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Certain one- and two-dimensional reductions of the three-dimensional Schrodinger
equation of the hydrogen atom are considered. These reductions are carried out from
the point of view of the two common sets of space coordinates: Cartesian and

spherical. The resulting systems have features that relate more readily to the. old
quantum theory models of Bohr and Sommerfeld than the general three-dimensional
hydrogen atom. Furthermore, the considerations yield interesting insights into the
quantum mechanics of the hydrogen atom and may serve as helpful intermediary
preparation, in an introductory presentation of the subject, for the unreduced three-

dimensional case.

I. INTRODUCTION

It is convenient for our purposes to begin with the time-
independent Schrodinger equation of a particle in a po-
tential. This equation, when expressed in standard notation,
reads as follows:

— g;— V2\[/(x,y,2) + V(x,y,Z)lp(x,y,z) = Edf(X,y,z). (1)

One usually illustrates this equation, in an introductory
presentation of the subject, in terms of Cartesian one-
dimensional systems. These systems have simple potentials,
e.g., the square well and the rectangular potential barrier.
The important case of the hydrogen atom, however, is dealt
with from the outset in three dimensions. Yet, certain one-
and two-dimensional reductions of the hydrogen atom
system can be studied towards further illustration of
Schrédinger’s Eq. (1), and towards building up to the
three-dimensional case.! Additionally, the study of the re-
sulting reduced systems leads to a better appreciation of the
relation between the old quantum theory and Schrédinger’s
theory.

II. ONE-DIMENSIONAL HYDROGEN ATOMS

The dimensional reduction of Schrddinger’s equation
depends on the set of coordinates in which it is expressed.
Attention will be confined to the hydrogen atom in the two
common sets: Cartesian and spherical coordinates, cf., Fig.
1. The potential ¥ in Eq. (1) is then the electrostatic Cou-
lomb potential of the electron in the field of the proton. For
the one-dimensional reduction from the point of view of
Cartesian coordinates, there is only one distinct reduction.
This corresponds to any one of x, y, and z being variable
while the remaining two are held constant. Let the chosen
variable be denoted by x. The resulting reduced equation
from Eq. (1) is

_R2dW(x)  e?
2u  dx? 47ep) x|

¥(x) = E¥(x). (2)

Standard notation and the mks system are used.? Equation
(2) has already been studied by Loudon at length.? Its
mathematical and physical properties are too specialized
and technical for an introductory illustration of Eq. (1) to
interest us here.
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From the point of view of spherical coordinates, however,
there are two distinct one-dimensional reductions. The first
is where both angles 8 and ¢ (Fig. 1) are constant while r
is a variable. This is equivalent to the one-dimensional
Cartesian reduction obtained above, confined to the positive
x axis. It does not interest us here either. The second re-
duction is where r and one of the angles are constant while
the other angle is variable. Let the variable angle be ¢ and
the plane of motion be the x-y plane (Fig. 1). This is clearly
the analog of the Bohr atom. It therefore could be of con-
siderable interest. Equation (1) then reduces to

h2 1 d3(¢)

e?
“aari der " Imey V(o) = EY(s), (3)

which is more conveniently written as

d2 Yur? 2
d‘i(;bu 2‘2' (E+4:€0r) V() = 0. @)

Note that
E + e?/dmwegr =E — V = p%/2u,
and
a2
h? 2u

is a constant; E, ¥, and r being constants. Thus the nor-
malized wave-function solution of Eq. (4) is

1 ipr
¥(6) = Z=exp [+ 2 ¢).

