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Quantum computers promise to increase greatly the ef®ciency of solving problems such as factoring large integers, combinatorial
optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-
computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the
earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one
photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from
the requirement for non-linear couplings between optical modes containing few photons. Here we show that ef®cient quantum
computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit
feedback from photo-detectors and are robust against errors from photon loss and detector inef®ciency. The basic elements are
accessible to experimental investigation with current technology.

Quantum information processing (QIP) uses quantum mechanics
for information storage, communication and computation. It
enables large improvements in computational ef®ciency and com-
munication security by exploiting the superposition principle and
non-classical correlations of quantum mechanics. Examples include
Shor's quantum algorithm for factoring large integers1, Grover's
algorithm for accelerating combinatorial searches2 and quantum
cryptography for secure communication3,4. Initial concern that
quantum coherence may be too fragile to be exploited has been
dispelled by theoretical work showing that noise and decoherence
are not fundamental obstacles to the implementation of QIP5±10.
Consequently, increasing effort is being devoted towards physi-
cally realizing quantum computers, and there are many proposals
for implementing the necessary quantum devices. Examples of
promising technologies include ion traps, quantum dots, Joseph-
son junctions, nuclear spins in silicon and nuclear spins in
molecules11.

Quantum effects are particularly easy to observe in optical
systems, and it is therefore not surprising that one of the earliest
proposals for QIP uses photons to implement quantum logic12.
Optical systems currently constitute the only realistic proposal for
long-distance quantum communication and underlie experimental
implementations of quantum cryptography13±15. Until now the
main obstacle to scalable optical QIP was the apparent need for
nonlinear couplings between optical modes. Achieving such cou-
plings at suf®cient strengths is possible in principle but is technically
dif®cult16. As a result, other proposals17±19 for using linear optics to
benchmark quantum algorithms require exponentially large physi-
cal resources.

Here we show the surprising20 result that linear optics is suf®cient
for ef®cient QIP with photons. Ef®ciency in the sense of the theory
of computation means with polynomial resources, and we achieve
low linear resources. Our proposal for QIP with linear optics
requires single photon sources (implementable with active linear
optics21), beam splitters, phase shifters, photo-detectors, and feed-
back from photo-detector outputs. A quantum bit (qubit) is
realized by one photon in two optical modes (such as horizontal
or vertical polarization). Ef®cient QIP is established by means of
three results, each of which constitutes a breakthrough in linear
optics QIP. The ®rst result implies that non-deterministic quantum
computation22 is possible with linear optics. It is based on a non-
linear sign shift between two qubits that uses two additional

photons and post-selection. The sign shift succeeds with probability
1/16, and whether or not it succeeded is known. Although there are
no practical applications of non-deterministic quantum computa-
tion, it implies that linear optics has features not available to
classical deterministic or probabilistic computation. The second
result shows that the probability of success of the quantum gates can
be increased arbitrarily close to one. The result is based on using
entangled states prepared non-deterministically and quantum
teleportation23,24. Thus quantum computation is possible in prin-
ciple with linear optics. The resources needed to make the prob-
ability of success close to one with these methods are extremely
demanding. The third result shows that with quantum coding, the
resources for obtaining accurate encoded qubits are very ef®cient
with respect to the accuracy achieved, thus completing the goal of
ef®cient linear optics quantum computation (LOQC). The coding
methods can be adapted to make LOQC fault-tolerant for photon
loss, detector inef®ciency and phase decoherence. As a result, LOQC
can be robustly implemented with resources low enough to suggest
practical scalability, making it as promising a technology for QIP as
are other proposals.

