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A mass spectrograph is an instrument that separates and simul- 
taneously focuses ions, along a focal plane, of different mass1 
charge ratios that are diverging in direction and that have a 
variable velocity. With these instruments and a spatially sensitive 
ion detector, simultaneous detection can be employed, which has 
been shown to improve precision and throughput (as compared 
to a mass spectrometer that can only detect one mass at a time). 
Knowing how an ion beam focuses throughout the mass spectro- 
graph and onto the focal plane is crucial. We present here rudi- 
mentary ion optics of the mass spectrograph in a simple yet 
useable manner. From there, we investigate the direction and 
energy focal lines of some mass spectrograph geometries, using 
the ion optics presented. Lastly, other mass spectrograph geome- 
tries that fall outside the freld of knowledge of the ion optics 
covered are discussed. With this review, we hope to provide an 
understandable and universal ion optic theory that encompasses 
a wide range of mass spectrographs and that is palatable to the 
novice as well as the expert. 0 1997 John Wiley & Sons, Inc. 

* To whom correspondence should be addressed. 

1. INTRODUCTION 

A double-focusing mass spectrograph is ‘ ‘An instrument 
which uses both direction and velocity focusing, and there- 
fore an ion beam initially diverging in direction and con- 
taining ions of different kinetic energies is separated into 
beams according to the quotient mass/charge, these beams 
being focused onto a photographic plate or film (Todd, 
1991).” Although this definition is limited to the photo- 
graphic medium, it is generally recognized to include the 
photographic plate’s electronic counterpart, a microchan- 
nel plate (MCP) with some form of image readout. Op- 
posed to a double-focusing mass spectrometer, a mass 
spectrograph can detect simultaneously more than a single 
mass/charge (mlz) value at any given time. 

The advantages of simultaneous detection are straight- 
forward. When one detects more than one mass at a time, 
less signal is wasted; therefore, sensitivity and sample 
throughput are improved. Simultaneous detection also 
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makes it easier to analyze transient samples such as those 
produced by flow injection, rapid chromatographic elution, 
microsampling, or laser ablation. Conversely, scanning re- 
quires each measured mass to be extracted from an ion 
source at a different point in time; thus, ratioing or normal- 
ization techniques cannot fully compensate for time-de- 
pendent fluctuations in the source. Mass scanning pro- 
duces a lower signal-to-noise ratio (precision) than if the 
signal from all masses were measured simultaneously. 
This issue was emphasized by Furuta (1991), who found 
that the precision of lead isotope-ratio measurements taken 
with an inductively coupled plasma quadrupole mass spec- 
trometer improved with an increase in the peak-jumping 
rate, because the effects of source and sampling drift were 
reduced. 

Mass spectrograph development can generally be di- 
vided into three categories by the form of the array detector 
used (Boerboom, 1991; Birkinshaw, 1992; Staub, 1953; 
Wiza, 1979). As alluded to in the mass spectrograph defi- 
nition, the first array detector used was the photographic 
plate (Thompson, 1913; Dempster, 1918; Aston, 1919; 
Thompson & Thompson, 1928; Aston, 1942). However, 
the photographic emulsion has its weaknesses. It has lim- 
ited sensitivity, a low linear dynamic range (approximately 
30), and the conversion of an image to numerical informa- 
tion is costly, nonlinear, and time-consuming. An elec- 
tronic improvement to the photographic plate was called 
the electro-optical ion detector (EOID) (Boettger, Gif- 
fen, & Nonis, 1979) and it appeared in the mid 1970s. 
This array detector consists of a channel electron multi- 
plier array, phosphor screen, fiber-optic image dissector, 
and vidicon camera system. In other words, ions are con- 
verted to electrons, which are in turn converted to photons. 
The photons are converted to an electrical signal to pro- 
duce a mass spectrum. The lens-camera system was an 
inefficient combination, and the detector did not possess 
the performance characteristics expected of modem sys- 
tems. The linear photodiode array (PDA) or a charge- 
coupled device (CCD) has now replaced the vidicon cam- 
era and is the system most commonly used today. 

Unfortunately, this modem array-detection system 
still suffers from one of the shortcomings experienced 
with the photographic plate; specifically, a small dynamic 
range. This key figure of merit is a result of the limited 
dynamic range of the conversion process from photons 
to an electrical signal; in particular, the PDA or CCD 
component of the array detector. An improvement in dy- 
namic range could be experienced by varying the integra- 
tion time between individual pixels in a charge injection 
device (CID) (Wirsz, Browne, & Blades, 1987); this devel- 
opment has yet to be accomplished in a mass spectrograph. 
Regardless of the current limited dynamic range, the pros- 
pect of improved detection limits and precision has led to 
the progressive development of the mass spectrograph, 

including the introduction of commercial instruments 
(Cody et al., 1994; Joel, 1996). 

Lastly, some mass spectrographs contain separate Far- 
aday cups or electron multipliers for each mlz detected. 
Usually, specific mlz values are chosen, such as in a carbon 
isotope-ratio mass spectrometer. If a large number of m/ 
z values are desired to be detected, then this approach can 
be impractical and costly. 

