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Chapter 1

Introduction

Nature, on atomic scale, is described very accurately by the quantum theory. This de-
scription requires the use of concepts which have no equivalent in our everyday percep-
tion of physical reality. Entanglement, for instance, binds two objects together plainly
through their common history. This connection goes beyond locality as it manifests
itself instantaneously and without energy exchange. The superposition principle, as
another concept, allows a system to be in two or more distinct states simultaneously.

In his famous ”Cat Paradox”, Erwin Schrödinger [1] emphasized the strange ap-
pearance of quantum theoretical laws when they were transferred to our everyday
world. In his gedanken experiment, the quantum state of a radioactive substance is
linked through an entanglement apparatus to the health of a cat. If this system would
be allowed to evolve quantum mechanically and not being watched, the animal would
end up in a state that is a superposition of a living and a dead cat. Though there were
no confirmed sightings of half-dead half-living cats, we know that quantum theory cor-
rectly describes the atomic world. The question arises where the reign of quantum
theory ends and the classical world begins. Moreover, would it be possible to design an
experiment in which a macroscopic object consisting of some 1023 particles behaves
quantum mechanically just like a single atom does ?

The aim of this thesis was to perform such an experiment. By making use of super-
conductivity, which is a macroscopic quantum effect by itself, we were able to operate
an electrical circuit in the coherent quantum regime. We applied recently developed
novel experimental techniques and sample designs to confirm the ability of preparing
the circuit in an arbitrary superposition of two quantum states and monitor its coherent
evolution in the time domain.

1.1 Macroscopic quantum coherence in superconduct-
ing circuits

In the superconducting state, the conduction electrons of a metal give up their individ-
uality and condense into a macroscopic quantum state which is described by a single
wavefunction. As the electrons then move uniformly, they are no more subject to scat-
tering and allow the current to flow without electrical resistance. A Josephson junction
is formed when two superconductors are separated by a weak link, as for instance, a
thin dielectric barrier. The single degree of freedom of such a system is the phase dif-
ference between the wavefunctions of the two superconductors, which is also called the

1



CHAPTER 1. INTRODUCTION 2

Josephson phase. In Chapter 2, the principles of the Josephson junction are reviewed
in detail.

First experiments to investigate whether the Josephson phase obeys quantum theory
were done in the year 1981 [2]. By then, it could be shown that the junction switches
from a discrete superconducting state to a resistive continuum by tunneling through
a potential barrier [3], in analogy to the decay of a radioactive atom. Moreover, the
existence of quantized energy levels of the superconducting state was proven directly
by spectroscopic measurements [4, 5]. More than one decade later, in the year 1999
a superposition of two macroscopic states was first demonstrated [6, 7] in a supercon-
ducting ring which is interrupted by a Josephson junction, a so-called rf-SQUID [8, 9].
The persistent current which circulates in such a device was proven to flow in a super-
position of clockwise and counter-clockwise directions when an appropriate magnetic
field is applied.

These experimental findings boosted the research on macroscopic quantum coher-
ence in superconducting circuits, and within a few years time it was achieved to observe
Rabi oscillation in current-biased Josephson junctions [10], rf-SQUIDs [11], junctions
operated in the charge regime [12] and hybrid flux-charge systems [13]. Beneath the
appealing feasibility of creating custom-tailored quantum objects, the rapid advance-
ment was stimulated by the potentiality of these circuits to be used as quantum bits in
a realization of a solid-state quantum computer.

1.2 The Josephson phase qubit
The aim of this thesis was to experimentally observe and manipulate the coherent tem-
poral evolution of Josephson junction circuits. For the system to be studied we chose
the flux-biased phase qubit, which consists of a Josephson junction integrated in a
superconducting loop. This qubit realization has certain advantages which make it
an ideal test bed for the experimental apparatus. Most prominently, relatively large
Josephson junctions can be used in phase qubits, which are easy to fabricate using
standard lithographic technology. In fact, working qubit samples could be obtained
from a commercial foundry [14], where they were produced according to our designs.

Chapter 3 explains in detail the physical principles of this system, how it is operated
as a qubit and how its state is measured by using an integrated dc-SQUID as sensitive
flux detector. That chapter also includes our sample layouts and discusses relevant
parts of the experimental setup.

1.3 Quantum computation
The idea of quantum computation1 arose when the difficulty of simulating a quantum
system with a deterministic classical computer was discussed. To describe a system of
n two-level quantum systems (qubits) classically, a number of 2n variables are neces-
sary. This exponential scaling has the consequence that for each additional qubit the
required memory and so the computational complexity is doubled, quickly exceeding
the tractable limit of classical computers. R. P. Feynman noted [17] that this problem
could be overcome by using a quantum computer - a manipulatable system of coupled
quantum objects, onto which the system to be simulated would be mapped. Looking
at such a hypothetical quantum computer from the reverse side, it came in view that

1For an introduction to quantum computing, see for example [15] and [16].



3 1.4. IMPLEMENTATION OF A QUANTUM COMPUTER

it might also be useful to tackle other computational problems which are intractable
to classical computers. This notion was later confirmed [18], showing that a quan-
tum computer could be used as a general purpose calculator, in principle exceeding the
capabilities of any classical computer.

What is the basis of the power of a quantum computer ? Similar to a normal com-
puter, the quantum computer encodes information in a multitude of bits which consti-
tute its memory. It performs calculations by unravelling them into a series of logical
operations on the memory, consisting of bit comparisons and conditional bit-flips. The
key difference is that in a quantum computer the information is encoded in the state of
objects which behave according to the laws of quantum physics. Like Schrödinger’s
cat, a quantum bit can be in a superposition of both its logical states ”0” and ”1”.
Hence, while a classical memory consisting of n bits allows to store one out of 2n

numbers, n quantum bits can store all 2n numbers simultaneously. Logical operations
on a quantum memory therefore work in parallel to all these numbers, whereas a clas-
sical computer would need to repeat the calculation 2n times. A quantum computer
can therefore work exponentially faster and lastly allow to solve calculation problems
in seconds which would take thousands of years for todays fastest computers.

Evidently, it is impossible to directly access all the information which is stored in
a quantum computer’s memory, because its measurement will force the superposition
to collapse into a classical state. However, clever programming allows to increase the
probability that the final classical state after measurement contains the desired informa-
tion. Many algorithms have been devised so far which proved that this is possible [19].
Peter Shor created a significant stir in 1994 by proposing a quantum algorithm which
allows to factorize very large numbers in short time. While it is an easy task to multi-
ply two numbers, the required time to find the prime factors of a large number grows
exponentially with its digits when classical algorithms are applied. This asymmetry is
the basis of the security of today’s widely used RSA encryption algorithm, which is
also used in electronic money transfer and credit card payments. Hence strikingly, a
quantum computer running Shor’s algorithm could be used to decipher encrypted infor-
mation and to crack PIN codes. The struggle to investigate the possibilities of building
a quantum computer therefore renders vital to no less than preserving security in the
information age.

1.4 Implementation of a quantum computer
Physicists have demonstrated the ability to implement and control quantum bits in
a variety of approaches. Among these are trapped ions, photons, nuclear spins of
molecules, atoms in beams, quantum dots and superconducting circuits. A compre-
hensive comparison of these technologies, each having its strengths and drawbacks,
is given in [20]. To be suitable for building a large-scale quantum computer, a qubit
system must comply with five necessary requirements which are listed in DiVincenzo’s
checklist [21]. These are briefly reviewed in the following and discussed with regard
to superconducting phase qubits, the system to be studied in the frame of this thesis.

A scalable physical system with well characterized qubits

A qubit can be made of any quantum object which has at least two individually address-
able and distinguishable states. If the system has more than two states, the population
probability of these additional levels must be kept small to avoid computational errors.
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Phase qubits are characterized by mapping out their energy level structure with
microwave spectroscopy. Section 4.4 of this thesis is dedicated to a comprehensive
description of our spectroscopic experiments which include the observation of multi-
photon transitions, measurements of qubit decoherence which appears as inhomoge-
neous resonance broadening and a possibility to determine the coupling (Rabi-) fre-
quency by the resonance shift. Population of additional energy levels is avoided in
phase qubits by limiting the driving strength and hence the operation speed as dis-
cussed in Sec. 4.6.1.

The excellent scalability is the prominent advantage of superconducting quantum
bits. Josephson junctions are manufactured with lithographic fabrication procedures
similar to conventional computer processors, and circuits involving thousands of junc-
tions can be reliably produced. Moreover, an attractive possibility is to combine the
already developed rapid single flux quantum logic (RSFQ) [22] with superconducting
qubits. This technology in principle allows to integrate very fast qubit control and read-
out circuits in the same Josephson junction-based technology and eventually arrive at
a monolithic integrated quantum computing chip.

The ability to initialize the state of the qubits

The quantum memory must be reset to a known initial state prior to computation. Since
the logical states of phase qubits are separated by an energy gap ∆E which corresponds
typically to a temperature ∆E/kB ≈ 0.5 K, initialization in the ground state is accom-
plished by cooling the sample well below this temperature and letting the system relax.
Recently, a procedure for active cooling in analogy to optical cooling of trapped ions
has been demonstrated for superconducting flux qubits [23]. This technique allows to
prepare the ground state with good fidelity even at elevated temperatures.

Long relevant coherence times, much longer than the gate operation time

Decoherence occurs through undesired interaction of the qubit with its environment and
can lead to an irreversible collapse into a classical state. For superconducting qubits,
preventing decoherence is the major difficulty, which appears as the downside of their
good manageability owing to integration in a solid-state environment. Error-correcting
techniques have been devised [24, 25] which are based on encoding one logical qubit
in many (at least 5) physical qubits. These allow for arbitrarily long fault-tolerant
quantum computation when a minimum number of ≈ 104− 105 quantum gates can be
applied before decoherence occurs. The best currently existing phase qubits [26] have
coherence times of about 200 ns, during which approximately 100 gate operations can
be done. As the recent development has shown [27], understanding the sources of
decoherence can lead to a significant improvement of qubit fidelity.

In Chapter 4 of this thesis, measurements of phase qubit coherence times are pre-
sented. This includes a first systematical study of the influence of temperature on qubit
decoherence, shedding new light on its origins.

A ”universal” set of quantum gates

Algorithms are executed on classical as well as quantum computers by decomposing
them into a series of logical operations on the memory, so-called gates. A set of gates
is ”universal” when it contains all necessary ingredients to realize any calculation by
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repeated executions of these basic operations, whereas it is sufficient to consider only
single- or two-bit operations.

In quantum computers, single bit operations like the NOT-gate are realized through
driven Rabi oscillation. Going beyond the possibilities of classical computation, the
same mechanism is used to generate an equal superposition of both logical qubit states.
This operation can be described as a half a bit inversion, which is therefore also called a√

NOT-gate. As quantum bits have two degrees of freedom, a further single-qubit gate
is necessary, which is called the z-gate or phase gate. An experimental demonstration
of all these gates using phase qubits is presented in detail in Chapter 4 of this thesis.

To complete the universal set, nearly any two qubit quantum gate can be used [28].
One example is the iSWAP gate, which was demonstrated experimentally on two ca-
pacitively coupled phase qubits [29].

What comes along the requirement of two-qubit gates is the need for a control-
lable coupling between qubits. For phase qubits, several strategies can be followed. A
straightforward scheme uses a fixed capacitive coupling which is controlled by tuning
the qubits in and out of a common resonance. Also, an inductive coupling via tunable
Josephson-junction-based flux transformers [30, 31, 32] and entangling bus [33] have
been proposed.

A qubit-specific measurement capability

After a quantum algorithm is completed, all involved qubits must be measured. While it
is possible to compensate a reduced readout fidelity by rerunning the algorithm [21], it
is important that the measurement of one qubit does not change the rest of the memory.

In our experiments on phase qubits, we use a fast and high-fidelity readout tech-
nique [34, 35, 36] which is based on application of a nanosecond-long magnetic flux
pulse. It has been shown that measurement crosstalk can hereby be avoided when
measuring all phase qubits simultaneously [29].

A detailed discussion of this readout technique and the temperature-dependence of
its fidelity is given in Sec. 4.3.

1.5 Outlook
The preceding discussion of the DiVincenzo criteria showed that currently existing
phase qubits, and likewise other superconducting qubit approaches, are promising can-
didates to realize a solid-state quantum computer. However, their short coherence times
still hinder scaling up to multi-qubit circuits. As research progresses continues, it is ex-
pected that sources of decoherence become better understood, eventually allowing to
increase qubit fidelity further.

Even if it will turn out that building a practical quantum computer using supercon-
ducting circuits stays beyond reach, strong research effort remains justified. In the past
20 years, the Josephson junction played an important role as an ideal system to study
quantum tunneling. The new experimental achievements are likely to render these
junctions the system of choice for the study of macroscopic quantum coherence.
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Chapter 2

Principles of the phase qubit

This chapter starts with a brief review of superconductivity and the basics of Josephson
junctions. The dynamics of the phase difference across the superconducting weak link
are discussed, providing the basis of the phase quantum bit.

2.1 Superconductivity
Heike Kamerlingh Onnes in the year 1911 discovered that the electrical resistance of
mercury, when cooled below a certain temperature, drops suddenly to zero. He under-
stood that the metal has passed into a new state, which he called the superconductive
state. The next major discovery was that a magnetic field is expelled from a supercon-
ductor, as it had been observed in the year 1933 by W. Meissner and R. Ochsenfeld.
A phenomenological description of this so-called Meissner effect was given two years
later by F. and H. London and is cast into the London equations

d(Λ~js)
dt

= ~E, (2.1)

expressing that in a conductor with zero resistance the temporal deviation of the current
density ~js is directly proportional to the electrical field ~E, and

rot(Λ~js) = − ~B (2.2)

which explains the cancellation of the magnetic Field ~B deep inside the superconductor
by the induced circulating current rot(Λ~js). In these equations, the paramter Λ is given
by

Λ =
ms

nse2
s

, (2.3)

where ms and ns are respectively the mass and density of the particles carrying the
charge es.

A microscopic theory explaining the superconductive state has been formulated not
until the year 1957 by Bardeen, Cooper and Schrieffer. According to their theory, con-
duction electrons of opposite spin and momentum form bound pairs under the influence
of a lattice phonon-induced attraction. The resulting particle, a so-called Cooper pair,
has a spin of zero and hence obeys the Bose-Einstein statistics. This implies that, at
low temperatures, all Cooper pairs condense into a ground state of lowest energy, while

7



CHAPTER 2. PRINCIPLES OF THE PHASE QUBIT 8

single electron states, which are called quasiparticles, are energetically separated by a
gap ∆ that is related to the binding energy of the Cooper pair. Since the charge and
mass of a Cooper pair is twice the electron mass, and their density ns corresponds to
half the electron density, Eq. (2.3) still holds even though F. and H. London assumed
the charge carriers to be single electrons.

The range of the coherent pair correlation (the BCS coherence length) exceeds by
far the mean spacing between two electrons. Therefore, the wave functions describ-
ing individual Cooper pairs overlap strongly, allowing to describe the condensate by
a single, complex wavefunction Ψ, which is also called the superconducting order pa-
rameter. It has been introduced already in the year 1950 by Ginzberg and Landau and
is formulated as

Ψ = Ψ0(~x, t) exp {iφ(~x, t)}, (2.4)

where φ(~x, t) is its phase and the amplitude

|Ψ0(~x, t)|2 = ns (2.5)

is given by the Cooper pair density. Superconductivity was thus recognized as a macro-
scopic quantum effect underlying the coherent motion of all the electrons pairs in the
metal.

2.2 The current-biased Josephson junction
While the amplitude |Ψ2

0(~x, t)| of the order parameter is constant inside a bulk super-
conductor, beyond its edges it declines exponentially. This long-range coherence gives
rise to a coupling of the order parameters in two superconductors which are seperated
by a thin dielectric barrier, as illustrated in Fig. 2.1.

|Ψ | 
2

1 2
|Ψ | 

2

x

   superconductor 1        weak link     superconductor 2

|Ψ| 

Figure 2.1: Top: A superconductor-insulator-superconductor system forming a Joseph-
son junction. Bottom: At the boundary of a superconductor, the amplitude of the order
parameter decays exponentially. This allows an overlap (shaded grey) of the two wave-
functions and provides a coupling between them.
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2.2.1 Josephson equations

The theory describing a superconductor-insulator-superconductor system has been for-
mulated by B. D. Josephson [37] in the year 1962. He predicted that a supercurrent
would tunnel through the insulating barrier even in the absence of voltage. Its magni-
tude depends only on the phase difference ϕ = φ1 − φ2 between the order parameters
of the two junction electrodes, also called the Josephson phase, and obeys the first
Josephson equation

I = Ic sin(ϕ), (2.6)

where Ic is the maximum (called critical) current which can flow without dissipation.
Ic depends on the energy gap ∆ of the superconductor, the normal resistance of the
tunnel barrier and the Cooper pair density. As long as the amplitude of a constant
current Ib flowing through the barrier does not exceed the critical current Ic , there is
no voltage drop across the junction, and the Josephson phase according to Eq. (2.6)
will be constant,

ϕ = arcsin
Ib

Ic
+ 2πn. (2.7)

The second Josephson equation relates the time evolution of the phase difference ϕ to
the voltage V across the junction:

dϕ

dt
=

2π

Φ0
V =

2e

~
V, (2.8)

where Φ0 = h/2e = 2.07 10−15 V s is the magnetic flux quantum, e is the electron
charge and h is Planck’s constant. Combining both equations implies that a constant
voltage applied to the junction results in an alternating current

I = Ic sin
(

ϕ0 +
2π

Φ0
V t

)
, (2.9)

where the frequency-to-voltage ratio is given by

1
Φ0

= 483.6
MHz
µV

. (2.10)

Vice versa, any change in the supercurrent and hence the Josephson phase will result
in a nonzero voltage. The junction thus acts like an ideal but nonlinear inductance. By
differentiating Eq. (2.6) and inserting Eq. (2.8), the Josephson inductance L can be
obtained:

L = V

(
dI

dt

)−1

=
~
2e

1
Ic cos ϕ

. (2.11)

One should note that this inductance depends through the Josephson phase ϕ on the
bias current through the junction and will also take negative values.

2.2.2 The RCSJ model

The dynamics of the Josephson phase can be understood in the frame of the resistively
and capacitively shunted junction model (RSCJ model) introduced by Stewart [38] and
McCumber [39]. The model applies to small junctions, whose dimensions are smaller
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than the characteristic length λJ of spatial variations of the Josephson phase, typically
5 to 30 µm. This length is calculated as [40]

λJ =

√
Φ0

2πjc(2λL + t)
, (2.12)

where jc is the critical current density in A/cm2, λL the London penetration depth of
the electrode material, t is the thickness of the insulating barrier and the electrodes are
assumed to have a thickness larger than λL.

The junction is modeled by an equivalent circuit consisting of an ohmic resistor R,
which represents its effective shunt resistance, a capacitor C accounting for the total
capacitance of the junction electrodes and an element which behaves according to Eq.
(2.6), see inset to Fig. 2.2.
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Figure 2.2: The washboard potential plotted for four different normalized bias currents
γ. The virtual particle is indicated by a solid disc. For γ = 0.5, the potential barrier
height ∆U is also shown. Inset: Equivalent circuit model of a Josephson junction.
The Josephson supercurrent is symbolized by an X and the intrinsic capacitance and
resistance are indicated as C and R, respectively. The fluctuation current source is
connected by dashed lines to the resistor.

According to Kirchhoff’s law, the total current flowing through such a system is the
sum of the currents in each of the three paths. Using Eq. (2.9), this yields

I = Ic sin ϕ +
V

R
+ C

dV

dt
= Ic sin ϕ +

1
R

Φ0

2π
ϕ̇ + C

Φ0

2π
ϕ̈. (2.13)

The right hand side of this equation can be written as an equation of motion,

mϕ̈ + m
1

RC
ϕ̇ +

∂U(ϕ)
∂ϕ

= 0, (2.14)
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for a virtual particle of mass

m = C

(
Φ0

2π

)2

(2.15)

moving along its generalized coordinate ϕ in a potential U(ϕ). The factor (1/RC)
represents the damping of the particle which is proportional to its velocity ϕ̇, while
U(ϕ) is given by

U(ϕ) =
IcΦ0

2π

(
− I

Ic
ϕ− cos ϕ

)
= EJ (−γ ϕ− cosϕ), (2.16)

where the Josephson energy EJ = IcΦ0/2π has been introduced. The potential has
the form of a cosine which is tilted proportional to the normalized bias current γ, and
is therefore called a washboard potential. See figure 2.2 for a plot of U(ϕ) at several
values of the normalized bias current γ.

The potential barrier height U0 of a metastable well can be calculated from the po-
tential difference U(ϕm)−U(ϕ0) between the local maximum at ϕm = π−arcsin(γ)
and the minimum of the well located at ϕ0 = arcsin(γ),

U0 = 2EJ

[√
1− γ2 − γ arccos(γ)

]

∼= EJ
4
√

2
3

(1− γ)3/2 for γ → 1.

(2.17)

2.2.3 Classical phase dynamics
The Josephson potential allows for two modes of motion of the virtual particle. If it
remains trapped in one potential well, it may undergo small oscillations around the
potential minimum. This motion corresponds to the zero-voltage state of the junction,
because the time average of the Josephson phase will be constant, and hence the aver-
age DC voltage will be zero according to Eq. (2.8). The small oscillation frequency ω0

can either be obtained from the curvature of the potential

U ′′(ϕ) =
d2U(ϕ)

dϕ2
, (2.18)

and the the effective mass m by calculating

ω0 =
√

U ′′(ϕ)/m, (2.19)

or using the junction capacitance and the definition of the Josephson inductance,

ω0 =
1√
L C

= ωp (cos ϕ)1/2 = ωp

(
1− γ 2

)1/4
, (2.20)

where the plasma frequency ωp has been introduced:

ωp =
(

2e Ic

~ C

)1/2

. (2.21)

Since both the critical current Ic and junction capacitance C scale with area, the plasma
frequency is determined by the fabrication process and can only be reduced by an
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additional shunt capacitance to the junction. For typical tunnel junctions, νp = ωp/2π
is in the microwave range with several tens of GHz.

If the particle once escaped from a well and the damping is not too high, i.e.
(ωpRC)−1 ¿ 1, its kinetic energy will exceed the barrier height of the next well and
the particle continues to run down the washboard. The junction is then in its voltage
state: the phase increases steadily and a nonzero dc voltage appears according to the
second Josephson equation (2.8). To retrap the particle in one well and hence to switch
back to the zero-voltage state, it will be necessary to reduce the potential tilt substan-
tially by reducing the applied bias current. This is the origin of the hysteresis observed
on the current-voltage characteristics of a Josephson junction with low damping (see
Fig. 2.3).

From the IV-curve, one can estimate the resistance of the barrier Rn when the
junction is in its normal state for currents larger than the critical current. The so-called
subgap-resistance Rsg is given by the slope of the voltage dependence for currents just
above the retrapping current. The quasi-particle resistance at temperature T is then
given by

Rqp = Rn exp
(

∆
kBT

)
, (2.22)

where kB = 1.38 · 10−23J/K denotes Boltzmann’s constant and the energy gap ∆
is found from the measured gap voltage via ∆ = Vg e/2. This equation shows that
Rqp should become extremely high at low temperatures, since the quasiparticle density
exponentially decreases with temperature as stated within the BCS theory.

Beneath a damping, the resistance provides another important contribution to the
phase dynamics since every resistive element constitutes a source of current fluctua-
tions at finite temperatures. This is indicated in Fig. 2.2 (a) as the additional current
source IN which is connected with dashed lines to the resistor. The temporal aver-
age of the noise current IN (t) at temperature T is given by the Johnson-Nyquist noise
formula and satisfies [41]

∫ ∞

−∞
< IN (t)IN (0) >T eiωtdt = 2kBT/R. (2.23)

These fluctuations in the bias current result in variations of the position of the classical
particle, which describes the state of the junction. This gives rise to a temperature-
induced escape from the metastable well as discussed in chapter 2.2.5.

Quality Factor

A measure for the damping of the plasma oscillation by the effective shunt resistance
R of the junction is the dimensionless quality factor (Q factor). It relates the energy
W stored in the oscillating system to the energy Wdiss dissipated during one cycle via
Q = ω0W/Wdiss. Thus, the Q factor estimates the number of periods during which
the oscillation energy will be dissipated. When considering pure Ohmic damping, the
quality factor of a Josephson junction is defined as

Q = RC ω0. (2.24)

High frequency contributions to dissipation
Although the RSCJ model predicts many properties of the Josephson junction cor-

rectly and straightforward, one should be aware of the fact that the model is simplified
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Figure 2.3: Current-voltage characteristic of a typical Josephson junction fabricated
from a Nb/Al/AlOx/Nb trilayer, measured at 20 mK temperature. Indicated by Ic is
the critical current and Vg denotes the gap voltage. The slope of the curve at higher
voltages displays the normal resistance Rn w 5.2Ω of the barrier. Also indicated is the
subgap-resistance Rsg ≈ 400 Ω.

by assuming a frequency-independent shunt resistance which furthermore neglects any
contributions to the junction impedance at high frequencies arising from the bias cir-
cuitry.

2.2.4 Macroscopic quantum effects
At low temperatures and weak damping, the particle analog is no more suitable for an
appropriate description of the phase dynamics because quantum effects become appar-
ent. Experimentally, macroscopic quantum tunneling [2] and indications for energy
level quantization [42, 4] were found already 20 years ago.
However, there should be a smooth transition between quantum and classical limits of
the macroscopic system, and experimental results can often be interpreted in both pic-
tures [43]. One example described in the following is the resonantly driven oscillator.
This involves adding a small microwave (µW ) current component IµW of the form

IµW = Im sin(ωµW t + φµW ) (2.25)

to the bias current. Its frequency and amplitude are denoted as ωµW and Im, φµW is its
phase.

In the classical picture, the effects arising from the microwave current can be un-
derstood as due to a periodic force driving the particle [44]. A maximum of energy is
transferred to the particle when the frequency ωµW of the microwave is close to the
natural frequency of the oscillation in the well ω0.

For the same situation but in terms of the quantum picture, the photon energy ~ωµW

must be equal to the energy separation of the ground state and the first excited state to
allow transitions between levels by the absorption or emission of one photon (see figure
2.4).