Bosonic qubits and optical elements
The fundamental units of QIP are qubits, the quantum generali-
zations of classical bits. A qubit's state space consists of all super-
positions aj0i � bj1i �jaj2 � jbj2 � 1� of the basic states |0i and |1i.
A set of qubits can be realized by independent two-state subsystems
of a physical system. Bosonic qubits are de®ned by states of optical
modes. An optical mode is a physical system whose state space
consists of superpositions of the number states |ni, where
n � 0; 1; 2;¼ gives the number of photons in the mode. When
we consider several qubits or modes, we use labels to distinguish
between them. For example, |20ilm (short for |2il|0im) is a state where
modes l and m have two and zero photons, respectively. The basic
states of a bosonic qubit encoded in modes l1 and l2 are
j0i ! j0il1

j1il2
and j1i ! j1il1

j0il2
. For comprehensive treatments

of quantum optics and QIP, see the references25±27.
In addition to instances of an ideal quantum system, a complete

implementation of a quantum computer requires a means for state
preparation, the ability to apply suf®ciently powerful quantum
gates, and a readout method. To process information, these ele-
ments are combined in quantum networks (see Box 1). The initial
state is the vacuum state |0i, in which there are no photons in any of
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the modes to be used. The basic element that adds photons to the
initial state is a single photon source. It can be used to set the state of
any given mode to the one-photon state |1i. It is suf®cient to be able
to prepare this state non-deterministically. This means that the state
preparation has a non-zero probability of success, and whether or
not it succeeded is known.

The simplest optical elements are phase shifters and beam
splitters. These elements generate the evolutions implementable
by passive linear optics. These evolutions preserve the total photon
number, and can be described by their effects on each mode's
creation operator, which is de®ned by a�l�²jnil �

�����������
n � 1

p
jn � 1il. Let

U be the unitary operator applied to a state by such an evolution.
Using Uj0i � j0i gives Ua�l�²j0i � Ua�l�²U²Uj0i � Ua�l�²U²j0i �
Skukla

�k�²j0i. The coef®cients ukl introduced by these equations
de®ne a matrix u that must be unitary. Conversely, for every unitary
u there is a sequence of phase shifters and beam splitters that
implements the corresponding operation up to a global phase28.
For a named optical element X, let u(X) be the unitary matrix
associated with X according to the above rules. The unitary
matrix associated with phase shifter Pv is u�Pv� � eiv. The unitary
matrix associated with beam splitter Bv,f is

u�Bv;f� �
cos�v� 2 eif sin�v�

e 2 if sin�v� cos�v�

� �
�1�

We de®ne Bv � Bv;0.
Phase shifters and beam splitters applied to a bosonic qubit's

modes preserve the qubit state space. Their effect can therefore be
expressed in the qubit basis using the standard Pauli operators jx, jy

and jz. For example, P(1)
v applies exp(-ijzv/2) up to a global phase

shift, and B(12)
v applies exp(-ijyv). It follows that all one-qubit

rotations can be implemented with linear optics. To achieve the full
power of quantum computation we require a two-qubit gate such as
the conditional sign ¯ip c±z de®ned by jaijbi ! �2 1�abjaijbi, where
a; b �0;1 and labels have been omitted.

Readout is accomplished by measuring a mode with a photo-
detector, which destructively determines whether one or more
photons are present in a mode. We assume that photo-detectors
can be applied at any time and that the measurement result can be
used to control other optical elements. We need a photon counter,
which destructively counts the number of photons in a mode. An
approximate photon counter that suf®ces for our purposes can be
designed by using beam splitters and multiple photo-detectors. To
measure a mode, we can use beam splitters to distribute the mode's
photons evenly over N modes and use a photo-detector on each.
The desired count is the number of detectors that `see' photons. The
probability of undercounting given that the photon number is k is at
most k�k 2 1�=�2N�. For LOQC, k ( 4.

Nondeterministic conditional sign ¯ip
LOQC is based on a series of non-deterministic operations with
increasing probability of success. The ®rst operation is a non-
deterministic nonlinear sign change on one mode de®ned by the
operation NS: a0j0i � a1j1i � a2j2i ! a0j0i � a1j1i 2 a2j2i (with
probability 1/4), and can be implemented using the optical network
of Fig. 1. Its main features are the use of two ancilla modes with one
prepared photon and post-selection based on measuring the ancil-
las. This procedure can be experimentally veri®ed using techniques
similar to those used in a recent Greenberger±Horne±Zeilinger
(GHZ) experiment29 (see Supplementary Information). A condi-
tional sign ¯ip c±z1/16 that succeeds with probability 1/16 can be
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Box 1
Quantum gates and networks