The location of the mass spectrograph focal curve or 
plane is imperative for instrument design, construction, 
and operation. A loss of instrument performance, specifi- 
cally resolution, will occur if the array detector and focal 
region are not aligned. Second, during the eventual optimi- 
zation of the detector location in a mass spectrograph, the 
difference between the theoretical and actual array detector 
placement can be used as an indicator of possible instru- 
ment problems. 

From the first mass spectrographs of Thomson, 
Dempster, and Aston (Thompson, 1913; Dempster, 1918; 
Aston, 1919; Thompson & Thompson, 1928; Aston, 
1942), many additional mass spectrographs have been de- 
signed and built (Boettger, Giffen, & Norris, 1979; Cody 
et al., 1994; Mattauch & Herzog, 1934; Dempster, 1935; 
Bainbridge & Jordan, 1936; Mattauch, 1936; Herzog & 
Hauk, 1938; Jordan, 1941; Mattauch, 1953; Ogata & Mat- 
suda, 1953; U.S. National Bureau of Standards, 1953; 
Ewald, Sauermann, & Liebl, 1959; Hintenberger & Konig, 
1959; Spencer & Reber, 1963; Hedin & Nier, 1966; Euge, 
1967; Mai & Wagner, 1967; Takishita, 1967; Hayes, 1969; 
Euge et al., 1971; Nier & Hayden, 1971; Alexeff, 1973; 
Bakker, 1973; Carrico, Johnson, & Somer, 1973; Nier et 
al., 1973; Oron & Paiss, 1973; Dreyer et al., 1974; Giffen, 
Boettger, & Norris, 1974; Beynon, Jones, & Cooks, 1975; 
Tuithof, Boerboom, & Meuzelaar, 1975; Berthod & Ste- 
fani, 1976; Oron, 1976; Tuithof et al., 1976; Enge & Horn, 
1977; Mauersberger, 1977; Moore, 1977; Salomaa & 
Enge, 1977; Taylor & Gorton, 1977; Alexiff, 1978; Forres- 
ter, Perel, & Mahoney, 1978; Tsoupas et al., 1978; von 
Zahn & Mauersberger, 1978; Enge, 1979; Mauersberger & 
Finstad, 1979; Waegli, 1979; Donohue, Carter, & Maman- 
tov, 1980; Louter et al., 1980; Nowak et al., 1980; Wollnik, 
1980; Hedfjall & Ryhage, 1981; Louter & Buijserd, 1983; 
Louter, Buijserd, & Boerboom, 1983; Chamel & Eloy, 
1984; Coplan, Moore, & Hoffman, 1984; Murphy & 
Mauersberger, 1985; Nier & Schlutter, 1985; Cottrell & 
Evans, 1987; Cottrell & Evans, 1987; Ghielmetti & 
Young, 1987; Murphy & Mauersberger, 1987; Young et 
al., 1987; Boerboom & Meuzelar, 1988; Leclercq & Cram- 
ers, 1988; Matsuda & Wollnik, 1988; Bradshaw, Hall, & 
Sanderson, 1989; Hill et al., 1989; Ishihara & Kammei, 
1989; Leclercq et al., 1989; Matsuda, 1989; Matsuda & 
Wollnik, 1989; Matsuo, Sakurai, & Derrick, 1989; Burlin- 
game et al., 1990; Gross, 1990; Matsuo, Sakurai & Ishi- 
hara, 1990; Sinha, 1990; Gross et al., 1991; Hill, Biller, & 
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Biemann, 1991; Mantus, Valaskovic, & Morrison, 1991; 
Sinha & Gutnikov, 1991; Li, Duhr, & Wollnik, 1992; 
Sinha & Gutnikov, 1992; Sinha & Tomassian, 1992; 
Walder & Freeman, 1992; Bratschi et al., 1993; Ghielmetti 
et al., 1993; Hirahara & Mukai, 1993; Matsuo & Ishihara, 
1993; Walder et al., 1993; Walder, Platzner, & Freeman, 
1993; Rytz, Kopp, & Eberhardt, 1994; Wurz et al., 1995; 
Cromwell & Arrowsmith, 1996; Burgoyne, Hieftje, & 
Hites, 1996). Yet, despite the development of these instru- 
ments, no single source in the literature exists to provide 
a simple, concise, and useful means of describing the ion 
optics and double-focusing focal planes of these types of 
instruments. Thus, the goals of the present review are: (a) 
to present rudimentary ion optics of the mass spectrograph 
in a simple yet useable manner, and (b) to investigate the 
direction and energy focal lines of some mass spectrograph 
geometries, using the ion optics presented. 

II. MASS SPECTROGRAPH ION OPTICS 

A. Overview, Symbols, and Coordinates 

We will limit our discussion of ion optics to field-free 
regions, electrostatic quadrupoles, electric sectors (ESA 
or electrostatic analyzer), and magnetic sectors with an 
oblique entrance and exit angle. Other mass spectrograph 
components such as Wien filters (Aberth & Wollnik, 
1990), magnetic quadrupoles (Courant, Livingston, & 
Snyder, 1952), and fringing fields (Wollnik, 1965; Woll- 
nik & Ewald, 1965) will not be discussed. Second and 
higher-order matrices will be ignored (Penner, 1961 ; 
Brown, Belbeach, & Bounin, 1964; Wollnik, 1967; Woll- 
nik, 1967; Enge, 1967; Matsuda, 1983). In general, higher- 
order focusing occurs at one point on the double-focusing 
line and does little to improve simultaneous detection in 
a mass spectrograph. Typically, this point is employed for 
a point detector such as a Faraday cup or an electron 
multiplier. Note that for more precise trajectory deterrnina- 
tion, higher order calculations are usually required as well 
as the influence of fringing fields. Topics such as those 
are advanced, and do not fit within the scope of this review. 

