Ionic Liquid Electrolytes for Metal-Air Batteries: Interactions between O₂, Zn²⁺ and H₂O Impurities

D. Alwast¹,², J. Schnaidt¹,², Z. Jusys¹, and R.J. Behm¹,², z

¹ Institute of Surface Chemistry and Catalysis, Ulm University, Ulm, Germany
² Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Ulm, Germany
³ Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract
Motivated by the potential of ionic liquids (ILs) to replace traditional aqueous electrolytes in Zn-air batteries, we investigated the effects arising from mutual interactions between O₂ and Zn(TFSI)₂ as well as the influence of H₂O impurities in the oxygen reduction / oxygen evolution reaction (ORR/OER) and in Zn deposition / dissolution on a glassy carbon (GC) electrode in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) by differential electrochemical mass spectrometry. This allowed us to determine the number of electrons transferred per reduced / evolved O₂ molecule. In O₂ saturated neat BMP-TFSI the ORR and OER were found to be reversible, in Zn²⁺ containing IL Zn deposition/striping proceeds reversibly as well. Simultaneous addition of O₂ and Zn²⁺ suppresses Zn metal deposition, instead ZnO₂ is formed in the ORR, which is reversible only after excursions to very negative potentials (-1.4 V). The addition of water leads to an enhancement of all processes described above, which is at least partly explained by a higher mobility of O₂ and Zn²⁺ in the water containing electrolytes. Consequences for the operation of Zn-air batteries in these electrolytes are discussed.

Keywords: ionic liquid, oxygen reduction reaction, oxygen evolution reaction

Submitted: 11.09.19

z juergen.behm@uni-ulm.de