Quantum information processing (QIP) is accomplished by applying
quantum gates and measurements to prepared qubits. The gates evolve
the state according to the laws of quantum mechanics. The power of QIP
depends on the ability to implement enough evolutions using the
available gates. If all unitary evolutions can be approximated up to a
global phase, the set of gates is called universal. Standard quantum
computation relies on universal gate sets where each gate acts on one or
two qubits. One such gate set consists of the one-qubit rotations
Uf � exp�2 ijuf=2�, U � X;Y or Z, where f can be restricted to f � 458;
and either the conditional sign ¯ip (see text) or one of the 908 rotations
�UV��12�

908 � exp�2 ipj�1�
u j�2�

v =4�, with U;V � X;Y or Z.
A sequence of state preparations, quantum gates and measurements

is called a quantum network. Quantum networks can be depicted by
time±space diagrams, with time lines of qubits given by lines running
from left to right, and gates by elements that intercept the lines. Our
conventions for depicting one qubit gates are:

(1); (2); (3)

(1) is a preparation gate, with P � X;Y or Z corresponding to prepara-
tions of jx, jy or jz eigenstates. For example, if P6 � Z�, the |0i state is
prepared. (2) is a measurement gate, where M � X;Y or Z corre-
sponds to measurements in the eigenbasis of jx, jy or jz. The symbol S

denotes the measurement outcome, which can be +1 or -1. (3) is a one-
qubit rotation around U � X;Y or Z by angle f (in degrees by default).
Two-qubit gates are denoted by

(4); (5)

(4) is a conditional sign change by phase x and applies x only to the state
|11i. (5) is a (ZY)(12)

908 rotation.
Many of the gates are equivalent up to one-qubit rotations. Here are

some equivalences used in the text:

(6); (7)

(7) expresses one gate by conjugating another by Y(1)
-908 and X(2)

908.
Optical networks are similar to quantum networks except that the

basic systems are optical modes. The basic elements of an optical
network drawing are:

(8); (9)

(8) shows a phase shifter Pf and (9) a beam splitter B(12)
v,f , where mode

1 is the top mode. If f � 0, only angle v may be given in a diagram.
State preparation is like (1), with P6 replaced by 0 or 1, for the
number of photons inserted into the mode. Measurement is like (2),
with M replaced by n and S by R, for the number of photons
detected.
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implemented with two independent applications of the operation
NS as shown in Fig. 2.

Quantum gates by teleportation
Quantum teleportation has proved to be a very versatile tool in
QIP23,24. Here we use it to increase the probability of success of
coupling gates by reducing the implementation of c±z to a state
preparation problem. A basic quantum teleportation protocol T1

for transferring the state a0j0i1 � a1j1i1 of mode 1 to mode 3 begins
by adjoining the `entangled' ancilla state jt1i23 � j01i23 � j10i23

(normalization constants omitted). Next, modes 1 and 2 are
measured in the basis j01i12 6 j10i12; j00i12 6 j11i12 (a Bell basis).
The measurement consists of two steps. The ®rst determines the
parity p of the number of photons in modes 1 and 2 (parity
measurement). The second determines the sign s in the super-
position. Consider the case where p is odd. If s � `+', the state of
mode 3 is a0j0i3 � a1j1i3. If s � `-', the state is a0j0i3 2 a1j1i3,
which can be restored to the initial state by using a phase shifter. For
even p, the situation is similar except that |0i3 and |1i3 are ¯ipped
(and cannot easily be un-¯ipped using linear optics). The key
property of quantum teleportation is that the input state appears
in mode 3 up to a simple transformation without having interacted
with mode 3.

The basic teleportation protocol can be implemented in linear
optics with success probability 1/2 by applying a balanced beam
splitter to modes 1 and 2 and then measuring the number of
photons in the two modes. This partial Bell (or teleportation)
measurement (BM1) determines the parity, and if it is odd, the
sign. Using this method, it is possible to implement a conditional
sign ¯ip c±z1/4 that succeeds with probability 1/4 (Fig. 3).