Table I is a glossary of symbols, and Fig. 1 defines 
the x, y ,  and z coordinate system that is used throughout 
the text. All calculations start with an ion beam formed 
from a slit (the object) with a known mass (mo, in Daltons), 
energy (E ,  in eV), width (x, in meters), and angle of diver- 
gence (a, in radians). There are several excellent sources 
on the general subject of ion optics and mass spectrometry, 
which we suggest that the reader consult for further intro- 
ductory information (U.S. National Bureau of Standards, 
1953; Enge, 1967; Moore, Davis, & Coplan, 1983; Bain- 

bridge, 1953; McDowell, 1963; Dahl, 1973; Wollnik, 
1987). 

B. Transfer Matrix Method 

The image along the focal plane of the mass spectrograph 
will be determined using the method of transfer matrices 
(Wollnik, 1987; Banford, 1966; Ioanoviciu, 1989). Using 
transfer matrices, one can calculate the location of a refer- 
ence ion given the initial ion conditions and the specific 
ion-optic geometry of the mass spectrometer. With this 
approach, a mass spectrograph is divided into segments, 
with each segment represented by a matrix. For example, 
a general mass spectrograph is shown in Fig. 2 and is 
divided into seven segments (starting from the image, 
through the sector elements, to the object or image-defin- 
ing slit): a drift length or field-free region (matrix [DL3]); 
a magnetic sector with oblique entrance and exit angles 
(matrices [OEM2], [MAG], and [OEMl]); another drift 
length (matrix [DL2]); an electric sector (matrix [ESA]); 
and, lastly, a drift length (matrix [DLl]). By multiplying 
these seven transfer matrices, an overall matrix is gener- 
ated, from which one can determine the ion-beam charac- 
teristics at the focal point, given some specified initial ion- 
beam characteristics: 

[FINALMATRIX] 

= [DL31 [OEM21 [MAG] [OEM11 [DL21 [ESA] [DLl 1. ( 1 )  

A general, first-order matrix is shown below: 

where x is the beam width (meters), a is the angle of 
divergence (radians, a = tan a) ,  dE is the energy disper- 
sion, and dM is the mass dispersion. A similar matrix 
exists for the y-direction, but calculations here will be 
limited to those pertaining to the x-direction. The subscript 
1 on x and a represents the initial ion-beam condition, and 
the 7 subscript represents the beam characteristics after 
the seventh transfer matrix (in this case, at the focal plane). 
We are using this matrix to “transfer” beam conditions 
from one location of a mass spectrograph to another. Each 
element in the 4 X 4 matrix provides some information. 
For example, x7 I x1 represents the final image width x, 
solely as a function of the initial width x,. This ratio is 
commonly called the magnification. For convenience, the 

243 



w BURGOYNE AND HIEFTJE 

TABLE 1. Glossary of symbols. 

a 
U 

%I 

a0 
B 
dM 
8E 
d 
E 
€' 

€" 

@ E  

@M 

@.L 
Y 

K 

La 

L E  

L.l 
G 

IFL 
K 

K 
Am 

angle of divergence (see Fig. 1) 
angle of divergence, a - tan LY 
initial angle of divergence (see Fig. 1) 
initial angle of divergence, a, = tan a, 
magnetic field strength 
mass dispersion 
energy dispersion 
distance between + and - ESA plates 
ion beam energy 
magnetic sector entrance angle 
magnetic sector exit angle 
electric sector angle 
magnetic sector angle for mass m, 

magnetic sector angle for mass m 
relative mass difference (m = m,(l + y)) 

angle between focal line and normal to the optic axis (Fig. 2)  
length from the magnetic sector to the direction-focusing point 

length from the magnetic sector to the energy-focusing point 

length of electrostatic quadrupole 
field radius of an electrostatic quadrupole 

image width along the focal line 
angle between focal line and normal to the optic axis 

value defined for electrostatic quadrupole 
difference between high and low mass 

reference mass 
resolution 
electric sector radius 
magnetic sector radius for mass m, 
magnetic sector radius for mass m 
quadrupole rod radius 
slit width 
angle difference between aM and @; 
image width 
initial image width 
x-coordinate for location of focal point of mass m 

x-coordinate for ion beam of mass m entering the 
magnetic sector 

x-coordinate for ion beam of mass m leaving the 
magnetic sector, X' = 0 for mass m, 

voltage applied to the ESA 
voltage applied to quadrupole rods 
number of charges 
x-coordinate for location of focal point of mass m 

z-coordinate for ion beam of mass m entering the 
magnetic sector 

z-coordinate for ion beam of mass m leaving the 
magnetic sector, Z' = 0 for mass m, 

subscripts are usually dropped (i.e., x7 I x, = x I x) and we 
will use the same convention here. 