(5)

Requiring that the wave function be single valued, i.e., Y(¢)
= Y(¢ + 27), leads to the condition

pr = nh, (6)

wheren = 1,2,3,. ... The n = 0 has been excluded because
as seen below it implies the unphysical case of an orbit of
zero radius where the electron is infinitely bound to the
proton. We see that the condition of Eq. (6) is Bohr’s
quantization condition. Bohr’s quantization condition, quite
ad hoc in Bohr’s model, is now understood as a result of the
requirement that the wave-function solution of Eq. (3) be
single valued. Furthermore, the picturesque and equivalent
way of describing Bohr’s condition as fitting for a given
orbital motion an integral number of de Broglie wavelengths
around the orbit, 2mr = nA, follows as well. This perhaps
makes more evident the sense in which de Broglie’s wave

© 1981 American Association of Physics Teachers 143



Fig. 1. Three-dimensional space
characterization by the Cartesian
set of coordinates x, y, and z and
the spherical set of coordinates 7,
#,and ¢.

concept relates to Schrodinger’s wave equation.
Let us note further that since for this system* E = (1/2)V
= —e?/8weor, Eq. (4) can then be expressed as follows:

2
CUD [ ww =0 ™

The requirement that Y¥(¢) be single valued, which led
above to Bohr’s quantlzatlon condition Eq. (6), now leads

to
eur
\/47reoh2 = (82)
or
47 eoh?n?
P e (8b)

where as before n = 1,2,3,. ... This is the orbit’s quanti-
zation of the Bohr model. Substituting Eq. (8b) in the ex-
pression —e?/8meor for the energy, one gets

pet
327w2ehn? ©)
the well-known Bohr model energy levels formula.’

Thus it is seen that the angular momentum quantization
of Eq. (6) is built into the Schrodinger analog of the Bohr
model, and that otherwise the Schrodinger analog yields
the same physical features as the Bohr model.

En=-

III. TWO-DIMENSIONAL HYDROGEN ATOMS

As in the one-dimensional case, the reduction of the hy-
drogen atom Schrddinger equation to two dimensions will
be carried out from the point of view of the two common sets
of coordinates: Cartesian and spherical. From the point of
view of the Cartesian set of coordinates x, y, and z, there
is only one distinct reduction. This corresponds to any pair
of the three coordinates being variable while the third is held
constant, Choosing x and y to be the pair, Eq. (1) be-
comes
B (

2“ bxz ) ¢(X.Y)

B mw(m = EY(x,y). (10a)

Equation (10a), when expressed in terms of the transformed
coordinates r and ¢, has the form

_h? (3% (r.¢) 15¢(’,¢)+_L52\0(’,¢)
2u or? r br rz  d¢?

V(r,0) = EY(r.9).

This two-dimensional hydrogen atom of Eqgs. (10a) and
(10b) has already been studied by Zaslow and ZandlerS and

10b
41re r ( )
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again by Huang and Kozycki.! Using the method of sepa-
ration of variables (r and ¢), the wave-function solutions
of Egs. (10a) and (10b) have been obtained along with
quantization conditions on the angular momerntum and
energy of the system. This two-dimensional system is the
Schrodinger analog of the Sommerfeld generalization of
the Bohr model (Sommerfeld model) allowing elliptical
orbits.” It is therefore of interest to compare the main results
of the solutions of Eqs. (10a) and (10b) with those of the
Sommerfeld model.

For the system described by Egs. (10a) and (10b), the
values of the magnitude of the angular momentum turn out
to be |/|A, where / = 0,£1,£2,. . . ; while those of the energy
turn out to be given by the formula®!

pe?
32w2eh2(n — )2 ah

where n is an integer 1,2,3,... such that n > |I|. The
quantization of the angular momentum in the Sommerfeld
case is the same as this Schrodinger analog except that in
Sommerfeld’s case the / = 0 value is not assumed while the
I = n value is. It is to be noted, however, that the energy
formula of Eq. (11) is different from Sommerfeld’s model
energy formula in that the principal quantum number 7 in
the latter is replaced by (n — 14) here. The Sommerfeld
energy formula, as is well known, is the same as that of the
Bohr model, Eq. (9), and the three-dimensional Schrodinger
hydrogen atom. Thus the principal quantum number 7 re-
lates differently to the energy in the two cases. In view of
the results of Sec. 11, the modified energy formula, Eq. (11),
may seem surprising, albeit instructive. The ground-state
energy (#n = 1) from Eq. (11) is four times larger than that
obtained from Eq. (9). As n takes on larger values, the
discrepancy becomes accordingly smaller; an illustration
of Bohr’s correspondence principle. As to the quantized
elliptical orbits of Sommerfeld’s model, they give way in the
Schrodinger analog to a more general description in terms
of the radial part of the wavefunction solutions of Eqs. (10a)
and (10b).