The discrete energy levels in the quadratic potential well of a quantum mechanical
harmonic oscillator are located at (n+1/2) ~ω0, with n ≥ 0. The potential wells of the
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>

2>

µW

δE
Figure 2.4: Illustration of resonant
activation. The phase is activated
from the ground state to the first
excited state by absorbing a pho-
ton, if the photon energy ~ωRF is
equal to the energy difference ∆E.

biased Josephson junction in contrast are tilted sinusoids, and so the spacing between
adjacent levels decreases with increasing energy. Only due to the anharmonicity of the
potential well it becomes possible to address the excited states individually, since an
applied microwave will be resonant only to a certain transition.

The fact that the classical anharmonic oscillator also responds to frequencies satis-
fying

ωrf =
p

q
ω0 (2.26)

with p and q being integers [45] can be interpreted quantum mechanically as a transi-
tion involving more than one photon at once, thus called multi-photon transition, which
has been observed experimentally [46]. For the case of a transition over a level spacing
∆E involving a number of q photons, the individual photon energies Eph must comply
∆E = qEph, corresponding to an microwave frequency of ω0/(2π q).

Whether a Josephson junction is described more exactly by a quantum system hav-
ing a small number of discrete states rather than as a classical anharmonic oscillator is
decided by the effective particle mass m ∝ C and the strength of dissipation. Both the
effective damping resistance R as well as a the capacitance C give rise to a broadening
of the energy levels by an amount δE [5] following

δE ∝ 1
RC

. (2.27)

In the quantum limit at low damping, the energy levels are narrow enough to remain
clearly separated. Increasing the damping, for instance by raising the temperature ac-
cording to Eq. (2.22), will eventually result in broad overlapping energy levels which
are seen as a continuum. In practice, the discreteness of the energy levels may be
shadowed already at much lower temperatures due to the additional energy uncertainty
given by temperature fluctuations.

2.2.5 Escape mechanisms
An ideal classical particle at zero temperature is expected to escape from a metastable
well only when the barrier height vanishes. In the junction model, this corresponds to
a bias current equal to the critical current. In reality, thermal fluctuations and quantum
tunnelling allow the phase to escape from the well already at smaller bias currents. The
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probability of escape may be expressed in terms of the lifetime τ of the zero-voltage
state, which is the inverse of the escape rate Γ

τ ≡ Γ−1. (2.28)

In the following, the two escape processes are discussed and formulas for the escape
rate from the zero-voltage state are given for particular regimes.

Thermal activation

In the classical analog, the virtual particle can be regarded as being subject to Brownian
motion. The formula which describes the temperature dependence of the rate at which
the particle can overcome the potential barrier of height U0 was found by Arrhenius. It
is given by the exponential negative ratio of the potential barrier height U0 (Eq. 2.17)
to the thermal energy as the product of Boltzmann’s constant kB and temperature T .
The rate of escape Γth due to thermal activation hence follows the equation

Γth = at
ω0

2π
exp

(
− U0

kBT

)
, (2.29)

where the pre-exponential factor ω0
2π resembles the attempt frequency towards the bar-

rier. Figure 2.5 illustrates the process of thermal activation.

ω0

U(ϕ)

Γth

U
0

Figure 2.5: A zoom into one
metastable well where the analo-
gous classical particle oscillates at
frequency ω0 around the potential
minimum. The brownian particle
is pushed across the barrier height
U0 by thermal fluctuations in its
energy at the thermal escape rate
Γth.

Friction reduces the thermal excape rate nonexponentially as discussed in Kramer’s
seminal paper [47] for the case of frequency independent (ohmic) damping. In the
moderate to large damping regime, the escape is reduced due to back-diffusion over the
barrier top, while for very weak friction the highly excited states are depleted because
of weaker influence of the heat bath to the system, which prevents it from being in
thermal equilibrium. See [48] for a detailed review. These effects are taken into account
in the damping prefactor at, which can be approximated in the limit of low damping as
[49]

at =
4a

[(1 + Q kBT
1.8U0

)1/2 + 1]2
. 1, (2.30)

where a is a numerical constant close to unity.

Macroscopic quantum tunnelling

As the temperature approaches zero, the thermal escape rate is exponentially sup-
pressed and the metastable state can only decay via macroscopic quantum tunnelling.
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The term macroscopic emphasizes the fact that this tunnelling concerns the Josephson
phase as a whole rather than single Cooper pairs.

The quantum tunnel rate Γqu may be calculated using the semi-classical Wentzel-

1>

2>

0 >

∆E hω
0

Γ0

Γ1

∼ ∼ 

I II III

Figure 2.6: Quantum picture of the state of the Josephson phase inside the well,
wherein the discrete energy levels are indicated as grey horizontal lines. Tunnelling
from the excited state occurs at a rate Γ1, which is about 1000 times larger than the
tunnel rate from the ground state Γ0 since the corresponding barrier height is reduced
by the energy difference ∆E. Additionally shown is a sketch of the squared wavefunc-
tions |Ψ|2 of the ground state |0〉 and the first excited state |1〉.

Kramers-Brillouin (WKB) approximation. In region I, the ground state wavefunction
ΨI coincides with that of an anharmonic oscillator, whereas it declines exponentially
in the classical forbidden region II, where E0 < U0(ϕ). The escape rate is then found
[50] by relating the remaining probability |ΨIII|2 in region III to |ΨI|2, resulting in

Γqu =
ω0

2π

(
864π U0

~ω0

)1/2

exp
(
−36

5
U0

~ω0

)
. (2.31)

The effect of damping on quantum tunnelling was investigated in the work of Caldeira
and Leggett [51, 52] by modelling the friction as a coupling to an infinite set of har-
monic oscillators. The tunnel rate is then expressed as

Γqu = A exp(−B) (2.32)

with

A =
√

60 ω0

(
B

2π

)1/2

(1 +O(Q−1)),

B =
36
5

U0

~ω0
(1 +

1.74
Q

+ O(Q−2)),

(2.33)

where the WKB-result is recovered for Q À 1. Note that damping affects the quantum
tunnel rate exponentially, in contrast to the thermal activation rate.

Tunnelling from excited states happens at an exponentially higher rate, since the
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corresponding barrier height is reduced by the energy of the excited level. For typical
bias currents where tunnelling becomes observable (γ & 0.99), the escape rate from
the first excited state is three orders of magnitude higher than the one from the ground
state. This allows to deduce the quantum state of the phase before it tunnelled by
measurements of the lifetime of the zero-voltage state.

Cross-over regime

The transition from the dominance of thermal activation to macroscopic tunnelling
happens around the cross-over temperature T ∗, for which an estimation is [48]

T ∗ ' ~ω0

2πkB

[(
1 +

1
2Q

2)1/2

− 1
2Q

]
. (2.34)

The Q-dependent damping factor in this equation decreases the cross-over temperature
by less than 1% for junctions with Q > 50.

Quantum corrections have to be applied to the thermal activation rate already above
the cross-over temperature, since the tunnelling from thermally excited states is expo-
nentially increased due to the smallness of the remaining barrier. Indications for the
existence of quantized energy levels above the crossover temperature were found exper-
imentally by Silvestrini et. al. [53]. At finite temperature and in thermal equilibrium,
the occupation probability ρn for the n−th level is given by the Boltzmann distribution
[54]

ρn = Ξ−1 exp (−En/kBT ) , Ξ =
∞∑

n=0

exp (−En/kBT ) . (2.35)

The total escape rate is then the sum of the rates from each individual level multi-
plied by its occupation probability. A useful approximation to the escape rate in the
intermediate temperature regime 1.4 T ∗ . T . 3T ∗ is [55]

ΓT∗ = ai
ω0

2π
exp

(
− U0

kBT

)
(2.36)

where the prefactor ai valid to first order in 1/Q is

ai =
sinh(~ω0/2kBT )
sin(~ω0/2kBT )

. (2.37)

Equation (2.36) assumes the population in the excited levels to strictly obey the Boltz-
mann distribution. At higher temperatures, the escape rate is therefore correctly given
only by Eq. (2.29), where the depletion of excited states through tunnelling is consid-
ered in the thermal prefactor at.

2.3 Coherent dynamics in the two-state system
The theoretical treatment of two-level quantum systems is of fundamental importance
for the description of a great variety of quantum effects. A well-studied example is
the spin-1/2 particle in an external magnetic field which constitutes an analogon to
any two-state system, and hence quantum bits also fall into this categorie. The same
mathematical apparatus can be used to describe a current-biased Josephson junction if
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its energy spectrum can be truncated to the lowest to levels. In this case, an external
perturbation is realized by an applied microwave current at close resonance, i.e. its fre-
quency ωrf is practically equal to the small oscillation frequency ω10 given by Equation
(2.20).

The effect of such a perturbation or coupling is two-fold. Statically, it results in a
change of the position of the energy levels. Dynamically, coherent oscillations between
the two states appear, which are of particular experimental interest for the creation of
state superpositions.

2.3.1 Rabi oscillation
Rabi oscillations are coherent oscillations between the eigenstates of a two-level quan-
tum system which is subject to a resonant perturbation. The calculation of the Rabi
frequency and amplitude poses a standard problem which is discussed in many books
on quantum mechanics. Here, I follow the notation of [56]. The result is then be
applied to the current-biased Josephson junction.

A two-level system without any perturbation is described by its Hamiltonian H0.
By using its eigenstates |ϕ0〉 and |ϕ1〉 as a basis, the stationary Schrödinger equation
reads

H0 |ϕ0〉 = E0 |ϕ0〉
H0 |ϕ1〉 = E1 |ϕ1〉 ,

(2.38)

where E0 and E1 are the corresponding eigenenergies and the Hamiltonian has the
diagonal form

H0 =
(

E0 0
0 E1

)
. (2.39)

When the perturbation is switched on, the new Hamiltonian becomes

H = H0 +W, (2.40)

where W denotes the perturbation or coupling operator. As a result, we expect both
new eigenstates, denoted |Ψ+〉 and |Ψ−〉, and new eigenenergies E+ and E−. Equation
(2.38) then becomes

H |Ψ+〉 = E+ |Ψ+〉
H |Ψ−〉 = E− |Ψ−〉 .

(2.41)

The coupling is represented by the hermitian matrix

W =
(

W00 W01

W10 W11

)
(2.42)

with W00 as well as W11 being real and W01 = W ∗
10. We can assume that both W00

and W11 are equal to zero since their effect can be implicitly taken into account by
replacing E0 and E1 in equation (2.39) by E′

0 = E0 + W00 and E′
1 = E1 + W11,

respectively. For the diagonalization of the new hamiltonian (2.40) we shall follow the
procedure given in [56], which yields the two eigenvalues

E± =
1
2
(E0 + E1)± 1

2

√
(E0 − E1)2 + 4|W01|2 (2.43)
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and the two eigenvectors

|Ψ+〉 = cos
(

θ

2

)
e−iϕ/2 |ϕ0〉+ sin

(
θ

2

)
eiϕ/2 |ϕ1〉

|Ψ−〉 = − sin
(

θ

2

)
e−iϕ/2 |ϕ0〉+ cos

(
θ

2

)
eiϕ/2 |ϕ1〉 .

(2.44)

The angels θ and ϕ refer to those used in the Bloch-sphere description of section 2.3.3,
and are defined as

tan θ =
2|W01|

E0 − E1
, 0 ≤ θ < π,

W10 = eiϕ |W10|.
(2.45)

Since the time evolution of the quantum state follows the Schrödinger equation

i~
d
dt

|Ψ(t)〉 = H |Ψ(t)〉 , (2.46)

we can write
|Ψ(t)〉 = α e−i E+t/~ |Ψ+〉+ β e−i E−t/~ |Ψ−〉 . (2.47)

α and β are determined by the initial condition, for which we define the system to be
in the ground state |Ψ(0)〉 = |ϕ0〉 at time t = 0. We can now rewrite Eq. (2.47) by
solving Eq. (2.44) for |ϕ0〉,

|Ψ(0)〉 = |ϕ0〉 = eiϕ/2 [cos
(

θ

2

)
|Ψ+〉 − sin

(
θ

2

)
|Ψ−〉] (2.48)

and we obtain

|Ψ(t)〉 = eiϕ/2 [ e−i E+t/~ cos
(

θ

2

)
|Ψ+〉 − e−i E−t/~ sin

(
θ

2

)
|Ψ−〉]. (2.49)

To show that the state (2.49) indeed oscillates between the unperturbed states |ϕ0〉 and
|ϕ1〉, we first write

〈ϕ1|Ψ(t)〉 = eiϕ/2 sin
(

θ

2

)
cos

(
θ

2

)
[ e−i E+t/~ − e−i E−t/~] (2.50)

and use this to calculate the probability P1(t) = |〈ϕ1|Ψ(t)〉|2 to find the system in
state |ϕ1〉 at time t: 1

P1(t) =
1
2

sin2 θ

[
1− cos

(
E+ − E−

~
t

)]

= sin2 θ sin2

(
E+ − E−

2~
t

)
,

(2.51)

which after substitution of (2.43) and (2.45) reads

P1(t) =
4|W01|2

4|W01|2 + (E0 − E1)2
sin2

[√
4|W01|2 + (E0 − E1)2

t

2~

]
(2.52)

1By making use of the identity sin2(θ/2) cos2(θ/2) = 1
4

sin2(θ) and Euler’s formula we find

| e−i E+t/~ − e−i E−t/~ |2 = 2[1− cos(
E+−E−

~ t)].
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Known as Rabi’s formula, equation (2.52) describes a sinusoidal oscillation of P1 at
the so-called Rabi-frequency

ωR =
√

4|W01|2 + (E0 − E1)2
1
2~

(2.53)

and with an amplitude which is close to one if the coupling is strong, or |W01| À
|E0 − E1|.

Decoherence effects

As it was mentioned before, the discrete phase eigenstates of a Josephson junction are
not stable. For example, the ground state can decay by tunnelling at the rate Γ0 towards
the continuum, and the excited state can additionally fall back to the ground state due
to dissipation at the rate Γd. Furthermore, the coherence of the superposition state is
affected by dephasing at the rate Γφ.

To show how this influences the time-dependent level population as calculated in
equation (2.52), we can define the total off-diagonal decay rate Γ as the sum of indi-
vidual decoherence rates [57], i.e. Γ = Γ0 + Γ1 + Γd + 2Γφ. Quantum mechanics
allows to phenomenologically take into account the finite lifetime of a state by adding
an imaginary term to its energy, which is then given by2

E′
n = En − i ~

Γ
2

. (2.54)

Following the calculation in section 2.3.1, we note that the time-evolution operator will
be replaced by

e−i E′nt/~ = e−i En t/~ · e−Γ
2 t/~. (2.55)

For the time-dependent population of the excited level we obtain

P1(t) =
|W01|2

|W01|2 −
(~

2Γ
)2 e−Γt sin2




√
|W01|2 −

(
~
2

Γ
)2

t

2~


 . (2.56)

Equation (2.56) is valid for |W01| > ~
2Γ. This means that the excited level population

will undergo damped sinusoidal oscillations if the coupling is strong enough to suffi-
ciently increase the Rabi frequency so that the system can oscillate before it becomes
incoherent, see Fig. 2.7.

Detuning

The externally applied microwave frequency might not be tuned exactly to the transi-
tion frequency and differ by a value of

∆ =
|E1 − E0|

~
− ωrf . (2.57)

Any detuning ∆ results in a higher oscillation frequency and decreases the amplitude.
The oscillating population probability of the excited level corrected for detuning is

P1(t) =
|W01|2

|W01|2 + ∆2
sin2

[√
|W01|2 + ∆2

t

2~

]
. (2.58)

Figure 2.8 shows that for larger detuning the amplitude decreases, while the Rabi fre-
quency increases.

2see [56], complement HIV.
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Figure 2.7: A plot of equation
(2.56) for a low decoherence rate(~

2Γ
)

= 0.1|W01| shows exponen-
tially decaying oscillations. For a
large decoherence rate,
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Figure 2.8: The excited level pop-
ulation P1(t) as given by equa-
tion (2.58), plotted for the detun-
ings ∆ = 0, 2|W01| and 4|W01|,
respectively.

Mapping to the case of the Josephson junction

For the microwave-irradiated Josephson junction, we can write its bias current as I(t) =
I + Idc(t) + ∆Irf(t), which is the sum of the constant I , a component Idc(t) vary-
ing slowly compared to the small oscillation frequency and the microwave component
∆Irf(t) = Irf [cos (ωrf t)+i sin (ωrf t)]. Irf is the absolute amplitude of the alternating
current. Slow variations of Idc will result in a change of the energy scale of the system
and hence affect only the diagonal components of the Hamiltonian. Its non-diagonal
(coupling) matrix element can be reduced to be proportional just to the microwave
amplitude by applying the rotating wave approximation and is then given by [58]

W01 = 〈0|φ |1〉 Φ0

2π
Irf . (2.59)

If we assume that the potential is sufficiently harmonic for U(φ) . E1, the overlap
matrix element of the harmonic oscillator can be used, which is

〈0|ϕ |1〉 =
√

~
2 mω0

=
2π

Φ0

√
~

2 ω0 C
, (2.60)

where the effective mass of the virtual particle (2.15) has been inserted for m. We find
the Rabi frequency from equation (2.53), which reduces to

ωR =
|W01|
~

(2.61)

for the case of strong coupling and low damping (|W01| À |E0 − E1| À |~Γ/2|)
and a resonant (ωrf = ω01) stimulation. The strong coupling condition is preferred
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in experiments in order to obtain both large frequency and amplitude of the coherent
oscillation, which will then be less affected by detuning and decoherence. Finally, we
obtain

ωR =
Irf

~

√
~

2ω0 C
= η |〈0|ϕ |1〉| EJ

~
(2.62)

where we have defined η = Irf/Ic as the microwave amplitude normalized to the
critical current and we make use of the Josephson energy EJ = IcΦ0/(2π).

2.3.2 Energy-level repulsion

To discuss the modifications of the energy levels due to the coupling, we rewrite equa-
tion (2.43) for the energy eigenvalues:

E+ = Em +
√

E∆
2 + |W01|2

E− = Em −
√

E∆
2 + |W01|2,

(2.63)

Em =
1
2
(E0 + E1)

E∆ =
1
2
(E0 − E1)

(2.64)

where E0 and E1 are still the energies of the unperturbed states. For conditions where
these are equal (E∆ = 0), the most striking feature is that the coupling separates them
by the amount of 2|W01|. Figure 2.9 shows a plot of the eigenenergies. The asymptotes
to the eigenenergies for large E∆ are the unperturbed energies E0 and E1. This anti-
crossing of the energy levels has been observed in the tunable double-well potential
of a SQUID [7, 59] and was the first experimental proof of coherence for the phase
variable in a Josephson junction incorporated into a superconducting loop.

E+

E-

E0

E1

|W  |01

-|W  |01

E
∆

Energies

Figure 2.9: A plot of the eigenenergies of the states without coupling (E0 and E1)
and with non-diagonal coupling (E+ and E−) versus their energy difference E∆ =
(E0 − E1)/2.

In the case where the levels are separated but the coupling is weak (E∆ À |W01|,
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equation (2.63) can be approximated as

E± = Em ± E∆

(
1 +

1
2

∣∣∣∣
W01

E∆

∣∣∣∣
2

+ . . .

)
, (2.65)

showing that the effect on the energies is of second order in the coupling strength. In
contrast, for strong coupling or E∆ ¿ |W01|, we obtain

E± = Em ± |W01| (2.66)

which results in a more significant change of the eigenenergies since it is an effect of
first-order in |W01|.

2.3.3 Bloch-sphere description of the qubit state
The state of the quantum bit can be represented by a vector |Ψ〉 contained in the Hilbert
space which is spanned in the computational basis by the two logical states |0〉 and |1〉,

|Ψ〉 = a |0〉+ b |1〉 , (2.67)

where the square of the amplitudes |a|2 and |b|2 correspond to the probability to find
the qubit in state |0〉 or |1〉, respectively. Accordingly, these probabilities must sum
to one, leading to the normalization condition 〈Ψ|Ψ〉 = |a|2 + |b|2 = 1. While in
general a and b are complex numbers, it is only the absolute value of the coefficients
which is observable by a measurement of the qubit state, and therefore only the phase
difference between the coefficients remains to be considered. Together with the nor-
malization condition, the four dimensional configuration space therefore reduces to a
two dimensional subspace [60, 19].

It is instructive to illustrate the quantum state of a single qubit within the Bloch
vector picture. If the qubit remains in a pure state, that is, |a|2 + |b|2 = 1, then the
Bloch vector points to the surface of a unit sphere as shown in Fig. 2.10. The qubit
state is determined by the polar and azimuthal angels φ and θ according to

|Ψ〉 = cos (θ/2) |0〉+ ei φ sin (θ/2) |1〉 . (2.68)

The squared projection of the state vector to the ~z-axis, which is assumed to be the
quantization axis, gives the occupation probability of the two logical states, which for
the ground state reads p0 = cos2(θ/2). The precession around the ~z-axis at the Lar-
mor frequency ω10 arising from the energy difference between the two states is taken
into account conveniently by changing to the ω10-rotating frame. This implies that the
phase φ does not change as long as all external parameters remain constant.

Logical operations on qubits are also called quantum gates and correspond to trans-
formations of the state vector which must be unitary (and hence reversible) to ensure
that a pure state gets mapped to a pure state. In the Bloch picture, these single-qubit
operations correspond to rotations around the three axis ~x, ~y and ~z. A unitary rota-
tion operator R̂~n(α) defining a rotation around the unit vector ~n by an angle α can be
written with the use of the set of Pauli spin operators σ = {σ̂x, σ̂y, σ̂z} and reads

R̂~n(α) = exp
(
−i

α

2
~n · σ

)
(2.69)

= I cos(α/2)− i sin(α/2) ~n · σ, (2.70)
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where I denotes the unity operator. For example, the qubit is transferred from the
ground state |0〉 to the superposition state (|0〉+ |1〉) /

√
2 by rotating the Bloch vector

around the ~y-axis by an angle of π/2 with the matrix operator

R̂~y(π/2) =
(

cos (π/2) − sin (π/2)
sin (π/2) cos (π/2)

)
=

1√
2

(
1 −1
1 1

)
. (2.71)

This operation is therefore referred to as a ”π/2-pulse” in literature and has the same
effect as the Hadamard transformation3. Experimentally, rotating the Bloch vector
around the x̂− or ŷ−axis is possible via the discussed mechanism of Rabi oscillation
by applying a resonant perturbation. Another important single-qubit operation is the
NOT -gate which is defined by NOT |0〉 = |1〉 and NOT |1〉 = |0〉. It is obviously
realized by rotating the Bloch vector around θ = 180o by applying a π-pulse.

2.3.4 Decoherence
In the discussed approach of using the phase eigenstates of a superconducting tunnel
junction as a quantum bit, the two logical states are of different energies. This implies
that energy has to be interchanged with the environment to modify the angle θ. It has
been discussed in the previous chapters that this is possible either by dissipating energy

3In quantum information theory, for the Hadamard transformation one uses the idempotent matrix
1√
2

(
1 1
1 −1

)
rather than (2.71).

z
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θ

y

x

1>

0>

Figure 2.10: Bloch-sphere representation of the qubit state. The ground state |0〉 is
represented by a vector pointing to the north pole , the state |1〉 corresponds to a vector
pointing to the south pole and all equally weighted superpositions are found along the
equator for θ = π/2.
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or by an alternating bias current component near the transition frequency between the
levels. The Josephson junction is coupled to the enviroment mainly by the necessary
biasing wires. Noise currents flowing in these lines at frequencies close to the transition
frequency ω10 will therefore alter the occupation probabilities of the two levels by
processes similar to stimulated absorption and emission. It has been shown in [58]
that the probability p to measure the initially prepared state |0〉 or |1〉 would decay
exponentially in time to p → 0.5 if dissipation would be neglected, because noise-
induced emission as well as absorption occurs at an equal rate. In fact, dissipation
plays a major role and gives rise to the relaxation of an excited state to the ground state
following an exponential decay law with the mean lifetime Γd

−1 as defined in equation
(3.4).

Fluctuating currents at low frequencies result in changes of the transition frequency
according to Eq. (2.20). This has the effect that the state vector drifts from the rotating
frame, giving rise to a change of the phase φ of the Bloch vector. The probability that
a given state is not altered by dephasing decreases exponentially in time, and so it is
possible to define the dephasing rate Γφ. Although fluctuations in the phase φ do not
change the level population directly, they may alter the outcome of subsequent qubit
operations, because the result of any rotation around one of the three axis depends
on the direction of the Bloch vector. It is, for instance, obvious from Fig. 2.10 that
for θ = 0 or θ = π the quantum state is not altered by rotations around ~z, i.e. the
ground and the excited state will not be sensitive to low frequency noise. In turn, the
superposition state of the quantum bit is subject to modifications by current fluctuations
even without the need to interchange energy with the environment.
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Chapter 3

The flux-biased phase qubit

In this chapter, it will be discussed that the fidelity of directly current-biased phase
qubits suffers from two major decoherence sources: the strong coupling to the electrical
environment as given by the electrical wires connecting the junction, and the presence
of quasiparticles which are created in the readout process during which a switching to
the resistive state occurs. Both these problems are overcome when the junction bias
current is sent through a superconducting transformer, hereby enclosing the junction
in a superconducting loop and thus creating an rf-SQUID. After a brief review of the
rf-SQUID principles, the technique to operate it as a phase qubit will be explained.
The required ingredients for qubit bias and readout are discussed from the viewpoint
of the experimentalist, arriving at a presentation of the sample layouts and a discussion
of relevant parts of the measurement apparatus.

3.1 Qubit isolation

3.1.1 Dissipation in the environment

As it has been discussed in the preceding chapter, the two logical states of the phase
qubit are Josephson phase eigenstates of different energies. Dissipation of energy there-
fore causes relaxation of the excited state towards the stable ground state of lower en-
ergy, limiting the qubit coherence time T1.

