td>
<td>5.41</td>
<td>3.35</td>
</tr>
<tr>
<td>Abundance in Polygon [%] Rel.</td>
<td>88.02</td>
<td>94.16</td>
<td>94.76</td>
<td>90.09</td>
<td>86.03</td>
</tr>
<tr>
<td>Factor of Enrichment</td>
<td>13.81</td>
<td>12.74</td>
<td>16.91</td>
<td>16.67</td>
<td>25.70</td>
</tr>
</tbody>
</table>

Hardware setup

Acknowledgement

Max Planck Institute for Medical Research Heidelberg
- Prof. Joachim Spatz
- Dr. Ilia Platzman
- Dr. Christoph Frey
- Manuel Baumann
- Florian Aubermann

Funding by Ulm University via the research grant ProTrainU
Anschubfinanzierung A and B.

Ulm University
- Lisa Kwapich
- Ralf Schuster
- Dr. Jochen Scharpf
- Karolina Zeh
- Nebal Altabl

Max Planck Institute for Medical Research Heidelberg
- Prof. Joachim Spatz
- Dr. Ilia Platzman
- Dr. Christoph Frey
- Manuel Baumann
- Florian Aubermann

Funding by Ulm University via the research grant ProTrainU
Anschubfinanzierung A and B.

DPG Frühjahrestagung
Regensburg, 2022
Bioimaging and Biospectroscopy
BP 12.62

Conclusion

With this experiments we validated the fast detection of complex droplets in microfluidic systems with high specificity, high sensitivity and a large enrichment factor.

Literature