Let us now turn our attention to the two-dimensional
reduction of Schrodinger’s Eq. (1) for the hydrogen atom
from the spherical coordinates point of view. Here there are
two distirttt reductions from among the r, 8, and ¢ coordi-
nates. The first is where » and one of the angles (say  and
¢) are chosen to be variables. This choice, however, leads
back to the just discussed Eq. (10b). The second distinct and
last choice is where @ and ¢ are variables and 7 is held con-
stant. The correspondingly reduced Schrodinger equation
is

En=_..

1 o/, ,0v0¢) 1 2% (0.0)]
 2u |r2sinf o0 (sm0 60 +rzsin20 2¢? |
v(0,¢) = E¥(0,¢). (12)

41re

Note that 7 in Eq. (12) is constant. The classical counterpart
of the system described by Eq. (12) is that of an electron
moving about the proton over a spherical surface of radius
r in the constant Coulomb field —e2/47eor. Classically the
orbit of the electron will have to be in a fixed plane, being
in a central force field. Thus the classical orbit will still be
a circle. The classical counterpart of this system is therefore
equivalent to the classical counterpart of both Bohr’s model
and its one-dimensional Schrédinger analog of Sec. I11. Any
differences appearing in the solutions of Eq. (12) from those
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of Eq. (3) will have to be therefore of nonclassical, quan-
tum-mechanical origin. Equation (12) can be solved by the
method of separation of variables, namely, let

¥(0.9) = 6(0) (). (13)

Substituting Eq. (13) into Eq. (12) and separating the
¢-dependent terms from the f-dependent terms, one gets

1 d do@@)) . 2ur? ez \ .,
50) smﬂ sinf 10 + e (E+47reor sin26
-1 d?®(¢)
= . (14
) dor = MY

Setting each side equal to a separation constant m2, one
then has

PBD) . a0
ot M@ =0 (15)
and
1 do(6)
sinf d6 (smﬁ do
2ur? e?
* [ h? (E +41reor) sm20] 0@)=0. (16)

Equations (15) and (16) have the same form as those of the
angular equations of the three-dimensional hydrogen atom
case.? The solution therefore may be expressed in terms of
the spherical harmonics Y7(6,¢) with/ =1,2,3,.. .and m
= 0,%1,4£2,...4/. The ! = 0 is excluded since it leads, as
seen below, to the unphysical case of the electron having an
orbit of zero radius and being infinitely bound to the proton.

The quantity
2ur? e?
E+
h? ( 47reor)

is related to / by the condition

2ur? e?
= . 17
h? ( 47reor) 1+ an
Noting that
e2 : p2
+ =F ~ = 18
E 4megr v 2u 4 (18)
Eq. (17) may be written as
r
”h2 =1+ 1). (19)

Equation (19) is the angular momentum quantization
condition. It results from the usual requirement of proper
solutions of Eq. (16). It does not have to be separately hy-
pothesized. It is the same quantization resulting from the
three-dimensional case except for the exclusion of / = 0. It
modifies the form of the quantization of angular momentum
in both Bohr and Sommerfeld models as well as their re-
spective Schrodinger analogs; the modification being the
replacement of n (or /) there by v//(/ + 1) here. Thisis a
quantum-mechanical, nonclassical, expression of the
electron being able to move on the surface of a sphere rather
than confined to a plane. The meaning of the quantum
number m is exactly the same as that of the three-dimen-
sional case. As such, m# is the quantized z component of
the angular momentum in the state Y7'(6,¢). For a given
value /, there are (21 + 1) possible values of m.