One source of dissipation is the intrinsic subgap resistance Rsg of the junction di-
electric, which has been introduced within the frame of the RCSJ model discussed in
section 2.2.2. As it has been shown in Ref. [61], this resistance can be optimized by
an epitaxial growth of the junction base electrode, hereby creating an atomically flat
surface which after subsequent oxidation results in a smooth dielectric film. However,
in a directly current-biased junction, the dominant source of dissipation occurs in the
electrical environment. Any circuit connected to the junction will provide a complex
impedance Ze(ω) to the Josephson element which is defined as the ratio of the com-
plex amplitudes of the voltage response of the environment to the current oscillating
at frequency ω. The dissipative contributions from the external impedance Ze(ω) are
contained in its real part Re(ω) = Re[Ze(ω)]. The effective junction resistance arising
from the parallel shunt impedance is calculated from 1/Reff(ω) = 1/Rsg + 1/Re(ω).
This expression shows that an external impedance Ze which is large compared to the
impedance of the junction ZJ will reduce dissipation to the amount determined by the

27
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subgap resistance. By defining the reactive part of the junction impedance as [62]

ZJ =

√
L

C
=

1
ω0C

, (3.1)

hereby using the inductance L defined in Eq. (2.20), the junction remains isolated from
the environment response as long as |Ze(ω0)| À ZJ(ω0) at the frequency of the plasma
oscillations ω0. Because typical junction impedances of the order of ten ohms are com-
parable to these of biasing wires and on-chip transmission lines (∼ 100Ω), a significant
portion of loss may occur in these lines, resulting in enhanced damping and fast relax-
ation.

3.1.2 Relaxation rate
The life time of the excited state T1 is proportional to the effective resistance Reff . The
decay rate from the excited state to the ground state Γ01 ≡ 1/T1 can be calculated from
[57]

Γd =
2π(E1 − E0)

~
RQ

Reff
|〈0| ϕ

2π
|1〉|2

[
1 + coth

(
E1 − E0

2kBT

)]
(3.2)

with E1 − E0 being the energy separation between the states |1〉 and |0〉 and Rq =
h/4e2 being the resistance quantum. In the limit of low temperatures kBT ¿ E1, by
using the harmonic oscillator matrix element [58]

〈0|ϕ |1〉 = (2π/Φ0)
√
~/2ω10C, (3.3)

one obtains
Γd = 1/ ReffC. (3.4)

For a typical junction capacitance C of order 1 pF and an effective wire resistance
Reff ∼ 100Ω, the life time T1 ≡ Γ−1

d according to Eq. (3.4) is less than 1 ns, empha-
sizing the cruciality of special means to isolate the qubit junction from a low impedance
environment.

3.1.3 Inductive isolation
To avoid energy relaxation, the electrodynamic environment of the junction must be
carefully designed. One possibility is to isolate the qubit junction by means of an
inductive isolation network [63], which can be realized from on-chip capacitors and
superconducting inductors. The output impedance of a parallel LC-resonant filter at
working frequencies beyond its resonance frequency of 1/

√
LC grows with its induc-

tance L. Effective isolation therefore demands high values of both inductance and ca-
pacitance which accordingly consume large space on chip. By exploiting the Josephson
inductance of an additional junction which is connected in parallel to the smaller qubit
junction [10], the circuit can be kept small and the amount of isolation can furthermore
be adjusted in situ [64]. A disadvantage of this approach, beneath the additional sub-
gap resistance of the isolating junction, is that the qubit junction is still switching to a
resistive state during the readout process. In the non-zero voltage state, the potential
difference across the junction gives rise to generation of quasiparticles, which will per-
sist for some time after the junction is reset to the superconducting state. These quasi-
particles remain a source of decoherence because they provide normal current channels
effectively shunting the qubit and give rise to shot-noise and charge fluctuations [65].
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Above mentioned problems are avoided when the qubit junction is isolated from
the bias circuitry by means of a superconducting transformer [27]. We adopted this
approach in our experiments on phase qubits.

3.1.4 Isolation by impedance transformation
It has been suggested by J. Martinis et. al. [27] to send the current bias to the junc-
tion through a superconducting dc-flux transformer. This approach provides broadband
isolation, limits the generation of quasiparticles and can be realized in compact dimen-
sions.

L

M Z IbXC

a) b)

b
R
sg

L
Z Ibeff

M
L

Iq

Φq

XC R
sg

Figure 3.1: (a) Schematic of the transformer circuit. The qubit junction is embedded in
a superconducting loop of inductance L, which is coupled via a mutual inductance M
to the primary coil. This coil is connected by wires of low impedance Zb to the current
source. (b) Equivalent schematic of the transformer circuit. The junction remains
isolated from the environment by a large effective impedance Zeff .

The transformer is fabricated on-chip by placing two superconducting coils close
to each other. A schematic is shown in Fig. 3.1. The primary coil is connected to
the current source which generates a magnetic bias flux Φb proportional to the applied
current Ib. Since the two coils are coupled by the mutual inductance M , the secondary
coil receives a magnetic flux Φq = MIb which induces a current Iq flowing through
the qubit junction according to

Iq =
Φq

L
=

M

L
Ib. (3.5)

Here, L is the inductance of the secondary coil which will be referred to as the qubit
loop in the following.

Beneath the advantage that the qubit junction remains galvanically isolated from
the electronics, also the impedance of the bias wires Zb is transformed to an effective
value Zeff . For an ideal (non-dissipative) transformer, the output power Pq is equal to
the input power Pb,

Pq = I2
q Zeff = Pb = I2

b Zb. (3.6)

This results in an impedance transformation of

Zeff =
(

L

M

)2

Zb, (3.7)

where Eq. (3.5) has been used to find Iq/Ib = M/L. Assuming a practical ratio
L/M ≈ 100, the wire impedance Z ≈ 100Ω is stepped up to Zeff ≈ 1 MΩ.

In addition, generation of quasiparticles is effectively reduced in this approach be-
cause the dc voltage across the junction remains zero all the time due to the supercon-
ducting short. This not only increases the coherence time but also renders an idle time
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after each measurement unnecessary, which is otherwise essential to allow unpaired
electrons to recondense into Cooper pairs.

3.2 rf-SQUID principles
By embedding the junction in the superconducting loop, the circuit becomes an rf-
SQUID [8, 9]. In this section, the principles of the rf-SQUID are reviewed.

3.2.1 Potential energy
Flux quantization links the total flux Φq in the rf-SQUID loop to the phase drop ϕ
across the junction [8],

ϕ +
2πΦq

Φ0
= 2πn, (3.8)

where n is an integer. From this equation, the phase-flux relation

ϕ = −2πΦq

Φ0
, (3.9)

is deduced for n = 0. The Josephson phase ϕ is in turn related by the first Josephson
equation (2.6) to the supercurrent flowing in the loop, which using Eq. (3.9) reads

Iq = −Ic sin(2πΦq/Φ0). (3.10)

Due to the loop inductance L, this current Iq generates a magnetic flux which adds up
to an externally applied flux Φext. The resulting total flux threading the qubit loop Φq

is therefore
Φq = Φext + LIq = Φext − LIc sin(2πΦq/Φ0). (3.11)

In Figure 3.2, Φq given by Eq. (3.11) is plotted for different values of the parameter
βL ≡ 2πLIc/Φ0. For βL > 1, the flux in the loop Φq is multivalued in some regions
of the external flux Φext, which causes Φq to switch in a hysteretic manner between
flux states when the external magnetic flux is varied. This behavior was first observed
experimentally in the year 1967 by Silver and Zimmermann [66]. The plot of the loop
current versus the external flux shown in Fig. 3.2 (b) reveals that the switching between
flux states is related to a reversal of the circulation direction of the loop current, while
its amplitude is always smaller than the critical current of the junction.

The potential energy of the rf-SQUID is the sum of the junction energy given in
Eq. (2.16) and the magnetic energy LI2

q /2 which is stored in the loop inductance L.
Rewriting Eq. (3.11) to obtain the circulating current in the form Iq = (Φq −Φext)/L,
we arrive at the rf-SQUID potential

U(ϕ) = EJ

[
1− cos ϕ +

(ϕ− 2πΦext/Φ0)2

2βL

]
, (3.12)

using the Josephson energy EJ = ~IC/2e. This potential has the form of a parabola
centered at ϕ0 = 2πΦext/Φ0 and modulated by a cosine. As it is shown in Fig. 3.3,
for larges values of βL the potential has many minima, while for βL < 1 only a single
minimum exists. Each minimum corresponds to a certain number of flux quanta in the
loop, and accordingly, the mentioned switching between flux states is associated with
a transition between the wells.
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Figure 3.2: (a) Total magnetic flux in the qubit loop Φq/Φ0 versus the externally ap-
plied flux Φext/Φ0 for different values of the parameter βL. The switching between
flux states is indicated by arrows. (b) Dependence of the current Iq/Ic circulating in
the loop on the externally applied flux Φext/Φ0 for different values of the parameter
βL.

Aiming at operating the rf-SQUID as a phase qubit, for a given junction critical
current the loop inductance is designed such that 1 < βL < 4.6. This results in a
potential that has not more than two minima for all values of externally applied flux
and one single minimum for Φext ≈ 0. If βL is larger than 4.6, it is still possible to
operate the rf-SQUID as a phase qubit, but in this case more than one minima exist in
the potential at all values of external flux, and therefore it becomes more difficult to
initialize the flux state of the qubit in a certain well.

By changing the external magnetic flux Φext, the double well potential appears
to be tilted as plotted in Fig. 3.4 (a). This allows to adjust the depth of the potential
wells in situ. Analogously to the critical current Ic of a biased Josephson junction,
for the rf-SQUID there exists a critical flux Φc where the potential barrier between the
shallow and the deep well vanishes. Its value can be found from the condition that
the inflection point of the potential coincides with the position of the minimum of the
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Figure 3.3: Potential of the rf-SQUID for several values of the βL-parameter at an
external magnetic flux of Φext = Φ0/2.

shallow well [67]. While the extrema of the potential Eq. (3.12) are located at ϕ given
by

ϕ− 2πΦext/Φ0

βL
= − sin ϕ, (3.13)

the inflection point which satisfies U ′′(ϕ) = 0 is located at ϕc, for which

cosϕc = −1/βL (3.14)

independently of the external flux Φext. Inserting the solution for ϕc into Eq. (3.13)
results in the critical flux for a two-well potential [67]:

Φc = π/2 +
√

β2
L − 1 + arcsin(1/βL). (3.15)

Cubic approximation

For phase qubit operation, one potential well is made very shallow by adjusting the
flux bias close to the critical flux such that 0 < Φc − Φext ¿ Φc. In this case, a cubic
approximation of the potential can be used [67] to obtain analytic expressions for the
potential parameters. For a parameter ε = 2(Φc − Φext)/

√
β2

L − 1 ¿ 1, the barrier
height is

∆U =
2
3
EJ ε3/2

√
1− β−2

L . (3.16)

The small oscillation frequency ω0 in the shallow potential well, obtained according
to Eq. (2.19) from the curvature of the approximated potential and the effective mass
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Figure 3.4: (a) Potential for different external magnetic fluxes (each curve is offset by
ϕ=6 for better visibility). (b) Zoom into the shallow well showing the discrete energy
levels and the wave functions of the corresponding quantum states.

given by Eq. (2.15), is

ω0 = ε1/4(1− β−2
L )1/4

√
EJ/m. (3.17)

Fig. 3.5 (a) shows the external flux dependence of the small oscillation frequency as
calculated by the approximation Eq. (3.17) as well as an exact solution obtained from
the curvature of the potential at the minimum according to Eq. (2.18).

Using these formulas, a good estimate of the number of levels in a shallow well is

N ≈ ∆U

~ω0
=

2
3~

ε5/4(1− β−2
L )1/4

√
mEJ , (3.18)

which is plotted in Fig. 3.5 (c). Depending on the junction parameters, the deep right
potential well contains several hundred states.

3.2.2 Energy levels
The positions of the energy levels En inside the shallow well are calculated from a
solution to the stationary Schrödinger equation

H |Ψ〉 = E |Ψ〉 (3.19)

with the Hamiltonian

H =
p̂2

2m
+ U(ϕ), (3.20)

where p̂ = −i~(δ/δϕ) is the momentum operator. By dividing the parameter space ϕ
into K steps, equally separated by a distance d, the wavefunction Ψ(xj) is discretized
to the positions xj = jd with j = 0...K − 1. Tunneling to the deep well is neglected
by employing the boundary conditions Ψ(x0) = Ψ(xK−1) = 0 and restricting the
parameter space to the shallow potential well. The upper interval limit is therefore
chosen to be at the maximum of the potential barrier, which gives equal results as the
frequently used truncated modified potential [68].
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Figure 3.5: (a) Solid line: Transition frequency between the ground and first excited
states, calculated numerically from the stationary Schrödinger equation. Dashed line:
Approximation to the small oscillation frequency as given in Eq. (3.17). Dotted line:
small oscillation frequency calculated from the curvature of the exact potential. (b)
Difference in transition frequencies ω10 and ω21. (c) Approximated number of levels
in the shallow potential well, Eq. (3.18). Parameters of sample UCSB-SiN.

By approximating the second derivative δ2Ψ/δϕ2 as

δ2Ψ
δϕ2

≈ 1
d2

(Ψ(xj−1 − 2Ψ(xj + Ψ(xj+1)) , (3.21)

Eq. (3.19) is evaluated at each point xj . This results in a set of K − 1 linear equations
which are written as a matrix equation. Applying standard numerical algorithms, the
position of the nth energy levels En as well as the corresponding wavefunction Ψn

result as the nth eigenvalue and eigenfunction, respectively, of the matrix. In Fig. 3.4
(b), the resulting wavefunctions of such a calculation are shown, for comparison using
qubit parameters as stated in Ref. [68] of C = 0.85 pF, L = 720 pH, Ic = 1.7µA and
an external flux of Φext = 0.845Φ0. For the same parameters, Fig. 3.5 (a) shows the
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dependence of the transition frequency ω10 = (E1)− (E0)/~ between the ground and
first excited states. As it is expected, the transition frequencies between the computed
eigenstates are smaller than the oscillation frequencies of the harmonic approximation
to the potential well.

In Fig. 3.5 (b), the difference between the transition frequencies ω10 and ω21 is
plotted, showing that the anharmonicity of the potential well increases as the external
flux approaches the critical flux Φc.

3.2.3 Escape rates
Inter-well transitions occur from a shallow well to a neighboring deeper well by similar
mechanisms as discussed for the current-biased Josephson junction, namely quantum
tunneling and thermal activation. In contrast to the biased junction, beyond the poten-
tial barrier there exists not a continuum but a large number of discrete states. If two
states confined in the left and right potential well have the same energy such that the
levels align, tunneling occurs at an enhanced rate. This process is called resonant tun-
neling and has been firstly observed experimentally by Lukens et. al. [69]. Neglecting
resonant tunneling, the quantum tunnel rate Γn from energy level n can be calculated
using the semiclassical Wentzel-Kramers-Brillouin (WKB) approximation,

Γn ≈ ω0

2π
fn exp(−iSn/~). (3.22)

Here,

Sn =
∫ ϕ2

ϕ1

√
2m[U(ϕ)− En] dϕ (3.23)

is the effective action evaluated between the classical turning points ϕ1 and ϕ2 at the
energy En = (n + 1/2)~ω0 of state n = {0, 1, ...}. The numerical factor fn is given
by [70]

fn =
√

2π

n!

(
n + 1/2

e

)n+1/2

(3.24)

and provides a very small correction to the reduced attempt frequency in an anharmonic
potential well. The total tunneling rate follows from the sum over all levels weighted
by their population probability pn according to Boltzmann’s distribution

Γ =
∞∑

n=0

pnΓn, pn =
exp(−En/kBT )∑∞

n=0 exp(−En/kBT )
, (3.25)

where T is temperature.
In Fig. 3.6 (a), the result of a numerical calculation of the tunnel rate Eq. (3.22) is

presented for the ground n = 0, p0 = 1 and the excited state n = 1, p1 = 1. Addi-
tionally shown is a calculation using the analytical approximation of the WKB tunnel
rate for low damping Eq. (2.31) and the cubic approximation to the small oscillation
frequency and barrier height, Eqs. (3.17) and (3.16). While in the logarithmic plot the
numerical and approximated results are hardly distinguishable, Fig. 3.6 (b) reveals that
they may differ by up to about 100 kHz. Figure 3.6 (c) contains a plot of the ratio
Γ1/Γ0. The more exact numerical result shows a stronger dependence of this ratio on
the external flux but differs not more than a factor of about 2 from the result obtained
using the cubic approximation even at low external flux. Closer to the critical flux
above Φext/Φc ≈ 0.975, the tunnel rates from ground and excited states differ by a
factor of less than 1000.
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Figure 3.6: (a) Rates of quantum tunneling from the ground state and the first excited
state in an rf-SQUID. Solid lines are computed numerically and dashed lines are ob-
tained using the cubic approximation. (b) Difference between numerical and approxi-
mated results for the ground state rate Γ0 (solid line) and the excited state Γ1 (dashed
line). (c) Ratio of the tunnel rates Γ1/Γ0, calculated numerically (solid line) and using
the cubic approximation (dashed line). Sample parameters were Ic = 1.7 µA, L = 0.72
nH and C = 0.7 pF for comparability to [68] and are similar to sample UCSB-SiN.
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3.3 Qubit operation
The operation of the single junction interferometer as a phase qubit is accomplished
by applying a flux bias sequence composed of dc- and microwave frequency signals as
illustrated in Fig. 3.7. In this section, an overview of the necessary steps is given, while
qubit measurement and flux state readout are discussed in more detail in Sec. 4.3 and
Sec. 3.4, respectively.
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Figure 3.7: Top: Timing profile of the magnetic flux bias Φq applied to the qubit.
Bottom: Bias current sent to the readout SQUID.

I) Initialization. To initialize the qubit, its flux state is reset to a defined value and
its phase state to the one of lowest energy in the corresponding potential well.
Given that the parameter βL < 4.6, it suffices to switch the applied magnetic
flux to zero such that only a single potential well remains. Keeping this flux
level for a time much larger than the energy relaxation time T1 ensures that the
qubit is initialized in the ground state |0〉. For larger values of βL > 4.6 there
exist always more than one potential minima. Initialization in a certain well in
this case is still possible by using the so-called ’shaker’ technique [71], in which
an oscillating external flux is applied to induce escape from all potential wells of
higher energy towards the global minimum.

II) Preparation. The external flux Φq is adjusted adiabatically to a value near the
critical flux Φc to make the potential well in which the phase is confined very
shallow. While the exact value of Φq can be chosen to result in the desired
energy difference between the two qubit states, it underlies two limitations. On
the one hand, it must not be too large such that the first excited state does not
escape from the shallow well during the qubit operation. On the other hand, a
smaller value of Φc results in a deeper potential well which is more harmonic, i.e.
the transition frequencies between neighboring states are less distinct from each
other. The external flux must hence be large enough to result in a potential well
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of sufficient anharmonicity, ensuring that higher excited states are not populated
by a microwave tuned to the |0〉 to |1〉 transition frequency.

III) Qubit operation. After the external flux has reached the working point, logi-
cal qubit operations are performed by a sequence of dc-currents and resonant
microwave pulses. Since microwave pulses of frequency ωµw = E1 − E0/~
change the individual state population undergoing Rabi oscillation, they can be
used to realize the Haddamard transformation and the logical NOT gate. A dc-
pulse can be used to implement the phase gate by introducing a small detuning
which changes the Larmor frequency and hence the precession velocity of the
Bloch vector.

IV) Qubit measurement. After sending the microwave pulse, a short but still adia-
batic dc-flux pulse is applied which raises the excited state close to the top of
the potential barrier. It is possible to adjust the amplitude and duration of this
measurement pulse such that only the excited state tunnels to the deep right well,
whereas the ground state remains in the shallow left well. Thereby, the phase
eigenstates |0〉 and |1〉 are mapped to macroscopically distinct flux states in the
shallow and deep wells, respectively. This technique [34] allows to distinguish
the phase eigenstates with a fidelity [68] close to 100 %.

IV) State readout. After application of the measurement dc-pulse, the applied mag-
netic flux is reduced, hereby increasing the barrier height separating the two
wells in order to avoid further inter-well transitions. Whether the qubit is now
in the left or right well is determined by measuring the corresponding magnetic
field in the qubit loop by means of an inductively coupled dc-SQUID.

3.4 Readout
Several methods can be used to measure the flux state of the phase qubit. One of them
[72] directly determines the circulation direction of the loop current by a measurement
of the critical current of an additional junction incorporated in the loop. Less invasive
techniques are based on a measurement of the flux generated from the loop current by
using an inductively coupled dc-SQUID. In this section, the circuit design requirements
for the widely used method of flux detection by a switching-current measurement of
the dc-SQUID are discussed. Beyond that, the principles of a dispersive readout based
on a measurement of the dc-SQUID inductance are presented as an outlook.

3.4.1 Principles of the dc-SQUID
A dc-SQUID consists of two Josephson junctions embedded in a superconducting
loop [8, 9] as shown in Fig. (3.8).

From the flux quantization condition, the relation between the phase differences
across the two junctions ϕ1 and ϕ2 is found as

ϕ1 − ϕ2 =
2π

Φ0
Φsq =

2π

Φ0
(Φa + LJ), (3.26)

where the flux in the dc-SQUID loop Φsq has contributions from the externally applied
flux Φa and the flux generated from the current J circulating in the loop of inductance
Lsq= L1 +L2. An applied bias current Ib distributes among junctions 1 and 2 equally,



39 3.4. READOUT

L

XC

Ib

Φsq

I
C,22

2L

X CI
C,1 1

1
J

Figure 3.8: Schematic of the dc-
SQUID.

such that I1 = Ib/2 + J and I2 = Ib/2 − J . Using Kirchhoff’s law and the first
Josephson equation (2.6) as in the RCSJ model, we obtain two equations

I1 = Ic,1 sin ϕ1 +
Φ0

2π
C1ϕ̈1 (3.27)

I2 = Ic,2 sin ϕ2 +
Φ0

2π
C2ϕ̈2

which are linked by Eq. (3.26). Here, Ic,1 and Ic,2 are the junction critical currents, C1

and C2 are their capacitances and an infinite junction resistance (which corresponds
to zero damping) has been assumed. These equations can be solved graphically [73]
or numerically for the flux dependence of the maximum supercurrent Ic,sq through
the dc-SQUID. In the simplified case of identical junctions Ic,1 = Ic,0 = I0, equal
inductances L1 = L2 and small loop inductance βL,SQ = 2π LsqI0/Φ0 ¿ 1, the
critical current depends on the applied flux as

Ic,sq = 2I0 ·
∣∣∣∣cos

(
π

Φsq

Φ0

)∣∣∣∣ . (3.28)

The modulation depth of the critical current is reduced for nonzero values of βL,SQ.
At βL,SQ = π the minimal critical current is 50 % of Ic,sq, for larger βL,SQ À π the
modulation depth decreases as π/βL,SQ [9].

The equations of motion (3.27) define the dc-SQUID potential, which is two-
dimensional in the two degrees of freedom ϕ1 and ϕ2. Assuming identical junctions
Ic,1 = Ic,0 = I0, equal inductances L1 = L2 and transforming to new coordinates
x = (ϕ1 + ϕ2)/2 and y = (ϕ1 − ϕ2)/2, the potential for the symmetric dc-SQUID is

Udc(x, y) =
Φ0I0

π

[
− Ib

2I0
x− cos x cos y + β−1

L,SQ

(
y − πΦa

Φ0

)2
]

(3.29)

For small loop inductance βL,SQ << 1, the parabolic modulation in the y direction is
very steep, restricting the motion of the virtual particle to an one-dimensional wash-
board potential. For large βL,SQ > 1, the potential has a series of wells of different
depths in which the SQUID can be trapped, giving rise to degeneration of the zero-
voltage state. Increasing the bias current Ib tilts the potential in the direction of x,
and the phase escape from a well to the running state occurs along a trajectory that
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connects the minimum of the well with the lowest saddle point in the vicinity. For a
certain zero-voltage state, the critical current Ic,sq can be found from a potential anal-
ysis by imposing the constraint that at Ib = Ic,sq the minimum of one well coincides
with a neighboring saddle point [74]. Any asymmetry in either the critical current of the
two junctions or the inductances between the two branches results in a shift of the flux
value where the critical current of the SQUID is maximum [75]. Experimental data of
the mean switching current dependence on external flux, obtained from an asymmetric
dc-SQUID of βL,SQ ≈ 25 and critical current Ic,sq ≈ 21.8µA, is shown in Fig. 3.9.
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Figure 3.9: Switching currents vs. magnetic bias flux for an asymmetric and large in-
ductance dc-SQUID. The grey scale reflects the switching probability, increasing from
white to black. At a given bias flux, several peaks in the switching-current distribu-
tion reflect the degeneracy of the zero-voltage state in the two dimensional washboard
potential. Sample: Hyp100.

During operation of the phase qubit, the bias current of the dc-SQUID is set to a
value that minimizes the coupling between the dc-SQUID’s degree of freedom and the
flux that it receives from the qubit [76]. For example, a symmetric dc-SQUID of low
inductance βL,SQ < 1 can be described by a single degree of freedom ϕsq, which is
related to its bias current by the Josephson relation

Isq = Ic,sq sin ϕsq = 2I0 ·
∣∣∣∣cos

(
π

Φsq

Φ0

)∣∣∣∣ sin ϕsq, (3.30)

where Eq. 3.28 is used. Solving this equation for ϕsq results in

ϕsq = sin−1

[
Isq

2I0

∣∣∣∣cos
(

π
Φsq

Φ0

)∣∣∣∣
−1

]
, (3.31)
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which shows that for zero bias current Isq = 0 the dc-SQUID phase ϕsq is not cor-
related to the external flux Φsq and hence the dc SQUID remains isolated from the
qubit.

3.4.2 Switching-current readout
As it was described before, after the logical qubit operations its phase eigenstates are
projected into separate wells of the qubit potential which differ by one flux quantum
in the qubit loop. In this section, I describe design requirements and methods of data
evaluation which allow to detect this flux signal by switching-current measurements on
a readout dc-SQUID.
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Figure 3.10: Schematic of the phase qubit
system. The coil in the left part of the fig-
ure provides bias magnetic flux Φq to the
qubit. The junction in the qubit loop is ca-
pacitively coupled to a microwave source
for resonant qubit control. The dc-SQUID
is coupled to the qubit loop by the mutual
inductance MR to read out the qubit flux
state by a switching-current measurement.

Fig. 3.10 shows that the readout dc-SQUID is coupled by the mutual inductance
MR to the qubit loop. The flux signal that must be detectable is

∆Φsq = MR∆Iq ≈ MR

L
Φ0, (3.32)

where ∆Iq ≈ Ic (see Fig. 3.2) is the change of the circulating current associated to a
change of the qubit potential well. For the reasons discussed in section 3.1.4, sufficient
qubit isolation requires the ratio MR/L to be ≈ 10−2, which limits the flux signal
∆Φsq to the order of 10 mΦ0. The method to detect this small flux change is based on
the magnetic field dependence of the dc-SQUID critical current Ic,sq, which is periodic
in Φ0 as discussed in the preceding section.