The matrix elements in Eq. (2) can be used to deter- 
mine, for example, the image width at the focal plane 
( I F P I :  

I / 
OBJECT FORMED 

FIGURE 1. Diagram of ion beam in field-free region of width x, and 
angular divergence ty,. 

where S is the slit width in meters, a, is the initial angle 
of divergence, and K is the angle between the focal line 
and normal to the optic axis. Also, resolution (R)  can be 
calculated from the matrix elements (given no exit slit): 

(4) 

C. Matrix Definitions for Mass Spectrograph 
Components 

We will now discuss the individual matrices for the com- 
ponents in a mass spectrograph. We simply present the 
matrices themselves and recommend the reader to Woll- 
nik's book (1987) on the subject for the derivation. Addi- 
tionally, programs that calculate transfer matrices of sec- 
tor-field mass spectrometer systems, such as GIOS (Woll- 
nik, Brezina, & Wendel, 1984; Wollnik, Brezina, & Berz, 
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G 

LOL3] [OEMZ] 
FIGURE 2. Example mass spectrograph. Bracketed notation indicates 
matrix type. [DLl] = matrix for first drift length, [ESA] = matrix for 
electric sector, [DL21 = matrix for second drift length, [OEM1 ] = matrix 
for oblique entrance angle into the magnetic sector, [MAG] = matrix 
for magnetic sector, [OEM21 = matrix for oblique exit angle into the 
magnetic sector, and [DL31 = matrix for third drift length. 

1987), TRIOS (Matsuo et al., 1976), and ISIOS (Yavor, 
1993) have been developed. 

Drifi Length. A drift length is a field-free region of 
length Ldl, where no acceleration, deceleration, or focusing 
of the ion beam occurs (Fig. 1). The matrix elements for 
this mass spectrograph component are: 

Electrostatic Quadrupole. An electrostatic quadrupole 
is composed of four rods that surround the optic axis. For 
focusing in the x-direction, positive DC potentials (+V,) 
are applied to the poles along the x-axis and negative DC 
potentials (-V,, for defocusing) along the y-direction (as 
in Fig. 3). A second quadrupole (together called a quadru- 
pole doublet) may follow for focusing along the y-direc- 
tion and subsequent defocusing along the x-direction. Al- 
though the voltage magnitudes are usually identical, in 

practice small voltage differences can be applied to the 
rods to change the beam direction. Electrostatic quadru- 
poles can, therefore, steer and focus the ion beam. When 
circular rods are used, electrostatic fields are closest to 
ideal when the field radius (G) is 1.148 R,, the radius of 
the rods (Denison, 1971; Dawson, 1995). Before giving 
the matrix elements for an electrostatic quadrupole, we 
shall first define the quantity K: 

K = $ / Z ,  abs(V ) 
(7) 

where V, and G are defined above and E is the ion-beam 
energy. The matrix elements for an electrostatic quadru- 
pole of length L, (in meters) are: 

(9) 
x l a  = -sin 1 .  ( L a ,  

K 

If V, is negative (defocusing along the x-direction), then 
the hyperbolic cosine replaces the cosine functions and 
the hyperbolic sine replaces the sine functions above. Note 
that the mass and energy dispersions are zero, indicating 
that these elements are simply used for focusing and not 
for mass or energy dispersion. 

FIGURE 3. Diagram of an electrostatic quadrupole. 
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Y 

- -d+ 
FIGURE 4. Diagram of an electric sector (ESA). 

Electric Sector. An electric sector or ESA (Fig. 4) is 
composed of a section (angle (a,) of two circular plates 
with a center line of curvature equal to radius Re. The 
voltage on the two plates is determined from: 

where d is the distance between the two plates in meters 
and E is the ion-beam energy. As with the electrostatic 
quadrupole, the theoretical potentials on the plates are 
equal but opposite. In practice, small voltage differences 
can be used to alter the beam direction. The matrix ele- 
ments for an electric sector are: 

Note that the mass dispersion is zero, indicating that the 
electric sector functions independently of mass. 

Sense Matrix. When combining an electric and a mag- 
netic sector, some geometries change the bending direction 
(this change does not occur in our example mass spectro- 
graph in Fig. 2). This change in beam direction is accom- 
modated by incorporating a sense matrix before and after 
the matrix for electric sector (i.e., [SENSE][ESA][- 
SENSE]) (Matsuo & Ishihara, 1993); the elements of this 
matrix are: 

Magnetic Sector. A magnetic sector consists of a north 
and a south magnetic pole separated by a narrow distance 
(no greater than about 1 cm) (Fig. 5). This sector is de- 
scribed by an angle and radius of deflection for the refer- 
ence ion, (am and R, (in radians and meters), respectively. 
The radius of deflection for a reference mass (m,) is de- 
scribed by the well-known equation: 

R S 2  5 = 4.8242657 X lo7 - 
Z E '  

where z is the number of charges on the ion (1, 2 -  - -), B 
is the magnetic field strength in Tesla, E is the ion beam 
energy in eV, and R, and m, are as described above. The 
constant formulates for the equation in the above units. 
The matrix elements for a magnetic sector are: 

x I a = R, sin(@,), (27) 

R 
2 x I dE = (1 - cos (h@J), (17) 

FIGURE 5. Diagram of a magnetic sector with oblique entrance and 
exit angles. 
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(28) 
Rrn 
2 

x 1 dE = - (1 - cos (fa,)), 

(29) 
R, 
2 

XI dM = - (1 - cos (arn)), 

1 .  ulx  = - - sin(@,,,), 
Rttl 

ala  = cos(@,), (31) 

