Unveiling the Intricate Reaction Mechanism of Manganese Sesquioxide as Positive Electrode in Aqueous Zn-metal Battery

Yuan Ma,^[a,b] Yanjiao Ma,^[a,b] Thomas Diemant,^[c] Kecheng Cao,^[d] Xu Liu,^[a,b] Ute Kaiser,^[d] R. Jürgen Behm,^[a,c] Alberto Varzi,*^[a,b] Stefano Passerini,^{*[a,b]}

^[a] Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081 Ulm, Germany

^[b] Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany

^[c] Institute of Surface Chemistry and Catalysis, Ulm University,

Albert-Einstein-Allee 47, D-89081 Ulm, Germany

^[d] Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany

Abstract

In the family of Zn/manganese oxide batteries with mild aqueous electrolytes, cubic α -Mn₂O₃ with bixbyite structure is rarely considered, because of the shortage of the tunnel and/or layered structure that are usually believed to be indispensable for the incorporation of Zn ions. In this work, a completely new charge storage mechanism is proposed, revealing that α -Mn₂O₃ is in fact a promising cathode material for aqueous zinc-ion batteries. Specifically, this involves an electrochemically induced irreversible phase transition from α -Mn₂O₃ to layered-typed L-Zn_xMnO₂ occurring upon the discharging during the initial cycles, which is accompanied by the dissolution of Mn²⁺ into the electrolyte, thus allowing the subsequent reversible de-/intercalation of Zn²⁺ in the latter structure. The repeated uptake/removal of H⁺ in the cathode material and dissolution/deposition of Mn²⁺ on the cathode surface also contributes considerably to the overall charge storage. Based on this electrode mechanism, combined with fabricating hierarchically structured mesoporous α -Mn₂O₃ microrod array material, we this way obtained an unprecedented rate capability with 103 mAh g⁻¹ at 5.0 A g⁻¹ as well as an appealing stability of 2000 cycles with a capacity decay of only ca. 0.009% per-cycle.

Keywords: Aqueous zinc-ion battery, energy storage mechanism, hierarchical mesoporous structure, α -Mn₂O₃, cathode

Submitted: 26.10.2020

* Corresponding authors: stefano.passerini@kit.edu (S. Passerini), alberto.varzi@kit.edu (A. Varzi)