The most direct way to determine Ic,sq is to record the statistical probability distri-
bution P (Ib) of bias currents Isw at which the SQUID switches to the non-zero voltage
state. In a widely used method [77], a linear current ramp dIb/dt is used, in which case
the switching-current histogram takes the form

P (Ib) = Γ(Ib,Φa)
(

dIb

dt

)−1
(

1−
∫ I

0

P (I ′) dI ′
)

. (3.33)

Here, Γ(Ib,Φa) is the escape rate from the superconducting state which depends ex-
ponentially on the critical current Ic,sq and thus on the flux in the dc-SQUID Φa. The
result of a numerical calculation of the histogram Eq. (3.33), using the quantum tunnel
rate Eq. (2.31), is shown in Fig. 3.11 (a).

In order to detect flux changes, a practically useful observable is the mean switch-
ing current 〈Isw〉, which directly relates to the SQUID critical current. The statistical
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spread σ (the standard deviation which is also the width of the probability distribution
histogram P (Ib)) originates in the probabilistic nature of the switching process, and
has contributions from quantum, thermal and bias current fluctuations [78].
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Figure 3.11: (a) Switching current distributions P (Isw) for a single small Josephson
junction of 1 µA critical current with capacitances of C=1 pF (left histogram) and C=4
pF (right histogram). The corresponding mean switching currents are indicated by ver-
tical dashed lines, and the standard deviations σ by horizontal lines at half the histogram
height. (b) Dependence of the histogram width σ (left axis) and mean switching cur-
rent (right axis). Both plots are calculated from the quantum tunnel rate Eq. (2.31) and
a ramp rate of 1 mA/s.

Single-shot readout

In order to distinguish the two qubit flux states |L〉 and |R〉 at maximum contrast, the
histograms P (Ib) corresponding to these states must not overlap. If this criterium is
fulfilled, it becomes possible to determine by a single switching current measurement
whether the qubit was in the left or right well. This so-called single shot readout re-
quires the flux difference ∆Φsq to result in a shift of the mean switching current ∆Isw

which is at least about four times larger than the standard deviation (see Fig. 3.12).
Using Eq. (3.32), the single-shot criterium can be written as

∆Isw =
MR

L

∂Isw

∂Φa
& 4σ, (3.34)

In this formula, ∂Isw/∂Φa is the change of the mean switching current with flux in
the dc-SQUID, which depends on the working point and is zero at the maximum of
the Ic,sq(Φa) relation. Large values of βL,SQ, which may be necessary to achieve the
required mutual inductance MR, reduce the modulation of the mean switching current
as discussed in the previous section.

The mutual inductance mediates dissipation in the dc-SQUID and generates back-
action to the qubit. While the back-action scales as M2

R/LLsq, dissipation in the qubit
is proportional to the inverse effective dc-SQUID damping impedance Z−1

sq , which is
transformed to the qubit via Z−1 = Z−1

sq (MR/L)2. A detailed discussion of decoher-
ence effects due to coupling to the readout SQUID is given in Ref. [76].
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ulated switching current
histograms, correspond-
ing to the states |L〉 and
|R〉, respectively. In this
example, the shift of the
mean switching current
∆Isw is much larger than
the standard deviation σ,
which allows for single-
shot readout.

To fulfil the criterium Eq. (3.34) also at lower MR, one possibility is to reduce the
histogram width σ by means of additional shunt capacitors to the dc-SQUID junctions,
which is a frequently used method in experiments on flux qubits [79]. In Fig. 3.11 (b),
it is shown how standard deviation and mean value of the switching current distribu-
tion change with additional shunt capacitances, calculated for a small junction in the
quantum tunneling regime. In contrast, if the escape process is dominated by thermal
escape over the barrier, higher capacitances result in a small increase of σ. The reason
for this behavior is that in the thermal activation rate Eq. (2.29) the capacitance (which
is contained in the small oscillation frequency ω0) appears only in the preexponential
factor.

An other option towards obtaining higher readout contrast is to increase ∂Isw/∂Φa

by using an asymmetric dc-SQUID and setting the working point on the steeper slope
of the Ic,sq(Φa) dependence [9]. An asymmetric dc-SQUID has furthermore the ad-
vantage that the maximum of its critical current is shifted from zero flux, and therefore
no SQUID bias flux is required to move the working point away from the maximum.

A minor improvement in the qubit flux signal is obtainable by designing the qubit
with a larger βL-parameter, which as mentioned may bring qubit initialization difficul-
ties along. The difference in flux between two qubit states corresponding to neighbor-
ing potential wells approaches one flux quantum only for larger βL parameters. This
can be seen for example by comparing the distance between two minima in the plot of
the qubit potential vs. external flux, Fig. 3.3. For smaller βL, the minima move closer
together due to the stronger quadratic modulation of the potential, reducing the qubit
signal. For the quoted practical value of βL = 4.6, this flux difference is about 0.9 Φ0,
and increases by 4% at βL = 7.

Data evaluation

The standard method to calculate the probability that the qubit is in a flux state corre-
sponding to the right potential well is to introduce a threshold value Itresh of switching
current, as indicated in Fig. 3.13, and relating N(Isw > Itresh), the number of counts
above this threshold, to the total number of events N :

P (|R〉) =
N(Isw > Itresh)

N
. (3.35)
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Figure 3.13: (a) Switching current distributions which are broadened due to thermal
activation. Left and right histograms correspond to the qubit being in state |R〉 and |L〉,
respectively. The smaller histogram corresponds to equal probability of the two states.
Dashed lines are polynomial fits. (b) The probability to measure the state |R〉 versus
externally applied flux. The blue dotted curve is calculated using the standard method,
resulting in a maximum contrast of 70%. The red solid curve has been obtained from
weighted fits to the histograms, and reconstructs the two states with 100% contrast.

If the two histograms are not completely separated, switching current events in the
region of histogram overlap can not be attributed to one or the other state, and loss of
contrast occurs. This is shown in Fig. 3.13 (b) as the dashed curve calculated according
to Eq. (3.35).

In practical qubit measurements, statistics about the state population are always
acquired because of the probabilistic nature of quantum mechanics. A single shot
measurement is therefore not necessary as long as it is still possible to reconstruct the
individual state contribution from the statistical data set.

Our method to reconstruct the qubit state population from overlapping histograms
beyond the single shot limit is the following. The qubit is first prepared in state |L〉,
recording the switching current probability histogram P (I) generated by only this
state. This histogram is fitted to an arbitrary function fL(I). For simplicity, we are us-
ing a 10 degree polynomial truncated between minimal and maximal measured switch-
ing currents as the fitting function. Fitting to a physically correct distribution, which
is an integral function of the exponential escape rate, would require more computing
time and an adaption of the model depending on the sample. The same procedure is
repeated on a histogram obtained from measurements of a qubit prepared purely in the
state |R〉, obtaining the fitting function fR(I). All further histograms are then fitted to
the function

P (I) = P (|1〉) fR(I) + [1− P (|1〉)] fL(I), (3.36)

hereby obtaining P (|1〉), the population of the excited qubit state |1〉, as the only fitting
paramter.

In Fig. 3.13 (a), histograms of the qubit prepared in state |L〉, |R〉 and in a superpo-
sition state are shown together with the fitting functions drawn as dashed lines. Figure
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3.13 (b) demonstrates that the excited qubit state population P (|1〉) calculated by this
procedure recovers full contrast.

An advanced application of this data evaluation method considers multi-qubit cir-
cuits. After completion of a quantum algorithm, each qubit state must be read out. The
number of necessary readout SQUIDs can be reduced by coupling more than one qubit
inductively to one single dc-SQUID and employing the fitting procedure to reconstruct
the individual qubit flux states. The qubit signals generate a flux in the dc-SQUID of

Φsq =
∑

i

MiIc,i(−1)si, (3.37)

where si ∈ {0, 1} is the state of qubit i and Mi is the mutual inductance between
qubit i and the dc-SQUID. A simple calculation shows that for two qubits the relative
difference between M2 and M1 must be a factor of two to be able to distinguish the
four possible states. Since our method allows to reduce the coupling strength to the
dc-SQUID for all qubits by a factor of about 1/2, no further decoherence is expected.
The possibility to use the bias-current dependent Josephson inductance of a dc-SQUID
to control the coupling strength between two flux qubits has already been shown exper-
imentally [80]. Using the same dc-SQUID both as a controllable coupler and readout
device is appealing to simplify scaling up of Josephson qubit circuits towards a multi-
qubit quantum processor.

3.5 Sample design
Experiments were carried out using samples of different origins and materials. Our
own sample designs were submitted for fabrication to VTT Research Facility [81]
and the commercial foundry Hypres Inc. [14]. Although the circuit specifications for
the offered standard niobium-based optical lithography were limited to relatively large
Josephson junction sizes and silicon-oxide as a dielectric, we successfully managed to
operate these samples in the quantum coherent regime.

3.5.1 Niobium - SiOx - based standard fabrication processes

The layout of a phase qubit circuit compatible with the Hypres foundry fabrication
process of 30 A/cm2 current density is shown in Fig. 3.14. It is very similar to a
design originally suggested by Simmonds et al. [27]. The qubit Josephson junction is
embedded in a rectangular two-turn loop of size ≈ 70x70 µm2 to form the rf-SQUID.
The size of the loop was chosen to result in a suitable βL-parameter determined by the
critical current of the smallest manufacturable junction. Loop and mutual inductances
were calculated using FastHenry [82].

The microwave transmission line is patterned in coplanar configuration as a 6 µm
wide central conductor separated from the ground planes by 4 µm, resulting for a
Si substrate with ε = 11.9 in an impedance of ≈ 50 Ω. Ground and inner conduc-
tors are connected via a dc-break capacitively to top and bottom electrodes of the
qubit junction. According to computer simulations, the size of the dc-break capac-
itors were designed to result in an attenuation of 20 dB at 10 GHz. Small pads of
non-superconducting metal (Ti/Pd/Au) are connected to the junctions of both qubit and
readout SQUID, working as traps for quasiparticles [65].
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Figure 3.14: Design of sample Hyp30 for the 30 A/cm2 Hypres process.

The size and position of the readout dc-SQUID loop were chosen to result in a
sufficiently large mutual inductance, typically about 10 pH, to allow detection of the
qubit flux state in a single-shot measurement, as discussed in Sec. 3.4.2. The bias and
voltage lines are connected symmetrically to the dc-SQUID loop such that an applied
bias current would divide equally between the two branches if their inductances were
equal. In this case, no net magnetic flux is generated in the qubit loop and the qubit
remains protected from fluctuations in the dc-SQUID bias current. To keep this advan-
tage for an asymmetric dc-SQUID, in one branch of the dc-SQUID a single junction is
placed, while the other branch contains a series combination of two junctions of twice
the critical current each [27]. Since the Josephson inductance Eq. (2.11) is inversely
proportional to the critical current, a series combination of two junctions has the same
inductance as a single smaller junction of half the critical current. Thus, as long as no
bias current is applied, the SQUID remains symmetric.

The coil to apply bias flux to the qubit is designed gradiometrically in the form of
an ’8’, so that the current will flow as indicated by the arrows in Fig. 3.14. The read-
out dc-SQUID is placed symmetrically with respect to this biasing coil such that the
flux received from each half of the ’8’-shaped coil is of same magnitude but opposite
direction. This cancels changes of the dc-SQUID operation point when the qubit flux
is varied.

The mutual inductance Mqb between qubit and flux bias coil was chosen to be
Mqb ≈ 2 pH, such that a coil current of 1 mA results in an induced qubit flux of
about one Φ0. Although a smaller mutual inductance would increase qubit isolation,
it is impractical to apply larger currents to on-chip coils due to the risk of heating
the sample. While the risk of exceeding the critical current of thin superconducting
films is limited by designing the flux line with a larger width, heating in the non-
superconducting wire sections which are thermally anchored to the mixing chamber
may be strong enough to increase the reachable base temperature by tens of milikelvin.
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The dissipated power grows quadratically with the applied current. Furthermore, if
contact resistances were present in the Aluminum bonds, heating would occur directly
on the sample chip [60].

bottom layer
top  layer

junction
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bonding pad

microwave line qubit
readout

dc-SQUID

flux bias

         coil

100 µm

Figure 3.15: Design of sample VTT30 for the 30 A/cm2 VTT process.

Gradiometric design

Fluctuations of the magnetic field experienced by the qubit may constitute a relevant
source of decoherence. They give rise to a low-frequency fluctuation of the energy level
separation, resulting in dephasing. Since the qubit loop must be made large enough to
obtain the required inductance, this device is more sensitive to field fluctuations than
flux qubits, in which the geometric inductance is replaced by the Josephson inductance
of additional junctions [59, 11, 83]. The fluctuations can be due to vibrational motion
of the sample in the background (earth) magnetic field, or can be generated by ac power
lines and vacuum pumps in the vicinity of the sample.

A geometric solution to this problem is to redesign the phase qubit system with
gradiometric coils. Figure 3.16 shows an improved layout, in which the rf-SQUID
inductance is drawn in the shape of an ’8’, which can be seen as a single coil whose
opposite halves are twisted by 180o. A homogenous external field will not induce any
screening currents in such a coil since the current driving force is opposite in each
of its two halves which will hence cancel each other. To be able to read out the flux
inside this twisted loop, the dc-SQUID (seen as the smaller ’8’-shaped structure to
the right of the qubit) was also designed in a gradiometric configuration. This has the
additional advantage of immunity to background field fluctuations also for the readout
SQUID. The wires to current-bias the dc-SQUID are connected in the middle of the ’8’-
shape, where bottom and top metalization layers overlap. By visualizing the direction
of the bias current flow in the dc-SQUID, one can see that current fluctuations of equal
amplitude in both branches will not affect the qubit. In contrast to the non-gradiometric
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Figure 3.16: Design of sample Hyp30Grad for the 30 A/cm2 Hypres process.

design, to keep the layout symmetric, the microwave line is here coupled inductively
rather than capacitively to the qubit loop, while the coupling strength is reduced by
about 10 dB to ≈ -30 dB (as estimated by computer simulation) to increase isolation
of the qubit.

3.5.2 Sample parameters and nomenclature
Most of the experiments presented in this thesis were performed using samples fabri-
cated at Hypres foundry in standard Nb/Al/AlOx/Nb trilayer processes using silicion
dioxide as a dielectric. Those are referred to as

• Hyp100 Sample fabricated at Hypres Inc. using a current density jc = 100A/cm2.
The phase qubit is designed with a single non-gradiometric loop.

• Hyp30S Sample fabricated at Hypres Inc. using a current density of jc =
30A/cm2 and a small qubit junction of area 11.1 µm2. The qubit inductance
is a two-turn loop in non-gradiometric configuration as shown in Fig. 3.14.

• Hyp30L Sample fabricated at Hypres Inc. using a current density of jc =
30A/cm2 and a larger qubit junction of area 35.5 µm2. This sample design
is otherwise equal to sample Hyp100.

• Hyp30Grad Sample fabricated at Hypres Inc. using a current density of jc =
30A/cm2, a small qubit junction of area 11.1 µm2, and gradiometric coils as
shown in Fig. 3.16.

A single measurement run was done using a sample fabricated at the VTT Research
Facility using their standard Nb/Al/AlOx/Nb trilayer process using silicion dioxide as
a dielectric. It is referred to as
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• VTT30 Sample fabricated at VTT Research Facility using a current density jc =
30A/cm2. The design is shown in Fig. 3.15.

The loop and mutual inductances of above samples were calculated using the su-
perconducting version of FastHenry [82] and are summarized in Table 3.1.

Sample L (Qubit) LSq Mqb MqSq MbSq

Hyp30S 594 pH 420 pH 2.5 pH 24 pH 0.3 pH
Hyp100 190 pH 420 pH 1.5 pH 10 pH 0.2 pH
Hyp30L 190 pH 420 pH 1.5 pH 10 pH 0.2 pH

Hyp30Grad 574 pH 200 pH 1.9 pH 9 pH 0.4 pH
VTT30 646 pH 400 pH 5.8 pH 33 pH 0.5 pH

Table 3.1: Inductances calculated by FastHenry. Here, L is the inductance of the rf-
SQUID (qubit) loop, LSq the inductance of the readout dc-SQUID, Mqb the mutual
inductance between qubit loop on-chip biasing coil, MqSq the mutual inductance be-
tween qubit and readout dc-SQUID, and MbSq is the mutual inductance between on-
chip biasing coil and readout dc-SQUID.

Table 3.2 summarizes the parameters of the phase qubit junctions and the calculated
βL parameters.

Sample jc area Ic C βL

Hyp30S 30 A/cm2 10.2 µm2 3.1 µ A 0.42 pF 5.6
Hyp30L 30 A/cm2 35.5 µm2 10.7 µ A 1.49 pF 6.2
Hyp100 100 A/cm2 10.2 µm2 10.2 µ A 0.59 pF 5.9

Hyp30Grad 30 A/cm2 10.2 µm2 3.1 µ A 0.42 pF 5.4
VTT30 30 A/cm2 7.1 µm2 2.12 µ A 0.45 pF 4.2

Table 3.2: Parameters of the phase qubits. Here, jc denotes critical current density and
the columns area, critical current Ic and capacitance C refer to the Josephson junction
in the qubit loop.

3.5.3 Al - SiN - based samples from UCSB

Reference samples of high quality were provided by Prof. John Martinis. Those have
been fabricated at the University of Santa Barbara (UCSB) in a custom-developed pro-
cess, using aluminum as the superconductor and silicon-nitride as a low-loss dielectric
in the shunting capacitance of a small area qubit junction. The qubit design is described
in detail in Ref. [84].

The qubit junction has a critical current Ic = 1.7 µA, an area of 1 µm2, a self-
capacitance of C = 50 fF and is shunted by a large capacitor of Cs = 800 fF. The qubit
loop is specified to have an inductance of L = 720 pH. The energy relaxation time was
quoted by the UCSB group to be T1 ≈ 110 ns, the dephasing time measured by a
Ramsey experiment was T ∗2 ≈ 90 ns and the intrinsic dephasing time as measured by
a spin echo sequence is specified as T2 ≈ 160 ns.

This sample is referred to as UCSB-SiN in this thesis.
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3.6 Experimental technique

3.6.1 Wiring and filtering

A prominent feature of superconducting qubits is the opportunity to control them con-
veniently through directly attached wires. However, strong coupling to environmen-
tal degrees of freedom via these wires and fluctuations in the biasing signals present
sources of decoherence. As a particular challenge, the control circuitry must be de-
signed to protect the qubit from noise sources and on the other hand provide the chan-
nels to control and monitor the qubit state.

A single phase qubit requires three signal channels. Two of them serve to control
the qubit by transmitting magnetic flux bias and microwave currents. The third is the
readout channel, which is connected to the dc-SQUID. To reduce the noise level, a
standard technique is to narrow the bandwidth of the signal cables. However, this is
not an option for the flux line, because it serves to both control the level of constant
magnetic bias flux and to transmit dc-pulses as short as one nanosecond to allow for
fast control of the Larmour frequency and state readout. The microwave line must be
transparent in a wide frequency range up to the qubit resonance frequency of up to 20
GHz, but can be equipped with a dc-break acting as a high-pass filter. Therefore, for
qubit control we use standard coaxial cables of a certified bandwidth of 18 GHz, but
reduce the noise by coupling them very weakly to the qubit. Moreover, to increase
the signal-to-noise ratio, both these lines are equipped with SMA-type attenuators [85]
of 10 dB at the 1.4 K temperature stage, while the microwave line uses an additional
10 dB attenuator at the sample temperature. In earlier experiments, we noticed that a
strong parasitic resonance occurring in the microwave line was due to attenuators [86]
which became superconducting at temperatures below about 0.8 K.

The bias line of the readout dc-SQUID is designed to have a bandwidth limited to
about 5 KHz. As shown in Fig. 3.17, several filters are used at different temperature
stages. Both bias current and voltage sensing lines are equipped with commercial feed-
through filters at room temperature, followed by RC-filters at 1.4 K temperature. At a
short distance to the sample chip, these lines pass through custom-made capacitively
shunted copper powder filters which are designed to have an attenuation of more than
80 dB above a frequency of 1 GHz [87]. To measure the dc-SQUID voltage differen-
tially, we connect it by a twisted pair to the room temperature amplifier. The dc-SQUID
bias is sent through a single copper wire and the cryostat ground serves as the current
return path. A current-divider of factor ≈ 50 is inserted in the current line at the 1.4 K
temperature stage to improve the signal-to-noise ratio. Our experience showed that this
configuration reduces greatly the sensitivity of the dc-SQUID measurement to noise
currents flowing in ground loops which exist in the room temperature electronics as
well as interference from equipment powered from the mains supply when connected
to the cryostat, like oscilloscope or temperature controller.

The current-divider is realized from standard SMD resistors, which can dramati-
cally change their resistances at low temperature. As a consequence, it is not known
exactly how much current is flowing through the readout dc-SQUID during the exper-
iment. For qubit measurements, however, this knowledge is not required, but it always
remains possible to measure the current-dividing ratio by using the differential voltage
lines for current-biasing and the current line for the voltage measurement.
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Figure 3.17: Schematic of the dc-SQUID wiring, consisting of EMI filters at room
temperature, custom-made RC-filters at 1.8 K temperature, and capacitively shunted
copper-powder filters at mixing chamber temperature.

3.6.2 Sample holder

Our sample housing is a copper cell of dimensions about 20 mm x 20 mm x 5 mm, in
which up to four sample chips of 5x5 mm size can be glued at the same time. Mea-
surements show that cavity resonance in the sample cell occurs around 8 GHz. Thin
copper wires as well as six coaxial cables enter the cell from the bottom and are sol-
dered to copper bonding pads surrounding the sample cell. We are using Al bonding
wires of lengths up to about 5 mm to realize the connection to on-chip bonding pads,
whereas those for the microwave currents are kept as short as possible and realized
by three parallel wires in a coplanar configuration. To protect the qubits from mag-
netic field fluctuations, the inside of the sample housing is covered by a thin layer of
aluminum and a cylindrical lead shield surrounds the sample cell. To avoid trapping
of vortices in the superconducting shields or on-chip niobium films during the cool-
down, the sample holder is surrounded by two cylinders made of cryoperm [88]. The
sample holder is then thermally anchored to the mixing chamber of an Oxford Instru-
ments Kelvinox He3/He4 dilution refrigerator which has a base temperature of about
15 mK. The cryostat is placed in a commercial shielded room, which is grounded but
galvanically isolated from the gas handling system.

3.6.3 Electronics

The custom-made analog electronics generate the low frequency part of the qubit flux
bias, serve for dc-SQUID readout and provide an isolating interface to the external
computer for data acquisition. A careful grounding scheme allows to power the elec-
tronics from a transformer connected to a filtered mains supply inside the shielded
room. We found no difference in the qubit performance when the electronics was
driven from batteries. A mains transformer greatly extends the long-term stability of
the experiment up to several weeks. Figure 3.18 provides a schematic of the experi-



CHAPTER 3. THE FLUX-BIASED PHASE QUBIT 52

mental setup, which is explained in the following.
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Figure 3.18: Schematic of the experimental setup. The measurement sequence is
started by a trigger pulse generated by the high-speed pulse generator shown in the
lower left corner.

Qubit flux bias

To operate the phase qubit, its magnetic bias flux is switched between three levels as
shown in Fig. (3.7). These are a reset level, at which the qubit potential has a single
minimum, the working point, at which a shallow potential well allows to operate in the
two-level limit, and a freeze level at which the barrier between the two wells is large.
To generate the required flux sequence, we connect two current sources in parallel to
the on-chip coil. These sources are controlled by a voltage in the range of ± 10 V and
generate currents in a switchable range of 10−2 to 10−7 A/V. The dc-voltages corre-
sponding to the flux levels are delivered by a set of 16-bit precision digital-to-analog
converters [89]. These are equipped with a serial interface that allows cascading of mul-
tiple converters in a daisy-chain, such that only one signal input is necessary. To avoid
the presence of digital noise in the electronics during qubit operation, the DAC clock
signal is generated by a custom-built logic circuit only throughout reprogramming the
voltage levels. The digital data are encoded in a pulse-width modulated signal, which
is created by a National Instruments output interface card in the controlling computer
and sent to the DAC module via an optical fiber line featuring galvanic isolation.

As it is shown in Fig. 3.18, the desired flux level is selected by the state of two
switches which connect the current source control input to different DAC voltage out-
puts. These are realized by an integrated circuit of analog switches [90] which are
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controlled by TTL-level signals.
The measurement sequence is started when a trigger pulse changes the state of the

flip-flop, switching the first current source from the reset level to the field 1 (’freeze’)
level. This trigger pulse is simultaneously sent to an analog pulse generator which
has two independent output channels of adjustable delay and duration. Its first output
channel switches the second current source from zero to the field 2 level, bringing the
qubit to the working point for a time of about 200 µs, during which the microwave
and dc-readout pulses are applied to the qubit. Its second output pulse triggers the dc-
SQUID readout after the bias flux returned to the ’freeze’ level. Once the dc-SQUID is
read out, the voltage trigger resets the flip-flop, switching the current source 1 back to
the reset level. Figure 3.19 shows an oscilloscope trace of the resulting qubit flux line
current.
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Figure 3.19: Biasing sequence. (a) Current applied to the qubit flux bias line, switching
between the reset level, freeze level and working point. Additionally shown is the flux
pulse for qubit readout, which is scaled by a factor of order 50 in amplitude and a
factor of about 104 in duration to make it visible. (b) Current ramp applied to the
readout dc-SQUID. (c) Voltage across the dc-SQUID.

DC-SQUID readout

The current source for biasing the readout dc-SQUID is controlled by a sawtooth gen-
erator, which produces a linearly increasing voltage once a trigger signal is sent to its
start input. The voltage across the dc-SQUID is amplified by a factor of 1000 using a
FET instrumentation amplifier at room temperature, whose output is fed into a trigger
calibrated to generate a TTL pulse whenever the SQUID switched to its voltage state.
This pulse is applied to the stop input of the ramp generator to switch the SQUID within
approximately 200 µs back to the superconducting state, thus avoiding excess heating
of the sample chip. Synchronously, the stop pulse is applied to the flip-flop to switch
the qubit flux to the reset level. The time ∆t between the pulses starting the current
ramp and the voltage trigger (see Fig. 3.19) is measured by a precision time interval
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counter [91], which is placed outside the shielded room and galvanically isolated from
the analog electronics by means of optical fibers. With the knowledge of the current
ramp rate dI/dt, the switching current Isw = dI

dt ∆t is obtained with high resolution. A
detailed description of this part of the experimental setup is given in [78].