Setting in Eq. (17) E = —e?/8mweqr, which holds as in the
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one-dimensional case of Sec. I1,* one gets a quantization
condition on the orbits:
2
- 4eph l(zl + 1); (20)
pe
and the energy:
_ pet
E; = — . 21
' T 3am2e?h2(1 + 1) 2

The results of Egs. (20) and (21) differ from the corre-
sponding ones of the one-dimensional system of Sec. II in
the replacing of n? there by /(I + 1) here; an additional
quantum-mechanical manifestation of the electron being

_ no longer confined to a circle in a plane but can move over

a surface of a sphere. The ground-state angular momentum,
orbit, and energy from Eqgs. (19), (20), and (21) are, re-
spectively, v/2 , 2, and !/, times those of Bohr’s model and
its Schrodinger analog given in Sec. I by Egs. (6), (8b), and
(9). For large quantum numbers n or / as the case may be,
the discrepancy becomes, however, accordingly smaller;
another illustration of Bohr’s correspondence principle.

IV. CONCLUDING REMARKS

It may be desirable to indicate at this point how the un-
certainty principle relates to the reduced one- and two-
dimensional systems discussed above. The reduced systems
are bona fide quantum systems from a formal standpoint.
They include uncertainty principles limited to their re-
spective domains of applicability. Specifically, for example,
the analog of the Bohr model of Sec. Il is defined by a
Hamiltonian

L? e2

2/1,"2

4megr (22)
L, is the dynamical variable of angular momentum having
the operator representation (£//)(d/9¢). The other dy-
namical variable of the system is the angle ¢. Note that r
here is not a dynamical variable but a parameter of the
system. In this reduced system, the lincar momentum along
r, pr, simply does not arise; neither does the space coordinate
z or its corresponding linear momentum p,. L, and ¢ are
noncommuting and therefore are not simultaneously de-
terminable. While L, is completely determined in any given
state Y, being nh, the angular position ¢ of the electron is
completely undetermined. Thus the uncertainty principle
applies within the context of the variables of the system. It
would be meaningless to search for an uncertainty condition
on r and p, (or z and p.) in the context of this reduced
system. This simply lies outside the scope of the system as
defined. These remarks may be extended to the two-di-
mensional systems as well. From a physical standpoint, on
the other hand, the following question can still be raised:
What physical constraints might one have which, when
applied to the hydrogen atom (or otherwise) would lead to
a physical situation that might be approximated by any one
of the above reduced systems? This is an open question and
no claim is made that such physical situations do in fact
exist.” The primary motivations for the considerations of
these systems have already been indicated in Sec. 1.

Let us now turn to the case of the electron constrained
to the surface of a sphere and note that the angular mo-
mentum variable L(L,,L,,L,) has the same properties that
L has in the normal three-dimensional case. In particular
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Ly, Ly, and L, are noncommuting and not simultaneously
determinable. That (L)?2 takes on the values /(! + 1)A2, Eq.
(19), and not /2h2, as in the cases of the Schridinger analogs
of Bohr and Sommerfeld models, is due to this nonclassical
feature of noncommutativity of Ly, L,, and L,, and is a
manifestation of the uncertainty principle at work within
the context of the system as defined.

Finally, let us observe that in all the instances encoun-
tered above where the zero value of angular momentum is
excluded, the electron has definite orbits. The zero angular
momentum is not excluded when the radial position of the
electron is described in terms of nonsingular probability
distribution functions (Schrédinger’s analog of Sommer-
feld’s model and the normal three-dimensional Schrodinger
hydrogen atom). For the cases of definite orbits, the zero
angular momentum leads to an unphysical consequence
where either the electron has to go through the proton
(Sommerfeld’s model) or that the electron is infinitely
bound to the proton (Bohr’s model, its Schrodinger analog
and Schrodinger’s description of the electron confined to
the surface of a sphere). From the uncertainty principle
standpoint, one may see the exclusion of the zero angular
momentum state as related to the absence of an operative
uncertainty condition on the electron’s coordinate r and its
corresponding momentum p,.
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