To reliably detect photon loss (in the single photon sources, in
transmission or by undercounting in detectors), we give another

method, RT1, for teleporting a bosonic qubit with success prob-
ability 1/2, which is shown in Fig. 4. The method for obtaining
c±z1/4 using T1 works with RT1, giving c±zr,1/4 with identical failure
behaviour (see the caption of Fig. 3). The implementation is in the
Supplementary Information.

Near-deterministic quantum teleportation and operations
To improve the probability of successful teleportation to
1 2 1=�n � 1�, we generalize the prepared entanglement by de®ning
jtni1¼�2n� � Sn

j�0j1i jj0in 2 j
j0i jj1in 2 j

. The notation |ai j means jaijai¼; j
times. The modes are labelled from 1 to 2n, left to right. The state
exists in the space of n bosonic qubits, where the kth qubit is
encoded in modes n � k and k (in that order). Using the qubit bases,
the state |tni is Sn

j�0j0i jj1in 2 j
. This representation can be used to

obtain linear size quantum networks (which are implementable in
LOQC) for preparing the state.

A procedure for teleporting the state a0j0i0 � a1j1i0 using |tni
applies the measurement BMn, which consists of the n � 1
point Fourier transform FÃ n+1 followed by measurement of
modes 0¼n. FÃ n+1 is determined by u� ÃFn�1�kl � qkl=

�����������
n � 1

p
, where

q � exp�i2p=�n � 1�� and k; l [ 0¼n. It has ef®cient linear optics
implementations30,31.

Suppose BMn detects k photons altogether. We claim that if 0 , k
, n + 1, then the teleported state appears in mode n + k and only
needs to be corrected by applying a phase shift. The modes 2n 2 l are
in state 1 for 0 < l , �n 2 k� and can be reused in future prepara-
tions requiring single photons. The modes 2n 2 l are in state 0 for
n 2 k , l , n. If k � 0 we learn that the input state was |0i0 and if
k � n � 1, that it was |1i0. The probability of these two events is
1=�n � 1�, regardless of the input. Both the necessary correction
and which mode we teleported to are unknown until after the
measurement.

The construction of c±z1/4 and c±zr,1/4 can be generalized using
near-deterministic teleportation. To obtain a conditional sign ¯ip
c±zn2 =�n�1�2 that succeeds with probability n2=�n � 1�2, the prepared
entanglement consists of two copies of |tni modi®ed by applied c±z
operations as follows

jcsni � ^
n

i;j�0

�2 1��n 2 i��n 2 j�
j1ii

j0in 2 i
j0ii

j1in 2 i
j1i j

j0in 2 j
j0i j

j1in 2 j
�2�

� ^
n

i;j�0

�2 1��n 2 i��n 2 j�
j0ii

j1in 2 i
j0i j

j1in 2 j
�3�

where the bosonic qubit encoding introduced earlier for |tni has
been used for the second identity. The teleportation measurements
involve the ®rst modes of the two qubits to which c±z is to be
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Figure 1 Nonlinear phase shifts on one mode. The numbers at the beginning of the

horizontal mode line are their labels. The outlined optical element is abbreviated in future

®gures by using the top diagram as indicated. The output is accepted only if the photon

counters detect one photon in mode 2 and none in mode 3. The subscript x in the top

diagram is the phase shift applied and depends on the choice of phases in the optical

elements. NS as de®ned in the text corresponds to x � 2 1 and requires v1 � 22:58,
f1 � 08, v2 � 65:53028, f2 � 08, v3 � 2 22:58, f3 � 08 and f4 � 1808. The

probability of success is 0.25. Exact expressions for the angles of NS can be determined

from the 3 ´ 3 unitary matrix u associated with the optical elements28:

u �

1 2 21=2 22 1=4 �3=21=2 2 2�1=2

2 2 1=4 1=2 1=2 2 1=21=2

�3=21=2 2 2�1=2 1=2 2 1=21=2 21=2 2 1=2

0B@
1CA:

A shift of |2i1 by x � exp�ip=2� is obtained by setting v1 � 36:538, f1 � 88:248,
v2 � 62:258, f2 � 2 66:528, f3 � 2 36:538, f3 � 2 11:258 and f4 � 102:248.
The probability of success is 0.18082.