The whole pulse sequence comprising qubit operation and SQUID readout is re-
peated at typical rates of 200 to 400 times per second, which are limited by the time
necessary to do the current-ramp measurement and subsequent idle time for cool-down,
in total of about 2 ms. Higher repetition rates would be possible if the readout dc-
SQUID is connected using cables of larger bandwidth, or by using a dispersive readout
scheme [92, 93]. One data point for a given parameter set is usually averaged over
1000 to 5000 repetitions.

Data acquisition and evaluation

The measurement computer controls microwave and pulse generators and receives the
data from the time counter via a GPIB interface. An extensive software package has
been developed in Matlab [94] to program arbitrary parameter sweeps and allow for
fast on-line data evaluation. It also features one-click data fitting, automatic readout
pulse calibration routines and a large variety of plotting possibilities.

3.6.4 Microwave pulse modulation
To permit the observation of the state evolution of a driven qubit, the controlling mi-
crowave pulse must be shorter than the coherence time, which can be limited to just
a few nanoseconds. Since commercial microwave pulse modulators have minimum
pulse durations of typically about 20 ns, a prevalent method utilizes microwave mixers
for modulation of a continuous wave.
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Figure 3.20: (a) Signal attenuation from port R to port L vs. microwave frequency, for
applied currents to port I of zero (bottom curve) and 5.8 mA (top curve). (b) Measured
attenuation at a signal frequency of 10 GHz vs. current applied to the I port. Minimal
attenuation is obtained at a current of about 20 mA.

A microwave mixer is a three port device in which the two ports named L and R are
coupled by Schottky diodes which are connected to the third port named I. The level of
signal attenuation between the L and R ports is controllable by a dc-current applied to
the I-port, which switches the diodes. Immediate response and fast signal rise times of
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the order of 1 ns are advantages of this approach of pulse modulation. Fig. 3.20 shows
the transmission from the L- to the R- port, both with and without applied constant DC
current at the I-port, for the type of mixer [95] which we use in our experiments.

To increase the isolation, we connect two mixers of the same type in series and use
a 2-way power divider [96] to split the dc-pulse between the I-ports of both mixers. As
shown in the schematic by Fig. 3.21, additional low-pass filters and attenuators prevent
leakage of the high frequency signal through the power divider to the output and the
dc-pulse generator. The resulting isolation of this system with zero currenct applied to
the I-port is larger than 60 dB.
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Figure 3.21: Schematic of the circuit used for microwave pulse modulation. The con-
tinuous wave (CW) signal passes through two identical mixers. The modulating dc
pulse is split by a power divider (ARRA PD 0200-2) and guided through low-pass
filters (Minicircuits VLF) and attenuators to the I-ports of the mixers.
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Chapter 4

Experimental results

4.1 Sample characterization

Once the sample has been cooled to milikelvin temperature, the dependence Isw(Φext)
of the dc-SQUID switching current on external flux is acquired in a wide range to
characterize the sample. Such a data set allows to estimate the critical currents and mu-
tual inductances in the phase qubit system. Fig. 4.1 shows the result of an Isw(Φext)
measurement for sample Hyp100, displaying the positions of histogram peaks in the
switching-current distribution. The horizontal scale on top of this figure has been re-
calculated to display the flux Φsq in the dc-SQUID loop in units of Φ0, which is given
by the periodicity of the dc-SQUID critical current modulation.

The discrete steps appearing on the Isw(Φext) - pattern are the signature of the
qubit undergoing transitions between wells at certain values of external flux. To make
the hysteresis between inter-well transitions visible, the external flux was swept in
two directions. As indicated in the figure, the periodicity at which these steps occur
corresponds to one flux quantum in the qubit loop. Renormalizing the horizontal axis to
the flux in the qubit loop Φq, as indicated by the bottom scale of Fig. 4.1, the parameter
βL can be obtained from the measured hysteresis. As shown in Fig. 4.2, the hysteresis
is linear for βL > 1 and exceeds one flux quantum above βL = 4.6. For the shown data,
the hysteresis is estimated to be ≈ (1.39 ± 0.02) Φ0, resulting in βL ≈ 5.85 ± 0.09
which is in accordance to the designed values as presented in Tab. 3.2.

The measurement of the βL value allows for a good estimation of the critical current
of the qubit junction, because the inductance L of the qubit loop depends only on its
geometry. Loop inductances can therefore be precisely calculated with the aid of the
FastHenry program up to an estimated uncertainty of 2.5 %. Likewise, the critical
current of the dc-SQUID is measured from the modulation depth ∆I ′sq as shown in
Fig. 4.1, which depends on the βL,SQ - parameter [9]. From the shown data of sample
Hyp100, we obtain βL,SQ ≈ 25±1, which corresponds to a dc-SQUID critical current
Ic,sq ≈ (19.6± 0.8)µA.

The mutual inductance MqSq between qubit and dc-SQUID is estimated near a
qubit step on a linear branch of the Isw(Φext) pattern as shown in the inset to Fig. 4.1.
When the qubit switches between potential wells, the dc-SQUID switching current
changes by a certain amount ∆Ic,sq. By comparing the value of external flux ∆Φ ′

sq

required to result in an equal change of ∆Ic,sq, the mutual inductance is calculated
as MqSq = ∆Φ ′

sq/∆Iq . The change in circulating current ∆Iq can be calculated

57
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Figure 4.1: Positions of histogram peaks in the switching current distribution in depen-
dence of the external magnetic flux for an asymmetric dc-SQUID coupled to a qubit.
Sample: Hyp100

as discussed in Sec. 3.2 for known βL and qubit junction critical current Ic. For the
presented data of sample Hyp100 and using Ic = (10.1± 0.4) µA obtained from the
measured βL parameter, ∆Iq = 0.77 · Ic ≈ (7.8± 0.3) µA. From the data in Fig. 4.1,
∆Φ ′

sq ≈ (46 ±2) mΦ0, resulting in a mutual inductance MqSq ≈ (12±0.9) pH which
is in reasonable agreement to the calculated value of 10 pH.
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Hyp100 Ic βL MqSq Mqb MbSq

designed 10.2 µA 5.9 10 pH 1.5 pH 0.2 pH
measured (10.1± 0.4) µA 5.9± 0.09 (12± 0.9) pH 3.63 pH 0.7 pH

Hyp30S Ic βL MqSq Mqb MbSq

designed 3.1 µ A 5.6 24 pH 2.5 pH 0.3 pH
measured (3.4± 0.1) µA 6.1± 0.09 (39 ± 3.1) pH 2.2 pH 1 pH

Table 4.1: Design values of sample parameters and results of measurements at a sample
temperature of T = 20 mK. Ic denotes the critical current of the qubit junction, MqSq

the mutual inductance between qubit and readout dc-SQUID, and MbSq the mutual
inductance between on-chip biasing coil and readout dc-SQUID.

In Tab. 4.1, design and measured values of the parameters of samples Hyp100
and Hyp30S are summarized. The higher critical current and therefore larger βL-
parameter of sample Hyp30S is due to a larger critical current density. In our measure-
ments with custom-designed qubit circuits, we often found that the mutual inductances
between the flux biasing coil and the qubit (Mqb) as well as between the coil and dc
SQUID (MbSq) were larger than the values reported by the FastHenry program. This
is explained by a breaking of symmetry by bonding wires, which are usually located
close to the qubit circuit because of densely packed chips.

4.2 Escape probability
In order to find an external flux bias suitable for qubit operation, we measured the
flux dependence of the rate at which the qubit prepared in a shallow well switches to-
wards the neighboring deeper well. For this, the current through the on-chip biasing
coil is varied in time as described in Sec. 3.6.3 and shown in the inset to Fig. 4.3 (b).
The coarse field component, denoted as Φext,1, is adjusted to switch the external qubit
flux from the reset level to an intermediate (”freeze”) level. The second field compo-
nent of amplitude Φext,2 is then added to bring the qubit for a duration of typically
∆t = 200 µs close to the critical flux Φc at which the shallow potential well vanishes.
During all subsequent measurements, the coarse field amplitude is kept fixed and the
biasing point is changed solely by varying Φext,2. This has the advantage that the read-
out dc-SQUID is operated always at the same flux bias since the measurement of the
qubit flux state is triggered after the field is switched back to the ”freeze” level.

4.2.1 Theory
The probability Pescthat the phase escapes from the shallow to the deep well depends
on the duration ∆t and the escape rate Γ,

Pesc = 1− exp (−Γ∆t) . (4.1)

Since the escape rate Γ depends exponentially on the external flux, values for Pescin
the range 0 < Pesc < 1 can only be observed in a narrow flux range at which the life-
time Γ−1 of the metastable state is comparable to the duration ∆t of the applied flux
pulse. For Pesc= 0.5, Eq. (4.1) gives Γ∆t = − log(0.5) ≈ 0.7, which corresponds
to a escape rate of Γ = 3.5 kHz at a pulse duration of ∆t = 200 µs. Figure 4.3 (b)
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shows exemplarily the dependence of the escape rate Γ on the amplitude of the field
component Φext,2 as extracted using Eq. (4.1) from the measurement of the escape
probability shown in Fig. 4.3 (a). The deviation from the exponential dependence of
Γ on the amplitude of the external flux pulse, indicated by the dashed line, is due to
saturation of the escape probabilty at 0 and 1, respectively.

The general form of the flux dependence of the escape probability as shown in
Fig. 4.3 (a) is of letter ”s” - shape which results from the double-exponential depen-
dence of Pesc on the external flux Φext,

Pesc ∝ 1− exp
[
− exp

(
− (1− Φext)(3/2)

T

)
∆t

]
. (4.2)

In this equation, the general dependence of the escape rate on the potential barrier
height Γ ∝ exp(−U0/T ) has been expressed in the cubic approximation where U0 ∝
(1− Φext)(3/2) (see Sec. 3.2.1).

The solid line shown in Fig. 4.3 (a) represents a fit of the data points to Eq. (4.2).
This fit is used to extract two quantities which contain the most relevant information
about the escape rate, namely the value of flux 〈Φsw〉at which Pesc= 0.5 and the width
of the curve σ which is defined as the difference in external flux between Pesc=0.1 and
Pesc= 0.9. In the next section, the dependence of these quantities on temperature is
discussed.

4.2.2 Temperature dependence
When probing the escape probability from the metastable potential well by using a flux
pulse of duration ∆t, data are always taken for essentially the same range of escape
rates Γ ≈ 1/∆t. The width σ of the s-curve is determined mainly [97] by the external
flux dependence of the exponential factor in Γ,

σ−1 ∝ ∂ log Γ
∂Φext

, (4.3)

which is illustrated by Fig. 4.4.
The upper panel of the figure contains a plot of the quantum tunnel rate ΓQ(Φext)

according to Eq. (2.31) and the thermal activation rate Γth(Φext) as given by Eq. (2.29),
exemplarily using parameters of sample VTT30 as stated in Tab. (3.2). The two hori-
zontal lines indicate the rates which correspond to an escape probabilty of 0.1 and 0.9
for a field pulse duration of ∆t = 200µs. These rates are used to calculate the escape
probability curves shown in the lower panel of the figure. Evidently, at higher temper-
atures, the larger escape rate reduces the external flux 〈Φsw〉 at which 50 % switching
probability is reached. In the thermal regime, Γth ∝ exp (−U0/kBT ), and according
to Eq. (4.3) a larger temperature T results in an increase of the s-curve’s width σ. Anal-
ysis [98, 99] as well as measurements [97, 99] showed that in the thermal regime the
width σ scales with temperature as σ ∝ T 2/3.

To verify that our escape rate measurements are not influenced by noise in the
experimental setup, we recorded the escape rate dependence Pesc(Φext) in a large tem-
perature range. A plot of both width σ and 〈Φsw〉 vs. T 2/3 is shown exemplarily for
sample VTT30 in Fig. 4.5. For this sample, we observe a saturation of the step width
σ below a temperature of 150 mK at a level of σ ≈ 8 mΦ0, whereas σ increases with
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Figure 4.3: (a) Escape probability vs. the amplitude of an external flux pulse Φext,2 of
∆t = 200µs duration, measured on sample VTT30. (b) Escape rate calculated from
the data shown in (a). Inset: timing profile of the external flux, which is composed
from two pulses of amplitudes Φext,1 and Φext,2, respectively. Both field components
have a rise time of ≈ 20µs.

temperature as expected proportionally to T 2/3 up to ≈ 22 mΦ0 at T = 800 mK. The
solid lines drawn in Fig. 4.5 are extracted from numerically calculated s-curves using
the sum of thermal and quantum escape rates Γth(T ) + ΓQ. Calculation of these lines
was done by using the design values of sample VTT30 as stated in Tab. (3.2) and fit-
ting the junction capacitance, resulting in C = 0.2 pF. In Fig. 4.5 (b), the data points
were shifted (but not scaled) along the vertical flux axis to make them coincide with the
calculated external flux at the lowest temperature. This is justified because the critical
flux Φc is per se not a measurable quantity [100].
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Figure 4.4: (a) Escape rates vs. external flux in the quantum regime and the thermal
regime for the indicated temperatures. The horizontal lines correspond to an escape
probability of 0.1 and 0.9, respectively, for a flux pulse duration of ∆t = 200µs. (b)
Escape probability vs. the amplitude of an applied flux pulse of ∆t = 200µs duration,
calculated from the rates shown in (a). Parameters correspond to sample VTT30 as
stated in Tab. (3.2).

4.2.3 Conclusions

Escape measurements from the metastable qubit potential well were used to charac-
terize the samples. By varying the external magnetic field, the most important sample
parameters could be determined. A study of the escape dynamics in dependence of
the sample temperature shows the cross-over to the quantum regime and rules out the
existence of extensive noise sources in our setup.

4.3 Fast qubit readout

The ability to measure the state of a quantum bit is one of the elementary requirements
of quantum information processing [21]. The measurement must be conducted after
logical qubit operations have been completed, and its outcome has to distinguish the
logical qubit states |0〉 and |1〉 at a contrast which is very close to 1 [24]. It is therefore
necessary that the readout process is accomplished faster than the coherence time T1 at
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Figure 4.5: Temperature dependence of the inter-well transition, measured on sample
VTT30. (a) width of the qubit step in units of the flux quantum Φ0. (b) external
flux at which the escape probability is equal to 50 %. Data points in (b) were shifted
to meet the calculated position at the lowest temperature. Solid lines in both panels
were calculated numerically leaving the junction capacitance as the only free fitting
parameter. Indicated by the arrow is the temperature ≈ 150 mK above which thermal
escape occurs.

which depolarization of the qubit states occurs.

4.3.1 Theory

For superconducting phase qubits, a measurement technique has been implemented
which complies with above requirements [34, 35, 36]. Its principle is to shortly reduce
the potential barrier of the well which contains the qubit states to allow the excited state
of higher energy to tunnel into a macroscopically distinguishable state. The ground
state remains in the initial well in this readout procedure.

In flux-biased phase qubits, this is accomplished by applying a dc-pulse of flux
which increases the total flux in the qubit loop. Its effect is to provide an additional tilt
in the qubit potential as shown in Fig. 4.6 (a), increasing the escape rate towards the
neighboring potential well for all states which are contained in the shallow potential
well. However, since the escape rate of the excited state is typically a factor of 102

- 103 higher than the one of the ground state, it is possible to adjust the duration and
amplitude of the flux pulse such that during its application only the excited state escapes
at large probability.
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Figure 4.6: (a) Illustration of the effect of the readout dc-pulse on the qubit potential.
Dashed lines show the potential well before the dc-pulse was applied, solid lines the
potential during the readout pulse. (b) The calculated escape probability for a qubit
prepared in states |0〉 and |1〉, read out by a gaussian readout pulse of duration Wdc

= 2 ns and amplitude Φdc. Also shown by the red solid line is the readout contrast
as the difference between the two curves. The dashed lines are calculated by taking
into account energy relaxation during the readout at a T1 - time of 1 ns, resulting in a
maximum readout contrast of 0.93. Calculations were done using parameters of sample
VTT30.

Figure 4.6 (b) illustrates the increase of the escape probability Pescwith the ampli-
tude Φdc of a readout flux pulse for the two cases when the qubit was prepared in either
the ground or excited state. For these calculations, a gaussian-shaped readout dc-pulse
creates the time-dependent external flux

Φext(t) = Φs + Φdc · exp
[
− (t− w)2

2 w2

]
. (4.4)

Here, Φs is the starting value of bias flux (at which qubit operations are done), Φdc is
the amplitude of the gaussian flux pulse and w is its width which is related to the full
width at half maximum Wdc by w = Wdc/(2

√
2 log 2). The escape probability was

then obtained by numerical integration of the equation

Pesc = 1− exp
(
−

∫
Γ(t)dt

)
, (4.5)

where Γ(t) = p0Γ0(t)+ p1Γ1(t) is the sum of the escape rates of the two states whose
population probabilities are p0 = 1 − p1 and p1, respectively. This rate is calculated
from the WKB-result for quantum tunneling Eq. (2.31) and depends on time according
to the time-varying external flux Eq. (4.4).

We define the fidelity of the readout as the difference between the obtained escape
probabilities of the excited state and the ground state. Figure 4.6 (b), which was cal-
culated using parameters of sample VTT30 and a readout pulse duration Wdc = 2 ns,
shows that the maximal contrast of 0.99 is very close to 100 % since the curves for the
two states are well separated. The decay of the excited state due to energy relaxation
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during the readout pulse was taken into account by correcting the excited state popula-
tion by the factor exp(−t/T1), where T1 is the lifetime of state |1〉. The result of such
a calculation, using T1 = 1 ns, is shown by the dashed lines in Fig. 4.6 (b), reaching a
maximal readout fidelity of 93%.

4.3.2 Sources of readout errors

In a real experiment, several mechanisms contribute to a reduction of the attainable
readout fidelity, of which the most prominent are those related to a change of the level
population during the readout process. This can be due to energy relaxation, which is
avoidable by using very short and fast rising readout pulses. However, when a short
pulse is to be used, its amplitude must be made large enough to reach flux values at
which the excited state tunnels in a time which is comparable to the readout pulse
duration. The readout hence occurs close to the critical flux where the ratio Γ1/Γ0 de-
creases as it is shown in Fig. 3.6, and therefore also the measurement fidelity decreases.

A short readout pulse may furthermore act non-adiabatically and alter the state
populations when its fourier components are resonant to transitions to upper levels.
Analysis [68] has shown that for typical phase qubits (having transition frequencies
ω10/2π ≈ 10 GHz) the probability of nonadiabatic excitation is of order 10−2 for
linear readout pulses of 500 ps rise times but is further reduced to below 10−4 for
gaussian-shaped pulses.

During application of the readout pulse, the qubit resonance frequency is continu-
ously reduced and may be changed by a factor of up to 1/2. If there exists a parasitic
resonator [27] below the qubit working frequency, the readout pulse may sweep the
qubit through their common resonance. Given that it is coupled sufficiently strong, the
coherent oscillations in the resulting four-state system may be fast enough to change
the qubit state [34]. Lastly, for flux-biased phase qubits, a measurement error due to
resonant tunneling, which occurs when the states in the left well and the deep right well
align, has been considered [68]. While this mechanism may in principle give rise to a
repopulation of the shallow well once tunneling to the deep well occurred, the strongly
increased energy relaxation rate from highly excited states in the deep well renders this
possibility unlikely.

4.3.3 Experimental results

Similar to above described calculations, the readout fidelity has been probed exper-
imentally by recording the escape probability curves versus the amplitude of an ap-
plied dc-flux pulse. The result, obtained from sample VTT30, is shown in Fig. 4.7
for three different readout pulse widths. The excited state was populated by a reso-
nant microwave π-pulse whose duration was 1.2 ns as found by observing coherent
oscillations at the same bias parameters. The largest readout fidelity of 78.3 % was
obtained for the shortest dc-pulse of 1 ns width, while for the longest pulse of duration
5 ns the fidelity decreased to 19.6 % due to significant energy relaxation during the
readout. Since for this sample the time Td, which is the half-lifetime during which the
amplitude of driven coherent oscillation decays to 1/e, is about 4 ns, decoherence oc-
curs already during the populating microwave pulse. This can explain the significantly
reduced maximum readout contrast. During a microwave pulse of duration Tµw, both
states approach 50% population due to decoherence resulting in a finally equal rate of
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stimulated emission and absorption. This leads to a remaining probability of the qubit
being in the excited state of

p1 =
[
1
2

exp (−TµW /Td) +
1
2

]
exp[−(Wdc + Tr)/T1]. (4.6)

Here, the second exponential accounts both for decay during the readout pulse of width
Wdc as well as decay during the rise time Tr of the readout pulse. This equation results
in an expected maximum readout contrast of 74 % assuming Tr = 500 ps, Wdc = 1 ns
and T1 = 3 ns. The slightly larger value found experimentally can be explained by the
fact that even without a readout pulse corresponding to Φdc = 0, Fig. 4.7 shows an
escape probability of about 5% which results from the microwave pulse alone. This
is probably due to excitation of higher levels because of the large amplitude of the
microwave pulse, which was chosen here in order to result in a short duration of the
π-pulse.

For the longer readout pulse of Wdc =5 ns, Eq. 4.6 results in an expected contrast
of 19 % which is also consistent with the data. We therefore conclude that energy
relaxation both during qubit operation and readout can explain the reduced contrast
which we observe in samples having short (<4 ns) T1 times.
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4.3.4 Thermal regime
As the ability to distinguish the phase eigenstates relies on the difference of their escape
rates, it is expected that the readout contrast changes in the thermal regime where
escape is dominated by activation over the potential barrier. From Kramer’s rate of
thermal activation,

Γn =
ω0

2π
· exp

(
−U0 − n~ω0

kBT

)
, (4.7)

where n = 0, 1 is the qubit state, it can be seen that the ratio Γ1/Γ0 scales with tem-
perature according to

Γ1

Γ0
= exp

(
~ω0

kBT

)
. (4.8)

A fast reduction of the readout contrast is therefore expected at higher temperatures.
This is verified by repeating the calculation described in Sec. 4.3.1, taking into account
both quantum tunneling and thermal activation. Figure 4.8 (a) shows the resulting
escape probability curves in the quantum regime (T = 20 mK) and the thermal regime
(T = 200 mK). The reduction of the ratio Γ1/Γ0 at high temperature gives rise to
a reduced separation between the s-curves, while their widths are increased due to
a weaker dependence of the thermal activation rate on external flux as described in
Sec. 4.2.2.

The expected temperature dependence of the maximal readout contrast is plotted in
Fig. 4.8 (b). Above a cross-over temperature T ∗R, at which escape during the readout
pulse occurs through thermal activation rather than quantum tunneling, the readout
contrast decreases steeply. For sample UCSB-SiN, the figure indicates T ∗R ≈ 80 mK,
while for sample VTT30 T ∗R ≈ 150 mK. A change of the readout pulse duration has
only a small effect on the temperature dependence of the contrast, as it is shown by
the dotted line in Fig. 4.8 (b), which has been calculated for parameters of sample
VTT30 using a dc-pulse duration Wdc = 20 ns. The readout contrast reduction at high
temperatures is less for higher excited states |n〉 , n > 1, because of the larger ratio
Γn/Γ0 between the escape rates from these states and that of the ground state. This
is shown in Fig. 4.8 (b) for parameters of sample VTT30 assuming that only the state
|2〉, |3〉 or |4〉 is populated. It is seen that at larger n the cross-over temperature T ∗R
increases, while the slope of the readout contrast dependence versus T is reduced.

We stress that this kind of loss of readout contrast can be compensated up to a
certain temperature by using the procedure of fitting the escape probability histograms
which was discussed in Sec. 3.4.2.

4.3.5 Automated readout calibration
In many experiments, such as e.g. spectroscopy, the qubit response is to be observed
in dependence on the external flux. It is therefore necessary to adjust the readout pulse
amplitude at each value of bias flux in order to maximize the measurement contrast.
Since it is not known a priori which parameters of microwave pulse duration and power
are necessary to bring the qubit to the excited state, a practical method [101] can be
used in which it suffices to monitor the effect of the readout pulse on the qubit prepared
in the ground state. The amplitude of the readout pulse is hereby varied until it leads to
a small probability of escape from the ground state, typically about 5%. This assures
that the same pulse would make excited states escape at a probability which is very
close to 1. It can be seen in the experimental data of Fig. 4.6 that the maximum of the
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Figure 4.8: (a) Escape probability Pesc vs. readout pulse amplitude Φdc at T = 20 mK
(left panel) and T = 200 mK (right panel), for the qubit prepared in state |0〉 and |1〉.
The readout contrast is given by the maximal difference between the two curves. (b)
Maximum of the readout contrast vs. temperature. Dashed line: sample UCSB-SiN,
readout pulse duration Wdc = 20 ns. Other lines: sample VTT30, readout pulse du-
ration Wdc = 2 ns, except dotted line: Wdc = 20 ns. The Ket-vector indicates which
excited state is populated by 100%.

readout contrast is indeed found at readout pulse amplitudes which result in a small
escape probability from the ground state.

For automated readout calibration we implemented a function in the measurement
software which finds a suitable amplitude using the binary search algorithm. It begins
by measuring the reference escape probability Pref when the readout pulse is switched
off. The pulse amplitude is then varied, after each change recording the escape proba-
bility from a set of 500 samples. The algorithm stops when the guessed readout pulse
amplitude results in an escape probability which is in the range of 4 to 8 % larger than
Pref , which usually requires less than 10 iterations. Calibration values are then stored
in a table which is used for subsequent experiments.

Figure 4.9 shows that the automatically calibrated readout pulse amplitude depends
linearly on the external flux, as expected. It is therefore sufficient to run the calibration
procedure at a few flux values within the range of the experiment and use the results of
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a linear fit. This feature is supported by the measurement software as well.
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Figure 4.9: Amplitude of
the readout pulse vs. ex-
ternal flux bias as deter-
mined by the automated
calibration procedure.

4.3.6 Conclusions

Our qubit readout method is based on application of a short dc pulse of magnetic flux.
A numerical and experimental study of the readout fidelity indicates that at low temper-
atures it is limited only by the short qubit coherence time. In contrast, at temperatures
above the cross-over from quantum tunneling to thermal activation, we find that the
readout fidelity is reduced due to the weaker flux dependence of the thermal escape
rate. The automated calibration procedure of the readout pulse amplitude described in
this section proved to be very useful for experiments in which the magnetic flux bias
was varied.

