Halide-free Water-in-Salt Electrolytes Enabling Symmetric Aqueous Sodium-Ion Batteries

Jin Hana,b, Maider Zarrabeitiaa,b,c, Alessandro Mariania,b, Zenonas Jusysd, Maral Hekmatfara,b, Huang Zhanga,b, Dorin Geigere, Ute Kaisere, R. Jürgen Behma,d, Alberto Varzia,b,*, Stefano Passerinia,b,*

a Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
b Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
c CIC energigune, Parque Tecnológico de Álava, Vitoria-Gasteiz, Álava, Spain
d Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
e Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee11, D-89081 Ulm, Germany

Abstract: The “water-in-salt” electrolyte (WiSE) containing sodium acetate (8 m) and potassium acetate (32 m) is extensively investigated via classical Molecular Dynamics (MD) simulations, unveiling clear interactions between cations, anion and water. The WiSE is then used as electrolyte in symmetric aqueous sodium-ion batteries, featuring NASICON-type Na\textsubscript{2}VTi(PO\textsubscript{4})\textsubscript{3}/C (NVTP/C) as active material at both the positive and the negative electrode. \textit{In situ} X-ray diffraction (XRD) measurements resolve the structural evolution of NVTP/C during the highly reversible sodium de/intercalation and Differential Electrochemical Mass Spectrometry (DEMS) confirms the remarkable stability of the highly concentrated electrolyte. Symmetric cells employing two NVTP/C electrodes and a green, acetate-based aqueous electrolyte show an average discharge voltage of 1.13 V with stable cycling performance and a coulombic efficiency above 99\% at 1C and 99.9\% at 10C over 500 cycles.

Keywords: Water-in-Salt electrolyte, WiSE, acetate, aqueous sodium-ion batteries, NASICON

* Corresponding authors: alberto.varzi@kit.edu; stefano.passerini@kit.edu