1

2

3

4

Q1

Q2

45° – 45°

1
0

1
0

NS–1

1
0

1
0

NS–1

Figure 2 Conditional sign ¯ip implemented with NS operations. Q1 and Q2 refer to the

bosonic qubits encoded in modes 1, 2, and 3, 4, respectively. Consider the effect of the

®rst beam splitter: When both qubits are in state |1i, modes 1 and 3 are in the state |11i13,

which transforms to j20i13 � j02i13. In none of the other cases do two photons appear in

the same mode. Thus NS(1) and NS(3) have the desired effect. Both of these operations

must succeed, so c±z1/16 succeeds with probability 1/16.
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applied, and modes 1¼n and 2n � 1¼2n � n (left to right order),
respectively. An additional phase correction is needed after
the measurement, depending on which modes the output appears
in.

To ensure detection of photon loss, the state |rtni, which gen-
eralizes |rt1i, can be used: jrtni � Sn

j�j0i jj1in 2 j
j0in 2 j

j1i j, written in
terms of the qubit encoding. As before, the total number of photons
in the modes measured for teleportation is now ®xed (at n � 1), and
any deviation from this results in a detected loss error. The state

needed for the loss-detecting implementation of c±z, c±zr;n2 =�n�1�2 is:

jrcsni � ^
n

i;j�0

�2 1��n 2 i��n 2 j�
j0ii

j1in 2 i
j0in 2 i

j1ii
j0i j

j1in 2 j
j0in 2 j

j1i j
�4�

The failure-by-measurement behaviour for c±zn2 =�n�1�2 and c±
zr;n2 =�n�1�2 can be made the same as that for c±z1/4 (see Fig. 3).

Applications of the techniques introduced so far include near-
deterministic non-destructive parity measurements, a method for
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Figure 3 Conditional sign ¯ip with success probability 1/4. The method may be derived as

follows24: To implement c±z on two bosonic qubits in modes 1, 2 and 3, 4, respectively,

we can teleport the ®rst modes of each qubit to two new modes (labelled 6 and 8) and then

apply c±z to the new modes. When using the basic teleportation protocol (T1), we may

need to apply a sign correction. Since this commutes with c±z, it is possible to apply c±z

to the prepared state before performing the measurements, reducing the implementation

of c±z to a state-preparation (outlined) and two teleportations. The two teleportation

measurements each succeed with probability 1/2, giving a net success probability of 1/4.

The correction operations C1 consist of applying the phase shifter P1808 when required by

the measurement outcomes. The state preparation needs to be attempted 16 times on

average before success, which corresponds to 32 attempted NS operations (without

taking advantage of the ability to avoid an attempt if the ®rst one in a pair failed).

The implementation of c±z1/4 fails if one of the two teleportation measurements does

not succeed. The following properties hold for failure of c±z1/4: (1) the failed teleportation

measurements result in an unintentional Z measurement of the corresponding bosonic

qubit (2). The teleportation measurements fail independently. (Alternatively, to improve

ef®ciency, one may attempt the measurements sequentially, so as not to perform the

second one if the ®rst one fails.) (3) By reintroducing a photon if necessary, the

measurements can be assumed to be non-destructive. (4) By applying a phase shifter if

necessary, it can be arranged that the effect on the successfully teleported qubit is as if

the c±z operation succeeded before the unintentional measurement.

Figure 4 Teleportation with loss detection (RT1). The outlined box prepares the state

jrti3456 � j01i34j10i56 � j10i34j01i56 using non-deterministic gates. This teleportation

protocol has been experimentally tested44,45, using down conversion with post-selection

for preparing |rt1i instead of the preparation network shown above. Given |rt1i, the

protocol succeeds with probability 1/2. The pair of NS operations implements a c±z1/16 on

bosonic qubits encoded in modes 3, 4 and 5, 6, respectively. Thus 32 NS attempts are

needed on average before successfully obtaining |rt1i. Without loss, the number of

photons in modes 1, 2, 3, 5 is two. Thus, loss is detected if R 1 � R 2 � R 3 � R 5 Þ 2.