4.4 Microwave spectroscopy

Microwave spectroscopy is used to find the energy difference ∆E between the ground
and excited qubit states. The corresponding transition frequency ω10 = ∆E/~ is close
to the bias-dependent small oscillation frequency ω0(Φext) shown in Fig. 3.5, and for
typical phase qubit samples ω0(Φext)/2π lies in the range between 6 to 20 GHz at a
working flux bias of Φext ≈ 0.95 Φc. Application of a microwave signal of frequency
ωµw which induces a sinusoidal change of the flux in the qubit loop, or analogously
an oscillating current through the qubit junction, gives rise to a population of excited
qubit states when the resonance condition

ωµw ≈ nω10 (4.9)

is fulfilled. Here, n ≥ 1 is an integer which accounts for the possibility that the energy
difference ∆E is available to the qubit by simultaneous absorption [46] of n microwave
photons, such that ∆E = n~ωµw.
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4.4.1 The resonantly driven spin-1
2

system

The dynamics of the resonantly driven spin- 1
2 system are described by the Bloch equa-

tions [102]

d〈σ̂x(t)〉
dt

=
[
γ〈σ̂(t)〉 × ~B(t)

]
x
− 〈σ̂y(t)〉

T2
(4.10)

d〈σ̂y(t)〉
dt

=
[
γ〈σ̂(t)〉 × ~B(t)

]
y
− 〈σ̂y(t)〉

T2
(4.11)

d〈σ̂z(t)〉
dt

=
[
γ〈σ̂(t)〉 × ~B(t)

]
z
− 〈σ̂z(t)〉 − σ0

T1
, (4.12)

which characterize the time evolution of the spin σ̂ with gyromagnetic ratio γ in the
time-dependent magnetic field

~B(t) = {Bx(t), By(t), Bz}. (4.13)

These equations contain the energy relaxation time T1 and the phase coherence time
T2 as well as the thermally-induced population of the excited state σ0 = tanh (∆E/kBT ).
The static longitudinal field component Bz is related to the Larmor frequency

ω10 = ∆E/~ = γBz, (4.14)

at which the spin precesses around the z-axis. For phase qubits, the Larmor frequency
is determined by the energy difference between the qubit states ∆E. The Bloch equa-
tions can be solved analytically when the time-dependent transversal field rotates at the
Larmor frequency around the z-axis, so that it follows the precessing spin:

Bx(t) = Bt cos(ω10t); By(t) = Bt sin(ω10t). (4.15)

In a frame rotating at the Larmor frequency, this results in an effective constant transver-
sal field. Since the phase qubit is merely a pseudo-spin, it is not possible to apply a
rotating transversal field, but only a sinusoidal drive which has transversal as well as
longitudinal components. However, the longitudinal component, which modulates the
Larmor frequency, can be neglected in practical experiments where the Rabi frequency
at which the spin rotates around the x-axis is much smaller than the precession fre-
quency [103].

Experimentally, spectroscopy is done by using a microwave pulse of duration τµw >
T1 to ensure that eventual coherent oscillation in the state population decay towards a
constant probability of remaining in the excited state. This corresponds to a steady state
dσ̂/dt = 0. Immediately after the microwave pulse, the readout dc-pulse is applied to
probe the qubit state, hereby realizing a measurement of the z-component 〈σ̂z〉. A
measurement of the escape probability in dependence of microwave frequency or ex-
ternal flux bias then displays a resonance curve which has the form of a Lorentzian
given by [104]

〈σ̂z〉 =


1− ω2

R T1T2

1 +
(

ω10−ωµw
T2

)2

+ ω2
R T1T2


 σ0. (4.16)

Here, ωR ∝ Jn(α) is the Rabi frequency, which is for a n-photon process proportional
to the nth order Bessel function of the first kind Jn(α) of the normalized amplitude of
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the driving field α ∝ Bx for By = 0. [105]. For the one-photon process, ωR scales
linearly with α as long as ωR ¿ ω10.

From Eq. (4.16) it follows that the full width at half maximum of the resonance
curve is

σ =
2
T2

√
1 + ω2

R T1 T2 (4.17)

and the amplitude of the resonance is

A =
ω2

R T1 T2

1 + ω2
R T1 T2

σ0. (4.18)

4.4.2 Spectroscopy at small drive amplitude
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Figure 4.10: Top panel: The applied microwave frequency plotted vs. the value of
external flux at which the resonance peak is found. Solid line is a fit to the small
oscillation frequency ω0/2π, resulting in Ic = 1.65µA and C = 832 fF for a fixed
inductance L = 720 pH. Bottom panel: Resonance peaks in the escape probability,
obtained by varying the external flux. Solid lines are fits to Lorentz curves. The shown
resonance curves have Q-factors of ≈ 100, which are limited by the drive amplitude.
Data has been taken using sample UCSB-SiN.

Resonance curves obtained from sample UCSB-SiN are plotted in the bottom
panel of Fig. 4.10, using a microwave pulse of 200 ns duration at the frequencies in-
dicated in the figure. The value of external flux at which these resonances are located
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depends on the chosen microwave frequency as shown in the top panel of Fig. 4.10.
Here, the solid line is obtained from a fit of the resonance positions to a numerical
calculation of the small oscillation frequency ω0, using the junction critical current and
capacitance as free parameters. However, this data does not allow to determine the
sample parameters exactly, since the externally applied flux is known only up to an
additive constant. This third fitting parameter is therefore required which is not inde-
pendent of the qubit parameters.

4.4.3 Parasitic resonances the setup

Our attainable resolution of microwave spectroscopy is limited by the parasitic reso-
nances in our experimental setup. These give rise to a frequency modulation of the
microwave power that couples to the qubit, hereby changing the amplitude and width
of the resonance peak. Figure 4.11 shows exemplarily the result of spectroscopy per-
formed on sample HYP100 using a fixed microwave power. The strong oscillation in
the width of the trace is due to harmonics of a parasitic resonance of about 300 MHz.
At frequencies where much power couples to the qubit, we observe a second peak
which is due to a higher-order transition as described in the next section. In principle,
it is possible to avoid this effect by adjusting the microwave power at each frequency
to the frequency-dependent coupling coefficient between source and qubit, which can
be evaluated from the amplitude of the resonance peak using Eq. (4.18).
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Figure 4.11: Spectroscopy on sample Hyp100.

Parasitic resonances can also be visualized in situ by measuring the frequency de-
pendence of the power that is required to induce an off-resonant escape from a very
shallow potential well as shown in Fig. 4.12. This data was acquired without using a
readout pulse by biasing the qubit close the critical flux where the escape probability
from the ground state was about 20%. An automated program varied the microwave
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Figure 4.12: Microwave power necessary to increase the escape probability by 10%,
plotted vs. microwave frequency. The used sample was UCSB-SiN.

power until Pesc increased by 10 - 15%. The cavity resonance of the sample housing is
clearly seen as a broad resonance located at about 8.2 GHz. The sharp peak at 8.5 GHz
frequency is the qubit resonance of sample UCSB-SiN. The frequency of the dominat-
ing parasitic resonance is about 300 MHz, similar to the spectroscopic data shown in
Fig. 4.11 which was measured on a different sample and using a different microwave
line. Therefore it is likely that in our experimental setup the parasitic resonances origi-
nated in reflections from the attenuators installed at the 1K-pot, which probably change
their impedances at low temperatures.

4.4.4 Higher-order transitions

For large microwave powers, multi-photon transitions to higher energy levels can be
observed in phase qubits of low anharmonicity or when they are operated in deep po-
tential wells. These transitions occur as additional resonance peaks located at lower mi-
crowave frequencies, or, analogously, at lower flux bias values for a fixed microwave
frequency, because the energy difference between two neighboring levels decreases
with increasing energy.

Figure 4.13 shows the result of spectroscopy performed on sample Hyp100, us-
ing a relatively large microwave power. Due to a parasitic resonance in the setup, the
power coupling to the qubit increased at higher frequencies. The plot of the escape
probability vs. external flux reveals two resonance peaks at 22.20 GHz (at which less
microwave power is coupled to the qubit), and up to 5 peaks at 22.92 GHz (accordingly,
larger power coupled to the qubit). Resonance curves for these two cases are shown
in the lower panel of Fig. 4.13. For the displayed range of external flux bias, the qubit
potential well contained 8 to 5 energy levels. The positions of all appearing resonance
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Figure 4.13: High-power spectroscopy using sample HYP100. Top panel: Position of
resonance peaks vs. external flux and chosen microwave frequency. Solid lines: Nu-
merically calculated resonance frequencies corresponding to the n-photon |0〉 → |n〉
transition as indicated in the top of the figure. Dashed lines: calculated resonance
frequencies of the higher order transition as indicated by the arrows. Bottom panel:
Escape probability vs. external flux showing the resonance curves obtained at 22.2
GHz and 22.92 GHz, respectively. Vertical dotted lines connect the peaks to the corre-
sponding points in the upper panel.

peaks are plotted vs. the applied microwave frequency in the upper panel of Fig. 4.13.
Solid lines were calculated from a numerical solution of the stationary Schrödinger
equation and indicate the transition frequencies between the nth excited level and the
ground state, (En−E0)/(n h), where the factor n takes into account the multi-photon
process. For example, the resonance closest to the one-photon |0〉 → |1〉 transition
for n = 1 is the two-photon transition from the ground state to the second excited state
|0〉 → |2〉 for n = 2. We fitted only the data points corresponding to the |0〉 → |1〉
transition and find that all other resonances lie closely on the expected higher order
transition frequencies. Fitted sample parameters were Ic = 10.0µ A and capacitance
C = 47.2pF.

Alternatively, the additional resonance peaks may originate in transitions between
state |1〉 and higher states. This is possible because at high microwave power the broad-
ened |0〉 → |1〉 resonance peak overlaps with the resonance of the |1〉 → |2〉 transi-
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tion. The resonance frequencies of this kind of transitions are plotted in Fig. 4.13 by
dashed lines, showing that they are practically indistinguishable from the multi-photon
transitions discussed above. A numerical solution of the time-dependent Schrödinger
equation for the resonantly driven rf-SQUID [106] results in resonance curves which
are very similar to the experimental data shown in Fig. 4.13. These calculations show
cascaded transitions |0〉 → |1〉 → |2〉 in qubits of comparable damping strength.

In principle, it is possible to measure the individual population probability of higher
levels by varying the amplitude of the readout pulse [36]. For a given readout pulse am-
plitude, escape occurs from all levels higher than a certain energy threshold. If each
level has some probability of being populated, an increasing readout pulse amplitude
should hence result in an escape probability which increases in steps due to subsequent
emptying of individual energy levels.

4.4.5 Resonance peak amplitude
The number of photons n which are absorbed in a transition can be determined by a
measurement of the resonance peak amplitude in dependence of applied microwave
power [104]. The resonance amplitude is proportional to microwave power and, ac-
cording to Eq. (4.18), increases quadratically with the Rabi frequency ωR ∝ Jn(c Iµw),
where Iµw is the microwave amplitude as generated by the source and c is the cou-
pling factor between source and qubit. By fitting the extracted resonance amplitudes to
Eq. (4.18) using Bessel functions of the first kind Jn(c Iµw) for the Rabi frequency, it
is possible to determine the number of photons n as well as the coupling strength c.

The result of such a procedure is shown in Fig. 4.14 (a), which displays the ampli-
tude of the first two resonance peaks observed at a frequency of 22.7 GHz in depen-
dence of microwave power. Data points are obtained by fitting the measured escape
probability to the sum of two Lorentz curves as shown in Fig. 4.14 (b). The solid lines
are fits to Eq. (4.18), using the Bessel functions Jn(c Iµw) for n = 1 and 2, respectively,
with the coupling factor c and the coherence time T1 as free parameters. An excellent
agreement between the experimental data and the expected peak amplitudes is found
which confirms the expected two-photon transition creating the second resonance peak.
The energy relaxation time T1 resulting from the fits was a factor of about 3 larger for
the two-photon process than for the one-photon process, which is in agreement with
more detailed calculations [104] and can be explained by the smaller probability of
emitting two photons simultaneously.

The microwave amplitude Iµw was calculated from the microwave power Pµw

[dBm] provided by the generator according to Iµw ≡ 10Pµw/20. The coupling fac-
tor c resulting from the fits was c = 0.002 for both n = 1 and 2. This corresponds to a
total attenuation between the microwave generator and the qubit of -54 dB, which is in
agreement with the expected losses in the coaxial cables (-15 dB), the installed attenu-
ators (-20 dB) and the on-chip dc-break (-20 dB). The horizontal axes of Fig. 4.14 have
been scaled by the factor c to display the microwave power and amplitude received by
qubit.

4.4.6 Inhomogeneous broadening
The probabilistic nature of quantum mechanics demands that measurements on qubits
must be averaged over an ensemble of identical experiments to obtain statistical in-
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Figure 4.14: (a) Amplitudes of the one-photon (points) and two-photon (squares) reso-
nance peaks in dependence of the microwave power (top axes) and microwave ampli-
tude (bottom axes) as received by the qubit. Solid lines are fits to Bessel functions of
the first kind Jn. (b) Microwave resonance showing two peaks. Solid line is a fit to the
sum of the two Lorentz curves shown by dashed lines.

formation. Fluctuations in the experimental parameters which occur during the time
required to complete the repetitions give rise to dephasing. This effect can be dis-
tinguished from other decoherence mechanisms by spectroscopic measurements. For
example, slow changes in the external flux lead to variations in the energy separation of
the qubit states and therefore change the Larmor frequency. The resulting shift of the
resonance peak gives rise to an increase of the measured peak width, an effect which is
called inhomogeneous broadening. This term originates in NMR experiments, where
an inhomogeneous transversal magnetic field leads to different Larmor frequencies in
spatially separated nuclei, which constitute the individual qubits.
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Figure 4.15: (a) Resonance curves and fit to Lorentzians for an applied microwave
power as indicated in the legend. (b) Full width at half maximum σ/2π vs. microwave
amplitude. The line is a linear fit which intersects the vertical scale at 30 MHz. Sample
Hyp30S.
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The rate of dephasing due to inhomogeneous broadening is captured by introduc-
ing the coherence time T ′2, which adds with the intrinsic dephasing rate 1/T2 to the
effective dephasing rate

1
T ∗2

=
1
T ′2

+
1
T2

. (4.19)

When the field inhomogeneity has a Lorentzian distribution1, the resonance peak width
given in Eq. (4.17) is corrected for inhomogeneous broadening by a constant factor and
reads [108]

σ =
2
T ′2

+
2
T2

√
1 + ω2

R T1 T2, (4.20)

In the strong driving limit where ω2
RT1T2 À 1, the resonance width increases via the

Rabi frequency ωR linearly with the amplitude of the microwave field. When the res-
onance width is plotted versus microwave amplitude, the value 2/T ′2 can be extracted
from a linear extrapolation to zero microwave amplitude.

Figure 4.15 shows the result of such an experiment obtained using sample Hyp30S.
The extrapolated zero-power resonance width of ∆f = σ/2π = 30 MHz corresponds
to a T ′2-time of

T ′2 =
2

2π ∆f
=

1
30MHz

= 10.6 ns.

The experimental results obtained using the other investigated samples are summarized
in Tab. 4.2. However, the given data suffers from a large uncertainty because at larger
drive amplitudes the resonance width increases beyond the linear behavior due to ap-
pearing transitions to higher levels. Furthermore, we observe that the measured T ′2
varies with the external flux bias, as it is shown in Tab. 4.2 for sample VTT30.

Sample T ′2 ∆f ωµw/2π
Hyp30S 10.6 ns 30 MHz 14.2 GHz
Hyp30L 2.7 ns 120 MHz 11.65 GHz
Hyp100 3.2 ns 100 MHz 22.6 GHz
VTT30 16 ns 20 MHz 13.2 GHz
VTT30 25 ns 13 MHz 13.1 GHz

Table 4.2: Decoherence times by inhomogeneous broadening T ′2, calculated from the
measured resonance width ∆f extrapolated to zero microwave amplitude. The right-
most column states the used resonant microwave frequency.

4.4.7 Resonance peak position
For large amplitudes of the driving field, the position of the resonance peak deviates
from the result obtained using the Bloch equations. In a spin- 1

2 -system without dis-
sipation, it is expected that the one-photon resonance occurs at the drive frequency
ωµw = ω10 −∆ω, where ∆ω is the so-called Bloch-Siegert shift given by [109]

∆ω =
1
16

(
ωR

ω10

)2

ω10. (4.21)

1Whether the field inhomogeneity has a Gaussian or Lorentzian shape depends on the cause of the fluctu-
ation [103, 107]. Coupling to a bath of non-saturated two-level fluctuators is expected to result in a Gaussian
line shape, while 1/f noise originating from saturated two-level systems shows a Lorentzian distribution.
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For not too strong driving ωR < ω10, i.e. ωR ∝ Iµw, this equation predicts a small
correction to the peak position which scales quadratically in the drive amplitude Iµw.
In practical experiments where typically ωR/ω10 < 0.1 and ω10/2π ≈ 10 GHz, the
Bloch-Siegert shift is about 6 MHz and thus is expected to be negligible.
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Figure 4.16: (a) Position of resonance, normalized to the applied microwave frequency
which was 22.8 GHz. (b) Drive amplitude dependence of resonance shift ∆ω (cir-
cles) and half the Rabi frequency ωR (squares), both observed at the same microwave
frequency. The two lines have equal slope. Sample Hyp100.

Experimentally, we observe a much stronger influence of the drive amplitude on
the peak position as it is shown in Fig. 4.16 (a). The resonance peak is shifted linearly
with the drive amplitude towards lower frequencies. This is expected for dissipative
systems [103], for which the shift of the resonance frequency can be estimated as

∆ω =
ωR

2
. (4.22)

This equation is verified by Fig. 4.16 (b), showing the microwave amplitude depen-
dence of both the resonance shift ∆ω and half the Rabi frequency ωR/2. The Rabi
frequency was obtained by fitting a damped sinusoidal to the coherent oscillations ob-
served in the time domain as described in Sec. 4.6. Both kind of data points were
obtained at a microwave frequency of 22.8 GHz in the same measurement run. The
resonance shift shows the same dependence on drive amplitude as half the Rabi fre-
quency, and moreover differs absolutely by only a small amount (about 70 MHz for the
shown data), hereby clearly confirming Eq. (4.22).

4.4.8 Conclusions
Extensive measurements were done using microwave spectroscopy. In the strong driv-
ing regime, we observed transitions to higher levels in the qubit potential well, which
are characterized by additional resonance peaks. A detailed analysis of the resonance
peak amplitudes allowed us to identify the transition mechanism underlying a certain
peak as a two-photon process. We observed a shift of the resonance peak position in
the strong driving limit toward lower frequencies. The magnitude of this shift, which
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depends linearly on microwave amplitude, was found to follow closely the frequency of
coherent oscillation observed at identical bias parameters. By observing the drive am-
plitude dependence of the resonance peak width, we measured the qubit coherence time
T ′2 due to low frequency fluctuations. These experiments indicate that low frequency
noise which gives rise to inhomogeneous resonance broadening is not a limiting factor
in our measurements.

4.5 Excited state life time T1

4.5.1 Experimental method

The standard way to measure the life time of the excited state is to first bring the qubit
from the ground to the excited state by using a so-called π-pulse, which is a resonant
microwave pulse of duration on half of the Rabi period. Measuring the qubit state with
increasing time delay after the end of the microwave pulse results in an exponentially
decreasing excited state, whose decay constant is the sought-after T1 time.

Determination of the π-pulse duration requires prior observation of Rabi oscilla-
tion. It should be noted that it is also possible to perform this experiment by an in-
coherent microwave pulse of long duration which results in about 50% probability of
excited state population. In our experiments, we did not find any difference in the
measured T1 times obtained by either a coherent or incoherent excitation.

4.5.2 Experimental results

Figure 4.17 (a) shows the result of a measurement using a resonant π-pulse, obtained
on sample Hyp30L. The solid line is an exponential fit, resulting in a T1 time of 5.8
ns. This is a typical value for all our phase qubit designs that were fabricated by
Hypres Inc. In contrast, by using the custom-made sample UCSB-SiN, we measured
excited state life times of T1 ≈ 115 ns, as it is shown in Fig. 4.17 (b). A summary
of our measurements for all discussed samples in given in table 4.3. We estimate an
uncertainty of about ± 1 - 2 ns in the measured T1 times for the samples based on
SiOx due to the strong dependence of coherence properties on the biasing point and the
limited number of performed experiments. The stated numbers are largest reproducible
values.

Sample T1 ωµw/2π
Hyp30S 5.5 ns 14.1 GHz
Hyp30L 5.8 ns 11.65 GHz
Hyp100 3.2 ns 22.7 GHz
VTT30 2.4 ns 16.5 GHz

HypGradio 6.5 ns 13.1 GHz
UCSB-SiN 115 ns 7.4 GHz

Table 4.3: Measured excited state life times T1. The rightmost column states the used
resonant microwave frequency.
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Figure 4.17: Escape probability vs. the delay between populating microwave pulse and
readout pulse as indicated in the inset. Solid lines are fits to an exponential function.
(a) Sample Hyp30L, 2000 counts per data point. (b) Sample UCSB-SiN, 1000 counts
per data point.

4.5.3 Conclusions

The qubit coherence time T1 due to energy relaxation was measured by directly ob-
serving the exponentially decaying population of the excited state in the time domain.
The samples fabricated in standard technology using SiO2 as a dielectric for insula-
tion between metallic layers showed rather short T1 times of below 8 ns. In a sample
which was fabricated in a custom process featuring a smaller qubit junction and SiNx

as dielectric, we measured T1 times of about 100 ns. This confirms that the fidelity of
conventionally fabricated phase qubits is limited by a large density of two-level fluctu-
ators, which reside in oxide dielectrics and couple to the qubit.
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4.6 Rabi oscillation
Application of a transverse resonant field induces Rabi oscillations between the two
qubit states as long as the system remains coherent. These oscillations are essential to
quantum computation because by this mechanism single qubit operations are realized.
The first experimental observations of Rabi oscillation in superconducting qubits were
therefore important milestones in the study of macroscopic quantum coherence and
opened the door to the implementation of a solid-state quantum computer.

4.6.1 Theory
Solving the Bloch equations (4.12) for the expectation value of the spin’s z-component
〈~σz〉 when driven by the rotating transversal field ~Bt(t) results in [108, 103]

〈~σz〉 = e−t/τ1

(
sin(ωR t)

ωR τ2
+ cos(ωR t)

)
. (4.23)

This describes an oscillation which is damped with a time constant τ1 given by the
mean of the coherence times T1 and T2,

2
τ1

=
1
T1

+
1
T2

. (4.24)

The life time of Rabi oscillation is therefore expected to be a combination of the co-
herence times T1 and T2. The oscillation frequency ωR, corrected for damping, reads

ωR =
√

γ2B2
t − 1/(τ2

2 ), (4.25)

where
2
τ2

=
1
T2
− 1

T1
. (4.26)

For the phase qubit, the transversal driving field is realized by adding a microwave
component Iµw sin(ωµwt + ϕ) to the current flowing through the junction. In terms of
the microwave amplitude Iµw and neglecting damping, the Rabi frequency translates
into [110]

ωR = γBt =
Iµw

2

√
1

2~ω10C
, (4.27)

where C is the junction capacitance and ω10 the qubit’s Larmor frequency. An actual
implementation of a phase qubit is expected to differ in many aspects from a spin as
described by the Bloch equations. Superseding the limitation to non-rotating driving
fields is the existence of higher excited states, which at stronger driving can take part
in coherent oscillations. On the other hand, nonlinear and eventually even coherent
coupling to parts of the environment can lead to distinctive features in qubit state evo-
lution.

Excitation to higher energy levels

The phase qubit must be operated in a potential well which is made deep enough to
avoid escape of the excited state by tunneling. This has the consequence that the po-
tential well always contains more than one excited state. Population of the second
excited state by a microwave which is tuned in resonance to the |0〉 → |1〉 transition
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frequency ω10 is expected [111, 112] when the Rabi frequency ωR is comparable to
the anharmonicity ∆ω = ω10 − ω21. As it was shown in Fig. 3.5, the anharmonic-
ity of the potential well for typical phase qubits depends on the flux bias and is a few
hundred MHz. Short coherence times in turn dictate observation of Rabi oscillation
on a time scale of 10 ns which requires Rabi frequencies of order 100 MHz. For low-
quality phase qubits, this leaves only a small parameter range in which transitions to
higher excited states can be avoided. However, theory [113] has shown that a small
off-resonant transition probability to higher states can be corrected by suitably shaped
pulse sequences for sufficiently long coherence times.

Taking into account the possibility of leakage to the second excited qubit state, the
population of state |1〉 up to terms quadratical in ωR reads [112]

p1(t) =
[
1− 3

2

( ωR

2 ∆ω

)2
]2

· sin2

{
ωR

[
1−

( ωR

2∆ω

)2
]

t

}
. (4.28)

This equation shows that the oscillation frequency ΩR scales with the amplitude of the
microwave field as

ΩR ∝ Iµw

(
1− κ I2

µw

)
, (4.29)

describing a quadratic bend-off of the observed frequency ΩR from the linear depen-
dence on drive amplitude. Equation (4.28) predicts a reduced amplitude of the first ex-
cited state population due to leakage into higher states. However, this leakage does not
necessarily reduce the amplitude of observed oscillations, as higher excited states may
take part in coherent oscillations. Modelling a strongly driven phase qubit operated
in the multi-level limit [36] predicted coherent oscillations of nearly 100% amplitude
between the ground and mostly the 4th and 5th excited states. Since the state readout
via a dc-flux pulse is usually calibrated to merely distinguish the ground state from
higher states, the amplitude reduction predicted by Eq. (4.28) may not observed in our
experiments.