1 .  a 1 dE = - sin(@,), 
2 

(33) 
1 aldM = - sin(@,,). 
2 

Oblique Entrance and Exit of Magnetic Sector. The 
above matrix is solely for an ion beam that enters and 
exits the magnetic sector in a direction normal to the pole 
face. Oftentimes, changing the angle of the pole face will 
improve the focusing capabilities of a mass spectrograph. 
This angle is noted as E with a prime superscript ( E ’ )  to 
indicate the entrance of the magnet and a double prime 
(8”) to indicate the exit of the magnet (see Figs. 2 and 5). 
E is positive if the normal to the pole face is farther from 
the origin of R ,  than the optic axis; E is negative if it is 
closer to the origin of R,. A positive entrance angle exhib- 
its a focusing action in the y-direction, as noted earlier 
(Herzog, 1950). Sometimes, the pole face is curved to 
improve second-order focusing; however, this embellish- 
ment will not be discussed any further here. The matrix 
elements for an oblique entrance or exit of the magnetic 
sector are: 

nix = 1, xla = 0, xldE = 0, xldM = 0, (34) 

tan(&) , aja = 1, a ( 8 E  = 0, a ( 8 M  = 0, (35) 
alx = - 

R m  

where E can be either E’ or E”. 

D. Double Focusing for a Single Reference 
Mass (Focal Point) 

From the matrices, we can determine the focal point (the 
condition where the direction- and energy-focusing points 
coincide) of our mass spectrograph for a reference mass 
m,. First, let us solve the matrix [MI for our example mass 
spectrograph (Fig. 2) from the oblique exit angle of the 
magnet to the first drift length: 

[MI = [OEM2][MAG][OEMl] [DL21 [ESA] [DLl] . (36)  

We will identify each element in this matrix [MI by the 
subscript M (i.e., (x  I x ) ~ ,  ( X I  a)M, etc.). The final matrix for 
this mass spectrograph is calculated from [MATRIX] = 
[DL3][Ml or: 

( 0  0 0 1 1  
L 

0 0 

where the third drift length consists of length, L. Multi- 
plying the two matrices produces: 

1 0 0 1 l o  
For direction focusing, the matrix element x I a = 0, or 
from Eq. (38): 

Therefore, by solving the matrix up to the final drift length 
for any mass spectrograph, one can determine the location 
of the direction- and energy-focusing points. A double- 
focusing mass spectrometer has the condition L, = LE. 

(39) 

E. Double Focusing for Several Masses 
(Focal Linej Likewise, for energy focusing, the matrix element x I dE 

= 0. Also, from Eq. 38: 
Determining the focal points for several masses in a mass 
spectrograph is identical to the method described above 
except that, from Eq. (25),  a mass different from the refer- (40) 
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Qrm 

; I ic:z , 
X-AXIS 

FIGURE 6. Diagram of a magnetic sector with X, Z coordinate notation. 

ence mass results in a different radius (we indicate the 
radius in the magnetic sector that is not for the reference 
mass by means of a superscript prime, I?;). A coordinate 
system is required to locate where the ion will exit the 
magnet relative to the reference mass, m,. A coordinate 
system has been developed by Matsuo et al. (1989), and 
we present the pertinent information here. 

Figure 6 is a detailed drawing of the magnetic sector 
of our example mass spectrograph from Fig. 2. From Eq. 
(25), and knowing the mass difference between m and m, 
(where m = m,(l + y)), one can determine the radius 
difference: 

We can determine the angle of deflection of I?;(@;) from: 

@; = @, - E" + sin-' 

1 R m  
R6 

+ sin(&")) - - sin(@, - E") . (42) 

The angular difference between am and @k, 8, is: 

Rm (sin(@,,, - E") + sin(&")) - 
R6 

- sin(@., - E") . (43) I 
248 

Lastly, we need to know the where mass m leaves the 
magnetic sector. Here, we use the X', Z' coordinates to 
denote where an ion of mass m exits the magnetic sector 
(relative to X, and Z,, see Fig. 6): 

X' = RL[cos(@6 - @,) - cos(@,)] - R,(1 - cos(@',)) (44) 

(45) Z' = Rh[sin(@k - @,,J + sin(@,)] - R, sin(@,). 

From the above equations, we can locate the direction and 
energy focal points for a given mass from: 

X = X' + L, sin(@ 

z = Z' + L, cos(0) 

X = X' + LE sin(@ 

z = z' + L~ cos(e). 

(46) 

(47) 

(48) 

(49) 

Again, L, and LE are determined by first specifying 
the mass difference ( y )  that the mass spectrograph will 
analyze. The new radius and angle of deflection (I?; and 
@;) are determined from Eqs. (41) and (42). By calculating 
the matrix up to the last drift length, as in Eq. (36), the 
direction and energy drift lengths (La and LE) can be deter- 
mined from Eqs. (39) and (40) and placed in an X, Z 
coordinate system [from Eqs. (46)-(49)], where the X, Z 
origin is where the ion of reference mass m, leaves the 
magnetic sector (see Fig. 6). 