The teleportation succeeds if R 1 � R 3 � 1 and R 2 � R 5 � 1, in which case the qubit

reappears in modes 4, 6. Failure not due to loss results in a Z measurement of the

teleported qubit. Loss of a photon in the incoming qubit or from detector inef®ciency is

always detected. Assuming no loss in the prepared state or the detectors, RT1 detects if

the input is not a bosonic qubit state (a leakage event) and returns a bosonic qubit. This is

necessary for scalable quantum information processing (QIP).
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creating entanglement by local measurements of uncorrelated
photons shared with beam splitters, and nearly unconditional
quantum teleportation and Bell-state measurements with linear
optics.

The proof of the claim of this section, the teleportation network
for the case n � 2, networks for preparing |cs2i and |rt2i and

descriptions of the applications are in the Supplementary
Information.

Boosting success with quantum codes
Exponential improvements in the probability of success for gates
and state preparation can be obtained by exploiting quantum codes
and the failure behaviour of c±zn2 =�n�1�2 . As a result, n need not be
large and the dif®culty of preparing states such as |csni or |rcsni is
lessened. We give a method based on a two-qubit code, x2. This
method can be used to de®ne logical qubits with greatly improved
success probabilities and robustness, provided that the given qubits
are suf®ciently controllable. As a result it is possible to iterate the
method to ef®ciently achieve essentially perfect QIP. This iteration is
known as concatenation and underlies the accuracy-threshold
theorems of fault-tolerant quantum computation6±9.

From now on, we use qubit based quantum networks and rely on
the following list of operations implementable in LOQC with
bosonic qubits according to the techniques of the previous sections:
(1) X, Yand Z eigenstate (eigenvalue +1 or -1) preparation; (2) X, Y
and Z measurements; (3) X1808, Y1808 and Z1808 rotations; (4) Xf

rotations; (5) Z908 rotation; (6) (Z(1)Z(2))908 rotation. For the
moment we assume that the optical elements, single-photon sources
and photon counters are error-free. Operations (1) to (4) always
succeed. The (Z(1)Z(2))908 rotation fails independently on qubits 1
and 2 with probability f. If c±zn2 =�n�1�2 is used, then f � 1=�n � 1�.
The Z908 rotation always succeeds in LOQC, although after the ®rst
encoding it fails with probability f. A qubit on which an operation
fails is measured in Z after the rotation has been applied. The Y908,
(YZ)908 and (YY)908 rotations can be implemented by conjugation of
Z908 or (ZZ)908 with failure-free X rotations. The failure mode of
these rotations is similar to that for the (ZZ)908 rotation, with
commuting Y measurements replacing Z measurements.

To encode a qubit we de®ne its logical states |0iL and |1iL by
j0iL � j00i + |11i and j1iL � j01i � j10i. This is an instance of a
stabilizer code32±35. In this context it is convenient to use the
abbreviation U � ju for U � X;Y ;Z. With encoding qubits
labelled 1, 2, the logical X, Y and Z operators are given
by X�L� � X�1� �L X�2�, Z �L� � Z�1�Z �2� �L 2 Y �1�Y �2� and Y �L� �

Y �1�Z�2� �L Z�1�Y �2�, where we introduced the notation =L to
denote identity when restricted to the code space spanned by |0iL,
|1iL. To destructively measure one of the logical operators, it suf®ces
to measure each qubit; it is straightforward to obtain nondetermi-
nistic state preparation networks (see the Supplementary Informa-
tion). Any rotation X(L)

f can be implemented by applying X(1)
f or X(2)

f .
The 1808 logical rotations can be applied by using the corresponding
1808 rotations directly on the qubits, a feature satis®ed by all
stabilizer codes36. For example, to apply Y(L)

1808 apply both Y(1)
1808 and

Z(2)
1808.
The logical operations introduced so far can be done without

failure. To implement the Z�L�
908 and �ZZ��L1L2�

908 rotations with failure
probabilities much less than f requires the teleportation networks
shown in Fig. 5, which have the property that at worst, the
teleported qubit is measured in Z. As described in the captions of
Figs 5 and 6, the failure probability fz of these logical rotations
satis®es f z , O� f 2� and f z , f whenever f , 1=6:43.