Coupling to parasitic fluctuators

The observation of anti-crossings in the microwave spectrum [27] has demonstrated
that contemporary phase qubits suffer from coherent coupling to parasitic two-level
fluctuators (TLF) which exist in the dielectrics used in junction fabrication. A TLF has
the two eigenstates |g〉 and |e〉 and is characterized by its resonance frequency ωTLF

and the coupling strength to the qubit J . In resonance at δ = ωTLF − ω10 = 0,
the eigenstates of the coupled system are linear combinations of the states |1g〉 and
|0e〉 [34]. This gives rise to an oscillatory redistribution of the energy between qubit
and parasitic resonator, where the frequency of this oscillation is given by the coupling
strength J which also determines the size of the anti-crossing given by J/h .
In a continuously driven qubit-fluctuator system at δ = 0, the probability to measure
the first excited qubit state is calculated [112] as

p1(t) u
1
2

[
1− cos

(
J t

2~

)
cos

(
Btt

~

)]
, (4.30)

where fluctuator damping is neglected and the typical experimental case |Bt|/J À 1
is assumed. This equation describes an oscillation at the Rabi frequency ωR = Bt/~
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which is modulated by the beating frequency J/2~.
It has been shown experimentally [34] that the damping rate γ of a TLF can be compa-
rable to the qubit decoherence rates. If, in contrast, the parasitic resonators are highly
damped and γ À J , the excited state population will show damped oscillations at a
single frequency,

p1(t) u
1
2

[
1− e−J2t/4~γ cos

(
Btt

~

)]
. (4.31)

4.6.2 Measurement of Rabi oscillation

To observe Rabi oscillation at a chosen microwave frequency, the value of external
flux bias at which the qubit resonance peak is located is first determined by microwave
spectroscopy. The duration τµw of the resonant microwave pulse is then varied, hereby
adjusting the delay of the calibrated readout pulse such that it always occurs at the end
of the microwave pulse. The probability to measure the qubit in the excited state then
displays the damped oscillations p1(t) described by Eq. (4.28), where the time scale t
is given by the microwave pulse duration.

To assure that the readout pulse occurs at the end of the microwave pulse, it may
be necessary to compensate a difference in the signal propagation delay between the
coaxial cables used to send microwave and readout pulses. This is done by sending a
nanosecond-long resonant microwave pulse of large amplitude and recording the es-
cape probability in dependence of the readout pulse delay relative to the microwave
pulse. A rapid increase in Pesc then indicates the readout delay at which both pulses
arrive at the qubit simultaneously.

4.6.3 Results of SiOx - based samples

In our experiments on commercially fabricated phase qubits made of niobium as the
superconductor and SiOx as dielectric, we measured the longest coherence times with
samples of low current density and small qubit junctions. Figure 4.18 shows the best
Rabi oscillations which we obtained from such kind of chip using sample Hyp30S
at a driving frequency of ωµw/2π = 13.3 GHz2. Changing the microwave power, we
observe the expected increase of the oscillation frequency.

To extract the oscillation frequency ωR, full amplitude AR and decay time Td, we
fit the data to the function

Pesc = P0 + (AR/2) e−t/Td [sin(ωR t + ϕR) + Ab] , (4.32)

as it is shown by the solid line in Fig. 4.18. Here, P0 is a constant offset, ϕR an oscil-
lation phase, and Ab is an offset which depends on the current oscillation amplitude.
This last fitting parameter is required because at large microwave power we observe
that Pesc tends to saturate exponentially after a mean time which is about Td at a high
value, as it can be seen in the top panel of Fig. 4.18. We may explain this behavior by
incoherent population of higher excited states.

2The indicated microwave power or amplitude always corresponds to the signal level at the generator
output. If not mentioned explicitly, data has been taken at a temperature of about 20 mK.
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Figure 4.18: Coherent oscillations measured on sample Hyp30S using a drive fre-
quency of ωµw/2π = 13.3 GHz and indicated power. The solid line is a fit to Eq. (4.32).
Note the different vertical scale of each panel.

Driving strength dependence

In Fig. 4.19, we plot the oscillation amplitude AR and decay time Td vs. microwave
amplitude exemplarily for sample Hyp30S driven at ωµw/2π = 13.3 GHz. For all
measured samples, these parameters showed a similar driving amplitude dependence.
At weak driving, we observe a small oscillation amplitude, which may be explained by
relaxation occurring at a rate comparable to the Rabi frequency. For stronger driving,
the oscillation amplitude increases quickly and reaches a maximum which is probably
characterized by the condition that the Rabi frequency is larger than the energy relax-
ation rate but not so large that transitions to higher excited states are dominant. Further
increasing the driving strength then leads to decrescent amplitude due to the mentioned
population of higher excited states. The largest obtained oscillation amplitude is about
0.6, which is comparable to that of the other samples of this type as it is summarized
in Table 4.4.

The decay time of the observed oscillations shows a similar dependence on mi-
crowave amplitude, approaching smoothly a maximal value of Td ≈ 6 ns at intermedi-
ate driving strength.
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Figure 4.19: Dependence of the coherent oscillation amplitude (top panel) and decay
time (bottom panel) on microwave amplitude, measured on sample Hyp30S using a
drive frequency of ωµw/2π = 13.3 GHz. Error bars indicate the confidence interval
resulting from the fitting procedure as described in the text. Dashed lines are guides to
the eye.

Sample Td AR ωµw/2π ωR/2π
Hyp30S 6.0 ns 0.6 12.7 - 14.2 GHz 50 - 900 MHz
Hyp30L 2.8 ns 0.5 11.65 400 - 1300 MHz
Hyp100 2.5 ns 0.65 22.6 180 - 550 MHz
VTT30 4.0 ns 0.65 12.8 - 17.3 200 - 1800 MHz

Table 4.4: Results of coherent oscillation measurements in SiOx - based samples. Os-
cillation decay time Td and amplitude AR are largest obtainable values, averaged over
measurements using resonant microwaves in the indicated frequency range ωµw and
oscillation frequencies ωR. The stated oscillation amplitude AR is not scaled by the
measurement contrast.
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Figure 4.20: Oscillation frequency vs. microwave amplitude, measured using sample
Hyp30S. For each curve, the external flux bias has been adjusted to result in resonance
at the applied microwave frequency indicated in the legend. Solid lines are fits to theory
for a three-level system.

The dependence of the oscillation frequency vs. the amplitude of the microwave
drive, measured on sample Hyp30S, is shown in Fig. 4.20. The three different curves
were obtained using the indicated microwave frequencies, whereas the external flux
bias has been adjusted to maximize the oscillation visibility at each frequency. We
observe a linear dependence of the oscillation frequency only for small microwave
amplitudes. The differing slope of the curves at low microwave amplitude can be at-
tributed to the different power coupling to the qubit when the microwave frequency is
changed. We observe a deviation from the linear dependence at larger drive amplitudes
as it is expected when higher excited states get involved. The solid lines in the figure
are best fits to the equation

ΩR = c Iµw

(
1− κ (c Iµw)2

)
, (4.33)

which is the theoretically expected dependence for a three-level system as given by
Eq. (4.29) modified by adding the free coupling parameter c. We were not able to
obtain a systematic and close correlation between the three-level theory and the data
sets at all studied flux biases. Beneath the existence of more than three levels in the
potential well, the qubit dynamics are expected to be severely influenced by coupling to
parasitic two-level fluctuators. A change of the external flux bias may therefore result
in a strongly modified qubit environment.

External flux dependence

In section 2.3.1 it was discussed how a detuning between the qubit Larmor frequency
and the driving microwave affects Rabi oscillaion. Equation (2.58) predicts that with
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increasing detuning ∆ = |ω10 − ωµw| the oscillation frequency is increased, ΩR =√
ωR

2 + ∆2, while its amplitude is reduced by a factor ωR
2/(ωR

2∆2). Plotting the es-
cape probability color coded vs. microwave pulse duration and detuning should there-
fore result in the so-called chevron-pattern.

In our current experimental setup, due to the frequency-dependent coupling to the
qubit caused by transmission line resonances, it is more convenient to create a detuning
by changing the external flux bias rather than the microwave frequency .
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Figure 4.21: Escape probability Pesc (color-coded) in dependence of microwave pulse
duration and detuning ∆. The detuning was realized by changing the external flux bias
at a fixed microwave frequency of 14.2 GHz. Sample Hyp30S.

In Fig. 4.21, a chevron pattern measured using sample Hyp30S driven at ωµw/2π =
14.2 GHz is presented. The vertical axis shows the detuning ∆ = (ωµw − ω10)/2π,
which was converted from the applied external flux to frequency using spectroscopy
data. A linear approximation of the resonance frequency dependence on external flux
in vicinity of the resonance at 14.2 GHz was hereby used.

The figure shows the expected increase of the oscillation frequency when the exter-
nal flux is increased starting from the exact resonance, which results in a flatter poten-
tial well having a smaller transition frequency ω10 < ωµw. However, close to the exact
resonance the oscillation visibility rapidly decreases. We speculate that this is due to
an increased probability of inducing transitions to higher levels when the microwave
frequency is slightly smaller than the |0〉 → |1〉 transition frequency, as in this case
the microwave is closer to the |1〉 → |2〉 resonance. Further reducing the detuning for
∆ < -500 MHz, the system remains in the ground state, as the microwave frequency is
below the |0〉 → |1〉 transition frequency.

For the same data, Fig. (4.22) contains plots of the characteristic oscillation pa-
rameters obtained by fitting the datasets at each detuning. The oscillation frequency
plotted in Fig. 4.22 (a) follows closely the theoretical detuning dependence as expected
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Figure 4.22: External flux dependence of the coherent oscillation in sample Hyp30S.
(a) oscillation frequency, (b) oscillation amplitude, (c) oscillation decay time.

from Eq. (2.58), which is plotted by the solid line without free parameters. The small
deviation can be explained by the only approximated flux to frequency conversion.
The oscillation amplitude AR shown in Fig. 4.22 (b), in contrast, shows the mentioned
decrease for ∆ / 0. We find a maximum visibility of Rabi oscillation for positive de-
tuning. This does not confirm the expectation for a two-state system, which is plotted
by the solid line again using Eq. (2.58). The data of extracted oscillation decay times
Td, plotted in Fig. 4.22 (c), suggest that the longest coherence times are obtained close
to resonance, as expected. However, as the oscillation visibility at this point is very
small, the uncertainty in this data is pretty large.

4.6.4 Results of SiNx - based samples
To verify that the short coherence times we observed on standardly fabricated sam-
ples are not limited by our experimental setup, we also measured the custom-made,
high-quality phase qubit sample UCSB-SiN provided by the group of J. Martinis [84].
Figure 4.23 contains a selection of Rabi oscillation data which we measured on this
sample. Using experimental conditions identical to the measurements described above,
we obtained decay times of Td ≈ 110 ns, a factor of about 20 times longer than in the
samples based on Nb-SiOx technology. These data agree with the independent findings
[84], and thus it is safe to conclude that our measurement apparatus does not introduce
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additional sources of decoherence which might affect the qubit dynamics on a time
scale of less than 100 ns.
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Figure 4.23: Rabi oscillation observed in sample UCSB-SiN, using a microwave fre-
quency of 6.0 GHz at the indicated powers. At this particular flux bias, the oscillations
showed a beating.

At certain values of external flux bias, we observe a beating in the coherent oscil-
lation amplitude as shown in Fig. 4.23. The beating frequency depends on the Rabi
frequency. This can be explained by coherent coupling to a parasitic two-level fluctua-
tor as discussed in Sec. 4.6.1. While we observe this effect also in SiOx-based samples,
their short coherence times and larger expected density of parasitic fluctuators usually
hinders observation of more than one beating period.

The dependence of the Rabi oscillation frequency on microwave amplitude is shown
in Fig. 4.24 for a set of applied drive frequencies in the range of 6.0 to 8.7 GHz. Simi-
larly to SiOx-based samples, the oscillation frequency bends off from the linear depen-
dence at large Rabi frequencies. It can be seen from this data that in a shallow potential
well, corresponding to smaller drive frequencies, bending-off occurs at higher Rabi
frequencies than that for the deep potential well. Also, at high drive amplitudes the
oscillation frequency appears to saturate at a value which corresponds approximately
to the anharmonicity of the potential well. For example, at a flux bias resulting in a res-
onance frequency of ω10/2π = 6.5 GHz, the anharmonicity is (ω10 − ω21)/2π ≈ 600
MHz and at ω10/2π = 8.7 GHz it is ≈ 200 MHz (see Fig. 3.5). However, the curves
obtained at 7.8 GHz and 8.15 GHz driving frequencies fall out of this direct propor-
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tionality, impeding a straightforward qualitative analysis.

The curve obtained using a microwave frequency of 6.0 GHz extrapolates to a Rabi
frequency of about 200 MHz at zero drive amplitude. This can be explained by a de-
tuning of the external flux bias from the exact resonance, which is expected to increase
the oscillation frequency according to Eq. (2.58).

4.6.5 Conclusions

We observed driven coherent oscillations in phase qubits fabricated by standard tech-
nology employing SiOx as insulator dielectric. Longest observed decay times were
about 6 ns, while most samples showed typically Td ≈ 3 ns. We verified that these
short coherence times do not originate from excess noise of our experimental setup.
Measurements of a high-quality phase qubit sample employing SiNx as a dielectric
showed Rabi oscillation decay times above 100 ns, in agreement to independent mea-
surements by the group of the University of California, Santa Barbara.

For weakly driven qubits, we find the expected linear dependence of the Rabi fre-
quency on drive amplitude. At stronger driving, the oscillation frequency saturates at a
value which is near the anharmonicity of the qubit potential well, indicating population
of higher excited states.

Under strong driving conditions, we observe a reduction in oscillation amplitudes
and decay times, which we attribute to population of higher excited states. This effect
sets a limit to the shortest qubit gate operation time, which is given by the inverse of
the Rabi frequency. Measurements of the coherent oscillation frequency dependence
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on drive amplitude support the notion that higher excited states become populated when
the Rabi frequency is comparable to the qubit anharmonicity.

4.7 Ramsey fringes

4.7.1 Theory
In the Bloch-sphere representation of the qubit state, Rabi oscillation can be understood
as originating from continuous rotation of the Bloch-vector around the ~x- or the ~y axis.
In a Ramsey experiment [114], it is also possible to observe the precession around the
~z-axis. Since these rotations do not change the ~z-component of the Bloch vector, they
are not affected by energy relaxation, but only by dephasing. This allows to directly
measure the effective dephasing rate 1/T ∗2 , which is the sum of the dephasing rate by
inhomogeneous broadening and the intrinsic dephasing rate,

1
T ∗2

=
1
T ′2

+
1
T2

. (4.34)
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Figure 4.25: Illustration of the Ramsey experiment in the Bloch-sphere representation
of the qubit state (top) and sequence of microwave and readout pulses (bottom). (a)
A π/2-pulse rotates the Bloch-vector by 90◦ from |0〉 to the equator. (b) The vector
precesses freely around the ~z-axis during the time ∆t. (c) A second π/2-pulse projects
the acquired phase to the ~z-axis. The qubit state is measured by the readout dc-flux
pulse immediately afterwards.

Because only the ~z-component of the Bloch vector is observable, a method is re-
quired to realize a phase-dependent projection to the ~z-axis. A pulse sequence suitable
to visualize the spin precession and dephasing is illustrated in Fig. 4.25. First, a so-
called π/2-pulse is applied, which rotates the Bloch-vector by 90◦ to the equatorial
plane. The duration of such a microwave pulse corresponds to one quarter of the Rabi
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oscillation period, as it is determined beforehand at identical bias parameters. The
qubit now undergoes free precession around the ~z-axis at the Larmor frequency ω10.
After a variable delay time ∆t, a second π/2-pulse is applied. The outcome of this
second rotation now depends on the phase acquired during the time interval ∆t.

If the microwave is tuned exactly to the Larmor frequency, it creates an effectively
constant transversal field pointing to a fixed direction in the ~x− ~y-plane in the rotating
frame, where no precession occurs. In contrast, if the microwave is detuned from the
Larmor frequency, the effective field appears from the rotating frame to be rotating
around the ~z-axis at the frequency ∆ = ωµw − ω10. In this case, the second π/2-pulse
in the Ramsey sequence can be understood as creating a rotation around either the ~x-
or ~y-axis, depending on the phase (ωµw − ω10)∆t the microwave pulse acquired with
respect to the rotating frame during the time ∆t. The probability that the second π/2
microwave pulse rotates the Bloch vector to the excited state |1〉 therefore oscillates at
the Ramsey frequency

ωRamsey = (ωµw − ω10) = ∆, (4.35)

which is equal to the detuning. Dephasing occurring during the free precession cycle
then gives rise to a Ramsey fringe visibility which decays exponentially at the rate
1/T ∗2 .

4.7.2 Experimental results
Figure 4.26 shows the result of a Ramsey experiment performed on sample UCSB-SiN
using two microwave pulses of frequency 7.7 GHz and duration 1.5 ns, which were
detuned from the Larmor frequency by ≈ 300 MHz.
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Figure 4.26: Result of an experiment to measure Ramsey oscillation using sample
UCSB-SiN. The solid line connects measured data points, the dotted line is a fit to a
sine function decaying exponentially with a time constant of T ∗2 = 90 ns.

The escape probability was measured by applying the readout dc-pulse immediately
after the second microwave pulse. It shows the expected oscillation at the detuning
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frequency when the separation between the two pulses ∆t is varied. Fitting these
Ramsey fringes to an exponentially decaying cosine, as shown by the dotted line in
Fig. 4.26, results in a dephasing time of T ∗2 ≈ 90 ns, in accordance to independent
measurements using a similar sample [84].

8.3

8.2

8.1

8.0

7.9

7.8

7.7

7.6

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

- pulse separation ∆t [ns]π

2

Pesc

m
ic

ro
w

av
e 

fr
eq

u
en

cy
 [

G
H

z]

0               10      20             30             40              50              60     

7.6 7.7 7.8 7.9 8 8.1 8.2 8.3

0

100

200

300

400

microwave frequency [GHz]

R
am

se
y

 f
re

q
u

en
cy

 [
M

H
z]

(a)

(b)

Figure 4.27: (a) Escape probability (color-coded) vs. the time delay between two π/2-
pulses and the microwave frequency. Ramsey oscillation is observed at all frequencies
except near the exact resonance close to 8.0 GHz. (b) Ramsey oscillation frequency vs.
microwave frequency used to generate the π/2-pulses. Dashed lines have unity slope
and originate at 8.0 GHz.

The amplitude of the Ramsey oscillation shows a low-frequency beating. This is
expected to originate from the finite duration of the microwave π/2-pulses, during
which some precession occurs when the detuning is large. In an improved pulse se-
quence [101], this is circumvented by using two π/2-pulses always at exact resonance
and creating the detuning by a change of the Larmor frequency through a dc-flux pulse
between the microwave pulses.

To check whether the observed Ramsey frequency indeed corresponds to the de-
tuning, we repeated the measurement for several microwave frequencies. This data is
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plotted in Fig. 4.27 (a), showing the escape probability color-coded vs. both the π/2-
pulse separation ∆t and the microwave frequency. The pattern shows the characteristic
increase of oscillation frequency when the microwave is tuned away from the exact
resonance close to 8.0 GHz. In this figure, the particular pattern near ∆t ≈ 45 ns is a
plotting artefact. It originates in an interference effect which occurs when the Ramsey
frequencies exceed the experimental resolution at which the detuning was varied.

We find the exact resonance by plotting the Ramsey oscillation frequency vs. the
applied microwave frequency as it is shown in Fig. 4.27 (b). The two dashed lines have
unity slope and are hence fitted to the data by solely shifting their origin, resulting in a
Larmor frequency of 8.0 GHz.

An irregularity in the Ramsey oscillations is found in close vicinity of ωµw/2π =
7.88 GHz microwave frequency which can be seen in Fig. 4.27. We speculate that this
could be due to excitation of the |1〉 → |2〉-transition, which is calculated to have a
frequency of ω21/2π = 7.78 GHz. The difference between the applied microwave
frequency and ω21/2π = 7.78 is 100 MHz, which is close to the expected Ramsey
frequency ωRamsey/2π = 120 MHz at this point.

4.7.3 Conclusions
The long coherence times of the SiNx-based sample allowed us to measure its dephas-
ing time T ∗2 directly in a Ramsey fringe experiment. The data show the expected linear
dependence of Ramsey frequency on the detuning of the microwave from the exact
qubit resonance. In agreement to independent measurements, we find a T ∗2 -time of ≈
90 ns, which indicates that no significant sources of low-frequency noise exist in our
experimental setup.

4.8 Demonstration of the phase gate
For quantum computation it is necessary to have complete control of every qubit, which
means that it must be possible to rotate the Bloch vector to an arbitrary point on the
sphere. Any such rotation can be decomposed into three subsequent rotations around
two orthogonal axes [19]. Whether a resonant microwave pulse induces a rotation
around the ~x- or ~y-axis can be controlled by its phase, and therefore the ability of fast
microwave phase modulation allows to perform any single qubit gate.

However, for phase qubits it is experimentally very easy to realize rotations around
the ~z-axis, which implements the qubit phase gate. This is done by applying a short dc-
pulse of external flux, which changes the Larmor frequency by modifying the energy
difference between the qubit states. The Bloch vector therefore drifts out of the frame
which rotates at the microwave frequency, effectively changing the phase of subsequent
microwave pulses. Any qubit operation can thus be realized by using a combination of
fixed-phase microwave pulses and flux pulses.

4.8.1 Experimental results
We demonstrate this in an experiment using the pulse sequence shown in Fig. 4.28
(a). Between two microwave π/2-pulses of 7.7 GHz we applied a detuning flux pulse
of constant duration 5.8 ns but varying amplitude. As the relative phase between mi-
crowave and Larmor frequencies is given by the integral over the time-dependent de-
tuning, the probability to measure the excited state oscillates with increasing detuning
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Figure 4.28: (a) Pulse sequence suitable to demonstrate the phase gate. (b) The os-
cillating escape probability originates in rotations around the ~z-axis, whose velocity is
controlled by the detuning pulse amplitude.

pulse amplitude as shown in Fig. 4.28 (b). The figure indicates that a pulse amplitude
of 4 a.u. induces 5 ~z-rotations, or about 0.4 π-rotations per nanosecond. Using larger
detuning pulse amplitudes and shorter durations, this technique should allow to realize
a ~z-rotation by π in about one nanosecond.

4.8.2 Conclusions

We describe an implementation of the phase gate which is based on the application of a
short detuning flux bias pulse. This technique does not require additional experimental
resources and will be very useful for qubit state tomography. We demonstrate con-
trolled rotation of the Bloch vector around the ~z-axis by varying the amplitude of the
detuning flux pulse. With this method, it is possible to realize a phase-π-gate within
less than 2 ns.

4.9 Temperature dependence of coherence times

The study of the influence of temperature on coherence properties of superconducting
qubits is important in many aspects. It may add new insights to understand better the
origins of decoherence and can help to verify theoretical models. Whether it is possible
to operate qubits at temperatures of a few hundred milikelvin is an important question
regarding the realization of a quantum computing chip, which would contain hundreds
of qubits. The large number of required biasing wires would increase the heat load
to the cryostat and consequently raise its base temperature. Also, dissipative readout
or control circuits like dc-SQUIDs or RSFQ logic give rise to a warming of the qubit
chip. Lastly, exploring the limiting factors which hinder operation of contemporary
qubits at higher temperatures may enable designing specific samples which work in
the experimentally easily accessible temperature range of about 300 mK.
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4.9.1 Theory
When it is possible to truncate the phase qubit to a two-level system it can be described
as a spin-1/2 system which has the Hamiltonian

Hq = −1
2
~∆σx +

1
2
εσz, (4.36)

where ε is the difference of state energies and 1
2~∆ is the transition matrix element. If

the latter is large, the system oscillates between its two states at the Rabi frequency ∆.

Decoherence is modelled in the Caldeira-Leggett approach [52] as resulting from
coupling of the spin to an infinite set of harmonic oscillators. The dilemma that while
quantum mechanics requires a system to evolve unitarily but dissipation is experienced
as a non-reversible effect is hereby solved - the energy is distributed among a large
number of degrees of freedom and unlikely to return to the spin. The coupled system
is thus described by the so-called ”spin-boson” Hamiltonian [52, 115, 60]

H = Hq +
∑
α

(
1
2
mαω2

αx2
α +

p2
α

2mα

)
+

1
2
q0σ̂z

∑
α

Cαxα, (4.37)

where the second term summarizes the α harmonic oscillators of the bath, each having a
coordinate xα , mass mα, momentum pα and eigen frequency ωα. The third term adds
the interaction between the spin and the bath, where a linear coupling of strength Cα

between the coordinates of the oscillators and the z-component of the spin is assumed.
In thermal equilibrium, all information about the boson bath is contained in the

spectral density function J(ω) [115]

J(ω) =
π

2~
∑
α

C2
α

mα ωα
δ(ω − ωα), (4.38)

where the Dirac δ-functions add to a continuous function in the limit of infinitely many
bath modes [60]. For an electric circuit having an impedance Z(ω), the spectral density
function is [60]

J(ω) = ω
RQ

Re[Z(ω)]
, (4.39)

where RQ = h/(2e)2 is the superconducting resistance quantum and Re[Z(ω)] de-
notes the real part of the circuit impedance.

Knowledge of the noise spectrum allows to derive the temperature dependence of
the relaxation time T1 and dephasing time T2 [115, 116, 117, 118]. For finite temper-
ature T ,

T−1
1 ∝ J(ω) coth

~ω
2kBT

ω→∆E/~
(4.40)

T−1
2 ∝ T−1

1

2
ω→∆E/~

+ J(ω) coth
~ω

2kBT
ω→0

. (4.41)

Equation (4.40) shows that the relaxation rate is only affected by bath modes at the
qubit frequency ω10 = ∆E/~. The dephasing rate Eq. (4.41) has a contribution from
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the relaxation rate, which reflects the fact that phase information is lost when relaxation
occurs. Additionally, dephasing is affected by the bath properties at low frequencies.
When x is small, coth(x) ≈ 1/x, and the dephasing rate Eq. (4.41) can thus be written
using Eq. (4.39) as [60]

T−1
2 ∝ 1

2
ω

RQ

Re[Z(ω)]
coth

~ω
2kBT

ω→∆E/~
+

2kBT

~
RQ

Re[Z(0)]
. (4.42)

We see that beneath the coth-dependence, the dephasing rate increases linearly with
temperature at a rate determined by the low-frequency impedance of the environment.

Thermal equilibrium populations

Thermal population of the excited qubit state will result in a loss of visibility of coher-
ent oscillations. This becomes relevant when the thermal energy kB T is comparable
to the energy difference ∆E between the two qubit states. In the following, the tem-
perature dependence of the expected measurement contrast is calculated.

