What drives the selectivity for CO methanation in the methanation of CO$_2$-rich reformate gases on supported Ru catalysts?

Stephan Eckle1, Hans-Georg Anfang2, R. Jürgen Behm1,*

1Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
2Süd-Chemie AG, R&D Energy & Environment, Waldheimer Str. 13 D-83502 Bruckmühl, Germany

Aiming at a mechanistic understanding of their selectivity for CO methanation and the underlying physical reasons, we have investigated the selective methanation of CO over two supported Ru catalysts, a Ru/zeolite catalyst and a Ru/Al$_2$O$_3$ catalyst, in CO$_2$-rich reformate gases by combined kinetic and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements. Based on the correlation between CO$_{ad}$ band intensity / CO$_{ad}$ coverage and the selectivity for CO methanation over a wide range of CO contents, down to 100 ppm, two different mechanism are identified for the two catalyst. On Ru/Al$_2$O$_3$, the selectivity results from blocking of active surface sites by adsorbed CO, while for the Ru/zeolite catalyst we relate this to an inherently low activity of the very small Ru nanoparticles for CO$_2$ dissociation and subsequent methanation. The underlying reasons and consequences for practical applications are discussed.

Keywords: Selective methanation, CO methanation, Mechanism, CO adsorption, Ru catalyst,

Submitted: 14.03.2010

*author to whom correspondence should be addressed, email: juergen.behm@uni-ulm.de