The methods can be improved in three ways: ®rst, by better
exploiting the ¯exibility in state preparation and responses to
failures; second, by using classical linear codes like the repetition
codes; and third, by encoding more than one qubit into one block.
With these techniques it is possible to achieve f z , f for f , 1=2 (see
Supplementary Information).

Scalability and resource requirements
A scalable information processing system requires that one can deal
with errors that occur in the physical implementation. For LOQC,
dominant sources of errors are photon loss (at the single photon
source or during processing), detector inef®ciency (which can be
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Figure 5 Teleportation networks for the code x2. a, Teleportation satisfying that failures of

the teleportation step result at worst in a Z-measurement of qubit 1. The networks are

based on a variation of the teleportation protocol that exploits the ¯exibility in the choices

for initial states, rotations and measurements to ensure that it behaves well with respect to

measurement failures. The correction operations are C Z � X 1808 if S 2 � 1 and

C Y � Z 1808 if S 1 � 1. The state preparation is outlined and outputs a state denoted by

|tx2i. b, Teleportation for applying (Z(L))908. If S3S4 � 2 1, the phase needs to be

corrected with a Z1808 on both qubits. The prepared state (outlined) is obtained by applying

(ZZ )908 to the destination qubits of two copies of |tx2i. The method for applying (Z(L1)Z(L2))908

is similar, using four copies instead. Both teleportations are attempted. The procedure can

only fail with the logical qubit measured in Z. For simplicity, the following failure protocol

can be used: If both teleportations fail in any way, we measure the qubits in Z on purpose

(if that has not already happened), thus inducing a logical Z measurement. If only one fails,

we ensure that the corresponding qubit is measured in Z, then follow the recovery protocol

of Fig. 6 using the successfully teleported qubit. With this failure protocol, the logical

failure probability for the Z(L) and Z(L1)Z(L2) rotations is f 2 � �1 2 �1 2 f �2�2�

2�1 2 �1 2 f �2��1 2 f �2f r with f r � f =�1 2 f �1 2 f �� the probability of recovery

failure (Fig. 6). Thus f 2 , f whenever f , 1=6:43.
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viewed as photon loss) and phase errors. Photon loss can be dealt
with by using the loss-detecting implementations of c±z. The
probability fl of loss for an LOQC operation can be predicted
from the characteristics of the optical devices. The possibility of
loss introduces a new failure mode, where nothing is known about
what happened to the state of the qubit. This is the erasure model of
errors37. A good implementation of LOQC ensures that f l p f , so
that we can ®rst improve f using the techniques already discussed,
and then deal with the problem of erasures. Compensating for
erasures is much easier than dealing with general errors, with
pessimistic estimates of f l & 0:01 (ref. 38) for quadratic improve-
ments. Unlike photon loss, phase errors are not detected by the
networks discussed so far. Happily, phase-error correction can be
integrated into the methods for reducing f using codes that general-
ize x2 based on classical repetition codes. These codes can correct
unknown phase errors in up to half the qubits. More details on
erasure and phase error correcting codes are in the Supplementary
Information.

The methods introduced so far suf®ce for implementing accurate
quantum gates on logical qubits in the presence of intrinsic failures
of LOQC, and suf®ciently low photon loss and phase errors.
Scalable quantum computation is possible provided that any
remaining errors in the logical operations fall below a threshold.
There is evidence that the relevant threshold may be above 0.0001
(D. Gottesman and J. Preskill, unpublished work). Achieving such
low error is experimentally challenging for any device, although
optimism is justi®ed by the observations that many of the errors are
due to improper calibration of classical control parameters, and
these are often controllable well below the estimated threshold. An
example is pulse phase in nuclear magnetic resonance. Another
reason for optimism is that at least for quantum communication,
the threshold is well above 0.01 (ref. 39). As all viable proposals for
long-distance quantum communication are based on optics, this
may be the ®rst scalable application of LOQC.