This calculation is involved and can be overwhelming 
if attempted without the aid of a computer. Therefore, all 
of the above equations were formatted in Pascal and run 
under Codewarrior (Metrowerks, Austin, TX) with a Mac- 
intosh Powerbook 5300c (Burgoyne, 1996). Other math 
programs, such as Mathcad (Mathsoft, Cambridge, MA) 
or Mathmatica (Wolfram Research, Champaign, L), could 
also be used to solve the equations presented above. The 
above-mentioned Pascal program was used to generate all 
of the focal line plots of the mass spectrographs below. 

For our example mass spectrograph (Fig. 2), the focal 
line is given in Fig. 7. All values are in meters. The direc- 
tion-focusing line is a solid black line and the energy- 
focusing line is the gray dashed line (for this and all subse- 
quent plots). Notice that at X = 0, 2 = 0.947 m, which 
is the drift length for the reference mass, m,. Fitting a 
straight line to both focal lines, the angle (K) between the 
normal to the optic axis and the focal line is determined 
by calculating the tangent of the slope. 

111. MASS SPECTROGRAPH GEOMETRIES 

What follows is a brief discussion of a few selected mass 
spectrograph geometries. In addition, the focal line for 
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TABLE II. Matrix elements for some selected mass spectrograph geometries. 

Geometrylelement X I X  xla xidE X l O M  alx 

Bainbridge- Jordan 1 .Ooo 2.092 X -2.55 X lo-' 2.540 X lo-' 3.407 
Bainbridge-Jordan" 3.341 X lo-' 6.2 X 1.90 X 8.488 X lo-' 5.666 
Mattauch-Herzog -6.482 X lo-' 6.0 X 0.000 9.075 x lo-' 4.792 
Nier- Johnson 6.786 x lo-' 7.98 x lo-' -1.278 x lo-' 1.279 x lo-' 14.483 

Hintenberger-Konig 8.957 X lo-' -4.678 X -6.680 X 8.214 X lo-' -7.402 X lo-' 
Takeshita -5.620 X lo-' 1.4330 X 1.673 X 1.000 3.099 X lo-' 
Matsuo-Type 4.618 X lo-' 1.884 X lo-* -1.704 X lo-' 7.769 X lo-' 2.233 

Nier- Johnson" 2.586 X lo-' -8.0 X -1.04 X lo-' 4.878 X lo-* 32.654 

1.001 
2.993 

- 1.543 
1.475 
3.867 
1.117 

- 1.780 
2.257 

-4.327 X lo-' 
- 1.295 

1.442 
1.470 

-3.8.51 
1.363 

-7.069 X lo-' 
-2.039 

alaM 

4.330 X lo-' 
1.454 x lo-' 
-1.0 x 10-7 

0.433 

0.000 
0.000 

1.351 X lo-' 

4.679 X lo-' 

a Indicates modified geometry from original design. See text for details. 

each of these mass spectrographs has been calculated 
as explained above for y = -0.5 to +0.5. The Initial 
ion-beam energy was assumed to be 5000 eV with an 
energy distribution of 5 eV. Also, the matrix elements 
for each of the mass spectrographs are presented, using 
the geometry values listed in the corresponding figures 
(see Table 11). 

ion beam will cross at every n). Therefore, angular diver- 
gence at the source will result in a focus at the end of the 
ESA in this instrument. The magnetic sector focuses the 
beam using Barber's Rule (the object, center of deflection, 
and image lie along a straight line) (Barber, 1933). Figure 
9 represents the focal line of this instrument, and, as is 
evident, it does not do a very good job of focusing all of 
the ions. 

Oftentimes, simply changing the exit angle of the 

A. Bainbridge-Jordan magnetic sector will improve the focusing properties of the 
mass spectrograph. Figure 10(A) is the summed distance 

From Fig. 8, the Bainbrid e-Jordan mass spectrograph 
geometry consists of a T/ ? 2 ESA without an initial drift 
length." From Hughes and Rojansky (1929), it is known 
that an ion beam with a slight divergence in an ESA will 
cross at every ~ / f i  (unlike in a magnetic sector, where an 

between thehiectionl and energy-focusing lines for a 
variety of exit magnetic-sector angles for the Bainbridge- 
Jordan mass spectrograph. The smallest distance between 
the lines occurs at an angle of -49" (Herzog & Hauk, 
19381, and this change in the exit angle improves the focal 
line considerably [Fig. 10(B)]. Note also that the last 
drift length before the focal line has changed from 0.44- 
0.15 M. 

- 1  
OD 

0.6 

8 
8 

a4 

H 
H 

H 
i 

0.24 

0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 
X-Axis (m) 

B. Mattauch-Herzog 
J. Mattauch and R. Herzog noted that a mass spectrograph 
that did not have a focal point between the electric and 
magnetic sector (the ion beam is collimated as it enters 
the magnetic sector) could provide double focusing inde- 
pendent of the magnetic-sector radius. This lack of focal 
point meant double focusing for all masses. For this geom- 
etry, second-order angular-aberration focusing occurs at 
RJR, = 1.683. For more information on this geometry, 
see Mattauch's manuscripts (Mattauch & Herzog, 1934; 
Mattauch, 1936; Mattauch, 1953). A beam is collimated 
leaving the ESA by setting the object at the length (DL1): ,5 

(50) 
R DL1 = 2 cot(&@,). J z  FIGURE 7. Focal line of the example mass spectrograph (see Fig. 2). 