Resources contributing toward a logical quantum gate based on
LOQC can be counted in two ways: as total and as conditional
resources. The total resources are given by the number of optical
operations required on average. This depends on the success
probabilities of the component state preparations and the desired
success probability for the logical operations. As most of the
resources are used in independent state preparation steps, an
implementation of LOQC can be based on massively parallel state

factories. It is thus natural to consider the conditional resources,
which are the number of optical operations that successfully
contribute toward a logical quantum gate. Their signi®cance is
that the error of an operation conditional on success can be
estimated by multiplying the conditional error of the optical
elements by the conditional resource count. Detailed resource
analyses are yet to be done. However, it can be shown that failure
probabilities below 5% can be achieved using only two iterations of
x2, requiring about 300 successful c±z9/16 operations per logical two-
qubit gate38.

An implementation of LOQC requires careful mode matching,
rapidly controllable delay lines or good synchronization of pulses,
tunable beam splitters and phase shifters, single photon sources and
high-ef®ciency fast photo-detectors for single photon detection.
Speed is needed to be able to select successful state preparations
before photon loss becomes too large. Tunable optical elements can
be made using polarizers and polarizing beam splitters. Non-
deterministic single photon sources can be constructed with para-
metric down converters21, although a better method is to use one of
the schemes for single photon sources that have recently been
proposed40,41. The best photon counters currently have ef®ciencies
of about 0.9 at optical frequencies42. This is suf®cient for experi-
mentally implementing the basic elements of LOQC. Higher ef®-
ciencies are required for implementing the more complex
teleportation and quantum gate operations with suf®ciently low
error conditional on success.

The preliminary resource counts discussed above imply large but
not excessive resource overheads per reliable quantum gate. The
need for robustness requires non-trivial resource overheads in all
implementations of QIP, so this suggests that scalable quantum
computation using LOQC is comparable in complexity to other
proposals. LOQC has the advantage in several respects. In particu-
lar, there is no need for low temperature for the basic optical
elements (except perhaps in the single photon sources and the
photo-detectors, depending on implementation), and photons
naturally maintain their coherence over timescales that are long
compared to the basic control operations. Furthermore, the sources
of noise are better understood and do not depend on dif®cult-to-
predict or dif®cult-to-measure thermal interactions. However, all
proposals until now, including LOQC, require that various tech-
nologies can be made to work together to obtain high ®delities in
operations.
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by applying C 1 � Z 1808 to qubit 5 and C 2 � X 1808 to qubit 3. The two teleportations are

then attempted. The network assumes that we need to recover from a Z measurement of

qubit 1 (shown in grey). In this case, qubit 1 can be absorbed into a state preparation;

which one depends on the measurement outcome. This avoids being affected by

failures in the top teleportation. The parts of the network which can be performed in a

non-deterministic state preparation are outlined. An XX measurement of the teleported

qubits becomes recorded in the teleportation measurements. The recovered state is

obtained by applying C R � Z 1808 if S 1S 2 � 2 1. If the pre-measurement coupling gate

marked by an asterisk fails with a Y-measurement only, then we can retry the recovery

process using a new prepared state. The probability of this failure event is f �1 2 f �, so

the total failure probability fr of recovery satis®es f r � f � f �1 � f �f r , whence

f r � f =�1 2 f �1 2 f ��.
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Discussion
Linear optics was believed to be insuf®cient for quantum computa-
tion because every implementable evolution can be understood in
terms of a small unitary matrix, contrary to expectations of
exponential complexity. Furthermore, passive linear optics does
not involve particle interactions other than those imposed by
statistics and can be understood in terms of classical wave
mechanics. There is, however, a hidden non-linearity in LOQC
(in the photo-detectors) and our techniques effectively transfer this
non-linearity to the bosonic qubits, thus enabling universal quan-
tum computation.

There are other options for implementing LOQC. Particularly
interesting is an idea43 that involves encoding qubits in the phase
space of a mode. Universal computation in this system requires
active linear optics and a nonlinearly prepared state, but has the
advantage of being intrinsically robust against errors involving
shifts in the canonically conjugate variables. It may be possible to
combine approaches to achieve robust and ef®cient LOQC even
more easily. M
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