X = direction-focusing point and 0 = energy-focusing point. A fitted 
direction-focusing line results in K = 58.1". A fitted energy-focusing line 
results in K = 57.9". After the second drift length (which is after the ESA), the 
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LENGTH 1 = 0 M 

FOCAL 

OBJECT 

= 127.30" 

/-*  .-- 
LINE ,.a* 

b 
LENGTH 3 = 0.44 

ELECTRIC 
SECTOR 

LENGTH 2 = 0.44 M 

SECTOR 
FIGURE 8. Diagram of the Bainbridge-Jordan mass spectrograph geometry. 

collimated ion beam enters normal to the magnetic sector 
and undergoes 7r/2 of deflection with an oblique exit angle 
of -7r/4 (Fig. 11). With this geometry, the ion beam 

changes direction and, for this calculation, the sense matrix 
is needed, as indicated earlier. The direction and energy 
focal lines are located at the end of the magnetic sector 
and overlap well (Fig. 12). 

0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 
X-Axis (m) 

FIGURE 9. Focal line of the Bainbridge-Jordan mass spectrograph. X 
= direction-focusing point and 0 = energy-focusing point. A fitted 
direction-focusing line results in K = 73.7". A fitted energy-focusing line 
results in K = 70.8". 

C. Nier-Johnson 

The Nier-Johnson geometry (Fig. 13) is generally consid- 
ered as a focal-point mass spectrometer (Nier & Roberts, 
1951; Johnson & A.O., 1953) and not as a mass spectro- 
graph. However, the angle and energy focal lines match 
over a limited mass range, enabling this geometry to be 
used as a mass spectrograph (Hill et al., 1989). The origi- 
nal purpose of the Nier-Johnson design was to eliminate 
second-order angular aberrations (that is, to improve sec- 
ond-order direction focusing). The focal lines are pre- 
sented in Fig. 14. 

As with the Bainbridge-Jordan geometry (Fig. 8), 
altering the exit magnetic sector angle improves the focal 
line of this geometry. The best overlap of the two focal 
lines occurs at -50" (Matsuo & Isuihara, 1993), an oblique 
exit angle that also shortens the final drift length [Figs. 
15(A) and (B), respectively]. 
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FIGURE 10. (A) Difference in direction and energy focal lines as a 
function of oblique exit angle of the magnetic sector (E").  The smallest 
distance between focal lines is E" = -49". (B) Focal line of the modified 
Bainbridge-Jordan mass spectrograph (with E" = -49"). X = direction- 
focusing point and 0 = energy-focusing point. A fitted direction-focus- 
ing line results in K = 65.6". A fitted energy-focusing results in K = 

65.6". 
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FIGURE 12. Focal line of the Mattauch-Herzog mass spectrograph. 
x = direction-focusing point and 0 = energy-focusing point. A fitted 
direction-focusing line results in K = 45.0". A fitted energy-focusing line 
results in K = 45.0". 

D. Hintenberger-Konig 

Hintenberger and Konig calculated 64 mass spectrometer 
and 65 mass spectrograph double-focusing geometries 
(Hintenberger & Konig, 1959). In addition, various sec- 
ond-order ion-optic parameters were calculated. We rec- 
ommend the article to the interested reader. One geometry 
was chosen at random from among those calculated, and 
is presented here (Figs. 16 and 17). 

E. Takeshita 

Takeshita utilized two electric sectors in a "Mattauch- 
Herzog type" design in order to eliminate some second- 

ELECTRIC LENGTH 1 = 0.190 M 

Re = 0.h00 M 7  \YsH Km = 0.1015 M FOCAL 

E" = 45" I 

-'*-- I / e=o' 
V MAGNETIC 

SECTOR 

LINE 

FIGURE 1 1 .  Diagram of the Mattach-Herzog mass spectrograph geometry. 
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.L 
0.12- 

LENGTH 1 = 0.0661 M 

B I 
I 

ELECTRIC 
SECTOR 

FIGURE 13. Diagram of the Nier-Johnson mass spectrograph 
geometry. 

order aberrations (Fig. 18) (Takeshita, 1967). Two electric 
sectors are used to independently control the velocity 
spread of the beam divergence. The calculated direction 
and energy focal lines overlap well (Fig. 19). 

A 

Y 

.Y 0.25 

0.15 

0.1 

0.05 

X 
0 

0.1 0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 
X-Axis (m) 

FIGURE 14. Focal line of the Nier-Johnson mass spectrograph. X = 

direction-focusing point and 0 = energy-focusing point. A fitted direc- 
tion-focusing line results in K = 70.9". A fitted energy-focusing line 
results in K = 69.9". 

0.08: 

-0 07: 
€ 3 -  

LENGTH 2 = 0.4130 M 

A 
0-09 

Magnet Exit Angle (") 

0.14 

- 0.08 

0.06 

0.04 

0.02 

I 
I 
I 
I 
I 
I 
I 

I 
I 

0.03 0.02 0.01 0 -0.01 -0.02 4 
X-Axis (m) 

0 

33 

FIGURE 15. (A) Difference in direction and energy focal lines as a 
function of oblique exit angle of the magnetic sector (E").  The smallest 
distance between focal lines is E" = -49". (B) Focal line of the modified 
Bainbridge-Jordan mass spectrograph (with E" = -51"). X = direction- 
focusing point and 0 = energy-focusing point. A fitted direction-focus- 
ing line results in K = 65.4". A fitted energy-focusing results in K = 
65.4". 

F. Matsuda 

Matsuda designed a double-focusing mass spectrometer (fo- 
cusing at one point) that eliminated all second-order aberra- 
tions and that included the influence of fringing fields (Fig. 
20) (Matsuda, 1974). In this geometry, a quadrupole lens 
was included between the electric and magnetic sectors to 
improve the focusing in the y-direction. Though designed as 
a point-focusing mass spectxometer, focal-line studies reveal 
a linear focal line (Fig. 21) (Matsuo, Sakurai, & Derrick, 
1989). For Fig. 21, the quadrupole voltage was optimized 
for our initial ion beam configuration. 

G. Others 

Given the large number of mass spectrographs that have 
been designed and constructed, only a few instruments 
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1.4- 
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I 

1.2:- ................................ 

MAGNETIC 
SECTOR 
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16.  Diagram of a Hintenberger-Konig mass spectrograph geometry. 

could be discussed above in detail. However, a cross- 
section of additional mass spectrographs that the authors 
find interesting are mentioned here. Ishihara and Kammei 
(1989) and Hill et al. (1991) added a lens system (a quadru- 

2.8 I 1 

FIGURE 17. Focal line of a Hintenberger-Konig mass spectrograph. 
X = direction-focusing point and 0 = energy-focusing point. A fitted 
direction-focusing line results in K = 60.2". A fitted energy-focusing line 
results in K = 60.2". 

pole/octapole/quadrupole combination) to vary the mass 
range and resolution of a mass spectrograph. This lens 
system was located between the magnetic sector and focal 
plane. With this system, one could either have a broad 
mass range and fit as many masses onto the detector as 
possible, or have a small number of masses on the detector 
and increase the resolution of the instrument. Previously, 
Tuithof and Boerboom (1976) achieved the same variable 
dispersion with a magnetic-quadrupole, magnetic-sector, 
and electrostatic-quadrupole combination. A unique mass 
spectrograph that was built specifically for spacecraft ex- 
periments consists of a cylindrically symmetrical electric 
sector followed by several wedge magnets fanning out- 
ward (an "orange"-type mass spectrometer) (Copland, 
Moore, & Hoffman, 1984; Hirahara & Mukai, 1993). This 
cylindrical symmetry offers a larger entrance aperture, 
which can sample a large portion of an extended ion 
source. Matsuda and Wollnik designed a mass spectro- 
graph consisting of a Wien filter followed by a magnetic 
sector (Matsuda & Wollick, 1988). A Wien filter (Ab- 
erth & Wollnik, 1990; Wien, 1902) is advantageous for 
analyzing ions of roughly equal velocity over a wide mass 
range (wide energy spread). This mass spectrograph was 
designed for the analysis of collision fragments in tandem 
mass spectrometry. Matsuo and Ishihara designed new 
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&" = 0' 

FIGURE f 8 .  Diagram of a Takeshita mass spectrograph geometry. 

mass spectrographs based on either a Nier- Johnson or 
Mattauch-Herzog geometry (Matsuo & Ishihara, 1993). 
In general, geometries similar to the Mattauch-Herzog 

mass spectrograph with electrostatic quadrupoles 
the two sectors were calculated to offer the best 
over an extended mass range. 
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FIGURE 19. Focal line of the Takeshita mass spectrograph. X = direc- 
tion-focusing point and 0 = energy-focusing point. A fitted direction- 
focusing line results in K = 35.3". A fitted energy-focusing line results 
in K = 35.3". 
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FIGURE 20. Diagram of a Matsuda mass spectrograph geometry. 
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FIGURE 2 1. Focal line of a Matsuda mass spectrograph. X = direction- 
focusing point and 0 = energy-focusing point. A fitted direction-focus- 
ing line results in K = 67.2”. A fitted energy-focusing line results in K 

= 66.9”. 

IV. CONCLUSIONS 

Relatively simple calculations can be used to determine 
the direction and energy focal-line locations of mass spec- 
trograph geometries. These calculations were limited here 
to first-order approximations using drift lengths, electro- 
static quadrupoles, and electric and magnetic sectors. Mass 
spectrograph geometries such as those developed by Bain- 
bridge and Jordan, Mattauch and Herzog, and Matsuo were 
investigated. In some cases, for example, in the Bain- 
bridge-Jordan geometry, a change in the oblique exit of 
the magnetic sector results in improved overlap of the 
direction and energy focal lines. 

The current weak link in mass spectrograph develop- 
ment is the detector. Its relatively high cost and narrow 
linear dynamic range are the Achilles heel of these instru- 
ments. Nevertheless, mass spectrographs provide excellent 
sensitivity, the ability to detect transient samples, and ex- 
ceptional precision and are useful in selected mass spectro- 
metric measurements. Examples of mass spectrograph use 
could be isotope ratio, laser ablation analysis, and fast 
gas chromatographic analysis. It is expected that, as array 
detector technology improves, so too should mass spectro- 
graph development and use. 
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