The maximal contrast at which a change in the level population can be observed is
given by the population difference

n = Ng −Ne (4.43)

in thermal equilibrium. The populations of the ground state Ng and excited state Ne

evolve according to the principle of detailed balance [119],

dNg

dt
= W↓Ne −W↑Ng (4.44)

dNe

dt
= W↑Ng −W↓Ne. (4.45)

Taking into account relaxation of the excited state occuring at a rate Γ1 ≡ T−1
1 , the

transition rate from ground to excited state W↑ and the rate from excited to ground state
W↓ read

W↑ = W (4.46)
W↓ = W + Γ1. (4.47)

Here, W is the rate at which the thermal bath induces transitions between levels, which
is equal in both directions. As in thermal equilibrium dNg

dt = 0, we obtain a condition
for the ratio of the transition rates from Eq. (4.44)

W↑
W↓

=
N0

e

N0
g

= exp (−∆E/kBT ) . (4.48)

In this equation, the ratio of the equilibrium populations N0
g and N0

e is given by the
Boltzmann factor. Solving Eqs. (4.44) and (4.45) for n yields

dn

dt
=

n0 − n

T1
, (4.49)

where T1 = 1/(W↓−W↑) has been used. We arrive at the sought population difference
in thermal equilibrium,

n0 =
W↓ −W↑
W↑ + W↓

=
1

1 + 2 W/Γ1
= tanh(∆E/2kBT ). (4.50)
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The last expression, which is the most important result of this section, has been ob-
tained using Eq. (4.48) and the identity

tanh(∆E/2kBT ) =
1− exp(∆E/kBT )
1 + exp(∆E/kBT )

. (4.51)

The maximal measurement contrast, assuming that it is limited only by the thermal bath
equilibrating the population of the two qubit levels, hence follows the tanh dependence
given in Eq. (4.50). At the temperature where kBT = ∆E, the contrast is expected to
drop to n0 = 46 %.

Integration of Eq. (4.49) shows that the system reaches thermal equilibrium after a
mean time which is equal to the energy relaxation time T1:

n(t) = n0

(
1− e−t/T1

)
. (4.52)

A similar calculation is used to find the equilibrium population difference nD in a
driven system. In the incoherent limit, the drive gives rise to a transition rate ΓD which
is equal for both directions |g〉 ↔ |e〉, similar as the thermal bath. Detailed balance in
this case results in

dnD

dt
= −2ΓD n. (4.53)

Finally, combining the rates Eq. (4.53) and Eq. (4.49),

dnD0

dt
= −2Wn +

n0 − n

T1
, (4.54)

we arrive at the population difference nD0 in steady state dnD0/dt = 0 for the continu-
ously driven system coupled to a thermal bath,

nD0 =
n0

1 + 2W/Γ1
. (4.55)

4.9.2 Measurement limitations
In order to observe the phase dynamics at higher temperatures it is essential to avoid
thermal activation out of the shallow potential well. As it was discussed in Sec. 2.2.5,
the activation rate increases exponentially as the potential barrier height becomes com-
parable to the thermal energy kBT . At high temperatures it is therefore required to
operate in a deep potential well where thermal activation can be neglected.

On the other hand, the possibility to use an rf-SQUID as a quantum bit is build on
the ability to truncate it to a two-state system. This requires the qubit potential to be
sufficiently anharmonic, hereby separating higher states through the different transition
frequencies between neighboring levels. However, as energy relaxation (and tunneling)
give rise to a certain width of each energy level, this is only guaranteed as long as the
condition

~ω21 +
1
2
(δE1 + δE2) ¿ ~ω01 (4.56)

is satisfied. Here, δEn is the full width of level n arising from its finite lifetime τn and
ωfi is the transition frequency from level i to level f , see Fig. 4.29 for illustration. The
finite width of the ground state is hereby given by the tunnel rate through the potential
barrier.
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Figure 4.29: Sketch of a qubit potential well containing three energy levels, indicating
the transition frequencies ω10 and ω21 and the level widths δEn.

As it is indicated in Fig. 4.29, the life time of the nth excited states is expected
to be shorter by roughly a factor of about n than that of the first excited state. Using
the time-energy-uncertainty relation δE1 τ1

∼= ~ to estimate the width of the first level
from its measurable lifetime τ1 = T1, Eq. (4.56) becomes

∆ω >
3
2

T−1
1 , (4.57)

where ∆ω = ω10 − ω21 expresses the anharmonicity of the potential well and δE2 =
2δE1 has been assumed. This crude estimation indicates that for the investigated stan-
dardly fabricated samples, having T1-times of about 3 ns, to avoid population of the
second excited state the anharmonicity ∆/2π must be larger than 80 MHz.

Note that this estimation disregards leakage to higher states due to large drive am-
plitudes as discussed in Sec. 4.6.1. To avoid this effect, the Rabi frequency ωR must be
smaller than the anharmonicity,

∆ω > ωR. (4.58)

Taking into account the required Rabi frequencies ωR ≈ 2π T−1
1 to allow observa-

tion of coherent oscillations in the short-living excited state population, the condition
Eq. (4.58) turns actually more stringent than Eq. (4.57).

We conclude that the study of the coherence times of phase qubits at higher tem-
perature requires operating them in deep potential wells in order to avoid thermal ac-
tivation. The limit of the two-level operation is set by the energy relaxation rate T−1

1 ,
which has to be smaller than the anharmonicity ∆ω. Due to their short coherence
times, our SiOx-based samples at higher temperatures can only be studied in the nearly
classical multi-level limit. In contrast, the much longer coherence times of the SiN-
based sample UCSB-SiN allowed its operation in the two-level limit also at higher
temperatures and using deep potential wells.

4.9.3 Measurement protocol
Before coherent dynamics were investigated at higher temperatures, we measured the
dependence of the escape rate from the ground state on temperature, as described in
Sec. 4.2.2. This allowed to determine a suitable working point of external flux at which
thermal activation remained negligible. Microwave spectroscopy was then performed
at the base temperature in order to find the qubit resonance at the working point. After
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observation of coherent oscillations at the working point, external flux bias, microwave
frequency and amplitude were varied by small amounts in order to maximize the oscil-
lation amplitude and life time.

All measurements presented in the remainder of this chapter were obtained while
keeping the qubit bias parameters constant at all temperatures. In order to preserve
high measurement contrast the amplitude of the readout pulse had to be reduced at
high temperatures, where qubit escape from the excited state to the deep well becomes
possible not only by quantum tunnelling but also by thermal activation over the barrier.
We adjusted the readout amplitude at each temperature by the automated calibration
procedure described in Sec. 4.3.5.

The width of the measured switching-current histogram of the readout dc-SQUID
increases in the thermal regime, which reduces the contrast between the two qubit
states. We therefore separated the contributions of the two states to the readout SQUID
switching-current distribution by the fitting procedure using weighted histograms of
the two flux states as described in Sec. 3.4.2.

A complete data set to observe the temperature dependence of coherent oscillation
consists of approximately 8000 histograms. At each of the typically 40 temperature
values in the range of 20 mK to 800 mK, the escape probability was probed for about
200 values of the microwave pulse duration. As each histogram comprises at least 1000
measurements, in total about 8 million measurements were acquired at a typical rate of
300 measurements per second. Up to five minutes were necessary to allow for stabi-
lization of the dilution unit temperature at every set point. One complete measurement
thus took a time of more than 10 hours. The stability of the external qubit parameters
during this time was guaranteed by using a mains supply to energize the biasing elec-
tronics. It was impossible to measure in an automated fashion at temperatures above
800 mK because the He3/He4-mixture began to evaporate at about 900 mK.

4.9.4 Temperature dependence of Rabi oscillations

Results of SiOx - based samples

We measured the influence of temperature on coherent oscillations in the SiOx based
samples Hyp30S and VTT30, both having comparable coherence times and qubit pa-
rameters. In the following we only present results obtained on sample VTT30, which
were similar to those acquired using the other sample.

Figure 4.30 (a) displays coherent oscillations in sample VTT30 at the indicated
temperatures. The microwave drive frequency was ωµw/2π = 16.5 GHz and its ampli-
tude was adjusted to result in a coherent oscillation frequency of ωR/2π = 750 MHz.
For the same bias parameters, Fig. 4.30 (a) contains the result of a measurement of the
oscillation frequency dependence on drive amplitude, indicating that the chosen ampli-
tude of ≈ 0.28

√
mW was small enough to remain in the linear regime. The observed

oscillations decay at the lowest temperature with a time constant of about 4 ns, as it is
typical for all our SiOx - based samples. Remarkably, even at the highest temperature
of 800 mK oscillations can be clearly seen, though their amplitude and decay time are
both reduced by about a factor of 2.

A systematic evaluation of the temperature dependence of coherent oscillation am-
plitude and decay time is given by the data presented in Fig. 4.31, using the fitting
procedure described in Sec. 4.6.3. This figure also includes measurements using dif-
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Figure 4.30: (a) Coherent oscillations observed using sample VTT30, driven at 16.5
GHz microwave frequency and amplitude 0.28

√
mW, at the indicated temperatures.

Each curve is offset by Pesc=0.5 for clarity. (b) Coherent oscillation frequency vs.
microwave drive amplitude at identical bias parameters, measured at T=20 mK.

ferent external flux biases, corresponding to qubit resonances at 15.7 GHz, 16.5 GHz
and 17.3 GHz. At 15.7 GHz, the coherent oscillation frequency was ωR/2π = 750
MHz and thus equal to the 16.5 GHz data, while for 17.3 GHz it was with ωR/2π =
830 MHz about 10 % larger. The oscillation frequency changed with temperature less
than ≈ 2 %, which is within the confidence intervals of the fits. Figure 4.31 (a) shows
that for all datasets the oscillation amplitude remained unchanged below a temperature
of about 200 mK and then decreased monotonically to approximately 50% of its value
at the highest measured temperature of 800 mK. The solid lines in this figure are plots
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Figure 4.31: (a) Coherent oscillation amplitude (top) and decay time (bottom) ver-
sus temperature, measured using sample VTT30. Each data set corresponds to an
adjusted magnetic field resulting in resonance at the applied microwave frequency
ωµw/2π indicated in the legend. In (a), the solid lines show the expected contrast
following C0 · tanh(~ωµw/2kBT ) and the dashed line is the expected contrast for a
|0〉 ↔ |2〉-oscillation. In (b), the solid lines show the expected T1-times Eq. (4.60) for
∆E = ~ωµw. Error bars in the insets give average confidence intervals of the fits.

to the equation

C(T ) = C0 tanh
(
~ωµw

2kBT

)
, (4.59)

which according to Eq. (4.50) is the theoretical expectation for the oscillation visibility
reduction due to thermal population of the first excited qubit state. For these plots, C0

was set to the observed amplitude at the lowest temperature and ωµw corresponds to the
applied microwave frequency. The oscillation amplitude measured in the most shallow
potential well using 15.7 GHz microwave frequency does indeed show the expected
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temperature dependence, while the other two data sets display a larger amplitude than
expected at high temperatures. This could be explained by assuming that the oscillation
in the deeper potential wells involves the second excited state, which is less affected by
thermal population due to its about twice larger energy. The dashed line in Fig. 4.31 (a)
is a plot of Eq. (4.51) using ωµw/2π = 2·16.5 GHz to show the expected contrast of a
|0〉 ↔ |2〉 oscillation. However, as it was pointed out before, the effective environment
of the qubit may change drastically when changing the flux bias due to coupling to
parasitic fluctuators, rendering a quantitative analysis difficult.

The temperature dependence of the oscillation lifetime obtained from the same data
is shown in Fig. 4.31 (b). The difference in the absolute values of the lifetimes when
changing the flux bias may be interpreted either as being due to varying coupling to
parasitic resonators or to an increased probability of leakage to higher levels for deeper
potential wells. For phase qubits, the expected temperature dependence of the energy
relaxation time was given by Eq. (3.1.2), which is shown in the figure by the solid lines
being plots of the equation

T1 = 2 T 0
1

[
1 + coth

(
∆E

2kBT

)]−1

, (4.60)

where ∆E = ~ωµw was the applied microwave frequency and T 0
1 is the fitting pa-

rameter for the lifetime at zero temperature. In contrast to the oscillation amplitude,
the theoretical expectation for the relaxation time is more closely met by the datasets
obtained at 16.5 GHz and 17.3 GHz driving frequencies. The dataset obtained at 15.7
GHz shows a weaker temperature dependence. As it was mentioned in Sec. 4.6.1, the
decay rate of Rabi oscillation is determined by the mean of relaxation and dephasing
rates. Comparing the decay rate of Rabi oscillation to the temperature dependence of
the T1 time is therefore inaccurate. Nevertheless, relaxation contributes a large part to
the dephasing rate as it was shown by Eq. (4.41).

Results of the SiNx - based sample

The temperature dependence of coherent oscillations in the high-quality qubit sample
UCSB-SiN was measured using microwave frequencies in the range of 7.4 GHz to 8.7
GHz. Figure 4.32 exemplarily shows data obtained using 7.4 GHz drive frequency at
three temperatures. At 15 mK, the oscillations showed a life time of about 100 ns and
an amplitude corrected for histogram overlap of about 0.85, whereas at 335 mK both
amplitude and life time were substantially smaller. The results obtained by fitting the
oscillations to exponentially decaying sine functions are summarized in Fig. 4.33 for
three external flux biases adjusted to result in resonance at the chosen microwave drive
frequency indicated in the legends.

The oscillation amplitudes display a distinct behavior which is shown in Fig. 4.33
(a). Increasing the temperature, the amplitude of the oscillation taken at 7.4 GHz is re-
duced slowly up to a temperature of about 250 mK, beyond which it decreases rapidly
and reaches zero at 350 mK. The data for 8.0 GHz microwave frequency does not
depend on temperature below about 300 mK, but quickly approaches zero close to
400 mK. Most peculiar, the oscillation amplitude recorded using 8.7 GHz drive fre-
quency first drops by about 30 % at 200 mK, but with further increasing the temper-
ature reaches a maximum value at 315 mK, which is actually larger than its value at
15 mK. Beyond the maximum, the oscillation decays quickly and at a similar rate as
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Figure 4.32: (a) Coherent oscillations observed using sample UCSB-SiN, driven at 7.4
GHz microwave frequency, at the indicated temperatures.

observed for the other drive frequencies, vanishing at a temperature of 415 mK. This
non-monotonic temperature dependence was reproducible and was also observed at
drive frequencies of 8.6 GHz and 8.9 GHz.

To explain the non-monotonic temperature dependence, we speculate that the os-
cillation amplitude is limited by coupling to parasitic two-level fluctuators. Increasing
temperature, on one hand, may reduce the fluctuators-induced decoherence as some
part of the two-level fluctuators gets saturated by energy absorbed from the thermal
bath. On the other hand, higher temperature leads to conventional loss of oscillation
visibility due to thermal population of the excited state as described in Sec. 4.9.1.

We find that the temperature T∆ up to which the oscillation can be seen at a chosen
flux bias is very correlated with the energy difference between the two qubit states as
T∆ = ∆E/kB . Assuming that the microwave was adjusted to exact resonance we have
∆E = ~ωµw, from which we calculate T∆ = 355 mK at ωµw/2π = 7.4 GHz, T∆ = 384
mK at ωµw/2π = 8.0 GHz, and T∆ = 418 mK at ωµw/2π =8.7 GHz, in striking agree-
ment to experimental observation. However, the very rapid decrease of the amplitude
close to T∆ can not be explained only by taking into account thermal depolarization of
the qubit as discussed in Sec. 4.9.1, because this process results in a less rapid loss of
contrast with temperature, which is shown in Fig. 4.33 (a) by solid lines plotting the
function C0 · tanh(~ωµw/2kBT ).

The temperature dependence of the Rabi oscillation decay time is given in Fig. 4.33
(b), which shows a similar behavior at all studied microwave frequencies. To facilitate
comparison between the data sets, the decay times obtained at 8.0 GHz and 8.7 GHz
were multiplied by a constant factor to make them coincide with the 7.4 GHz data at
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Figure 4.33: (a) Amplitude of coherent oscillation vs. temperature obtained at the
indicated microwave frequency ωµw/2π. Solid lines: expected contrast following
C0 · tanh(~ωµw/2kBT ), dashed line: expected contrast for a |0〉 ↔ |2〉-oscillation.
(b) Coherent oscillation lifetime Td vs. temperature. Solid lines: expected T1-time
Eq. (4.60) for ∆E = ~ωµw, dashed line: Eq. (4.60) for ∆E = 2 ~ωµw for ωµw/2π=8.0
GHz.

the temperature of 15 mK. These decay times at the lowest temperature were 29.5 ns at
8.0 GHz and 42.5 ns at 8.7 GHz. The scaled plots show that the oscillation decay time
does not depend on temperature up to about 300 mK and rapidly decreases at higher
temperatures, similarly to the oscillation amplitude.

The solid lines in Fig. 4.33 (b) are plots of the T1 time Eq. (4.60), showing the
[1 + coth(∆E/kBT )]−1 - behavior. In contrast to the data for the SiOx-based sam-
ple VTT30, none of the datasets fits to this dependence. The model predicts a smooth
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decrease of the T1 time starting above about 100 mK, whereas the data show a rapid
decrease above 300 mK. For comparison, the figure also includes a plot of Eq. (4.60)
for the decay time of the second excited state, which better fits the data below a tem-
perature T∆ = ∆E/~. As a matter of fact, a small population of the second excited
state can not be completely ruled out for the datasets obtained at 8.0 GHz microwave
frequency and above. As Fig. 3.5 shows, the anharmonicity of the potential well ∆ω
is calculated to be approximately 310 MHz at 7.4 GHz, 224 MHz at 8.0 GHz and 158
MHz at 8.7 GHz. For the shown data, the ratios between the Rabi frequency ωR and
the anharmonicity were 0.44 at 7.4 GHz, 0.92 at 8.0 GHz and 0.98 at 8.7 GHz.
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Figure 4.34: Rabi frequency temperature dependence obtained on sample UCSB-SiN.
The data for 8.0 GHz and 8.7 GHz driving frequency were normalized to the data at
7.4 GHz. Real frequencies at 15 mK were 205 MHz at 8 GHz drive frequency and 155
MHz at 8.7 GHz. The dashed line is a quadratic fit to the data at 8.7 GHz.

The long coherence times of sample UCSB-SiN allow to measure precisely the
temperature dependence of the Rabi oscillation frequency. For all chosen flux biases,
we observe that the Rabi frequency increases slightly with temperature at approxi-
mately the same rate. This is shown in Fig. 4.34, for which the oscillation frequencies
measured at microwave frequencies of 8.0 GHz and 8.7 GHz were multiplied by a
constant factor for ease of comparison. The unscaled Rabi frequencies at 15 mK tem-
perature were 205 MHz and 155 MHz at the microwave drive frequencies of 8.0 and
8.7 GHz, respectively. At 300 mK, the oscillation frequency increased by less than 4 %.
The dashed line in the figure, which is a plot of the equation ωR/2π = (136 + 70 T 2)
MHz, shows that the Rabi frequency increases approximately quadratically with tem-
perature.

This Rabi frequency change can be explained by a temperature dependence of the
qubit critical current, giving rise to a detuning between the external microwave and the
qubit resonance. The smallness of the observed change of Rabi frequency however
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renders the possibility to have a significant impact on the coherence times unlikely.

4.9.5 Ramsey fringes temperature dependence

To extract the influence of temperature on the dephasing time T ∗2 , we measured the
temperature dependence of the amplitude and decay time of Ramsey oscillations using
sample UCSB-SiN. In the single performed experiment we were using the same pa-
rameters as discussed in Sec. 4.7.2, i.e. the microwave frequency of a π/2-pulse of 1.5
ns duration was 7.7 GHz.
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Figure 4.35: Ramsey oscillation parameters vs. temperature, measured using sample
UCSB-SiN. (a) Ramsey oscillation amplitude (right axis) and decay time (left axis).
Dashed lines are guides to the eye, solid line is a plot of tanh(∆E/2kBT ) using ∆E =
8.0 GHz. (b) Frequency of Ramsey oscillation vs. temperature.

Figure 4.35 (a) shows that the decay time of Ramsey oscillation changes smoothly
from about 90 ns below 100 mK temperature to≈ 70 ns at 200 mK, followed by a rapid
drop to below 20 ns around 300 mK temperature. The amplitude of Ramsey oscillation
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was found to have a similar temperature dependence, shrinking rapidly above a tem-
perature of about 250 mK and reaching zero at 375 mK, while only a small reduction
is found below 200 mK. The general temperature dependence of Ramsey oscillation is
quite similar to that of Rabi oscillation. The model given by Eq. (4.41), of which the
tanh(∆E/2kBT ) - part is plotted as a solid line in Fig. 4.35 (a), does not predict any
steep decay around T∆ = ∆E/kB which we observe experimentally.

In contrast to the Rabi frequency which we found was increasing with temperature,
the Ramsey oscillation frequency decreases above 250 mK, which is shown in Fig. 4.35
(b). This means that the Larmor frequency of the qubit decreases at higher tempera-
tures, thus reducing the detuning to the external microwave which was adjusted to be
about 335 MHz below the exact qubit resonance at 15 mK. A smaller Larmor frequency
may be due to a reduced critical current or an increasing capacitance. Since this sample
uses aluminum as electrode materials, a small reduction of the critical current above
about 300 mK temperature is expected [120].

4.9.6 Temperature dependence of the energy relaxation time T1

The energy relaxation time T1 was measured as described in Sec. 4.5, using a resonant
π-pulse whose duration was found from observation of coherent oscillation at same
bias parameters and microwave frequency. The T1 time was extracted by fitting the
exponentially decaying excited state population when the readout pulse delay after
the populating microwave pulse was increased. At each temperature we adjusted the
amplitude of the readout pulse to compensate for thermal activation, while all other
external parameters were kept fixed. We find that for both types of samples T1 depends
on temperature similarly to the decay time of Rabi oscillation.

Results of SiOx - based samples

The temperature dependence of the T1 time measured using sample VTT30 is shown
in Fig. 4.36 for two values of external flux bias, resulting in resonance at 16.5 GHz and
17.3 GHz microwave frequency, respectively. The data obtained using 16.5 GHz drive
frequency shows the T1-time to decrease smoothly from 1.9 ns at 15 mK temperature
to about 1.5 ns at 800 mK. In contrast, using 17.3 GHz drive frequency, hardly any
change of the T1 time with temperature could be measured. Comparing this data to the
expected relaxation rates given by Eq. (4.60), which are plotted in the figure by solid
lines, shows that for both datasets the T1-time depends on temperature weaker than it
is expected for a two-state system. The data obtained in a shallow potential well at 16.5
GHz are closer the expectation than those measured in a deeper well at 17.3 GHz.

Results of SiNx - based sample

The T1 time has been measured in sample UCSB-SiN at two values of external flux
bias which were identical to those used for observation of the Rabi oscillation tem-
perature dependence discussed above. In both experiments using microwaves of 7.4
GHz and 8.0 GHz frequency, we find no change of the exponential decay time below
250 mK. This is shown in Fig. 4.37, in which the data obtained at 8.0 GHz have been
multiplied by a factor of 1.49 to make them coincide at T=195 mK with the data taken
at 7.4 GHz.

The T1 time decreases rapidly above a temperature of 250 mK at an equal rate
regardless of the external flux bias and reaches zero at about 350 mK. This behavior is
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Figure 4.36: Temperature dependence of the T1 time, measured on sample VTT30 at an
external flux bias resulting in resonance at the applied microwave frequency ωµw/2π
indicated in the legend. Solid lines: expected relaxation time Eq. (4.60) for ∆E =
E1 − E0 = ~ωµw, dashed lines: Eq. (4.60) for ∆E = 2 ~ωµw. Error bars in the inset
represent an average confidence interval of the fits.
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Figure 4.37: Temperature dependence of the T1 time, measured on sample UCSB-SiN
at an external flux bias resulting in resonance at the applied microwave frequency
ωµw/2π indicated in the legend. The 8.0 GHz data has been scaled by 1.49. Solid
lines: expected relaxation time Eq. (4.60) for ∆E = E1 − E0 = ~ωµw, dashed lines:
Eq. (4.60) for ∆E = 2 ~ωµw.
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very similar to the Rabi oscillation data taken at the same bias parameters. Accordingly,
the expected temperature dependence of the relaxation time Eq. (4.60) does not fit the
data.

4.10 Conclusions
In this section, we present the results of a systematic study of the temperature depen-
dence of coherence times in phase qubits. In order to avoid thermal activation, at higher
temperatures it is necessary to operate the qubit in a deep potential well. As this reduces
the anharmonicity of the well, parasitic population of higher excited states can only be
avoided for small drive amplitude and, accordingly, small Rabi frequency. Since our
Nb/SiOx - based samples have short coherence times of below 8 ns, we must drive them
strongly to allow for observation of several periods of the Rabi oscillation before de-
coherence occurs. Therefore, these qubits were operated in the multi-level limit using
the deep potential well required at higher temperatures. In contrast, the qubit sample
which was made using SiNx as a dielectric could be operated in the two-state quantum
limit also at higher temperature. This is due to its much longer coherence time of about
100 ns.

We observed semi-classical Rabi-like oscillations in samples operated in the multi-
level limit up to temperatures of 900 mK. Hereby, a loss of contrast due to thermal
activation in the detector dc SQUID is avoided by a newly implemented data evalua-
tion procedure which is based on weighted fitting of the switching-current distribution.
A systematic evaluation of the temperature dependence of the Rabi-like oscillation am-
plitude and decay time shows that these values depend only weakly on temperature in
samples operated in the multi-level limit. The same is true for the temperature depen-
dence of the T1 time.

The Al/SiNx-sample which was operated in the two-level quantum limit showed a
qualitatively different temperature dependence. The T1 time, the decay time of Rabi
oscillations and the T ∗2 time, which was measured from a Ramsey fringe experiment,
altogether rapidly decrease close to the temperature where the thermal energy kBT is
equal to the energy difference ∆E of the two qubit states. Below this temperature,
which for the used samples was ≈ 400 mK, the coherence times depend only weakly
on temperature. The Rabi oscillation amplitude in contrast showed a particular non-
monotonic temperature dependence when the qubit was operated in very deep potential
wells.

These peculiar results do not agree with the temperature dependence which is ex-
pected from models describing thermal population of the excited state and taking into
account accelerated relaxation at higher temperatures. These models predict a stronger
temperature dependence of decoherence for low temperatures. The rapid decrease of
coherence time, which was observed in the sample operated in the two-level limit when
kBT ≈ ∆E, also is not expected from these models.

We speculate that, at low temperatures, qubit coherence is limited by a mecha-
nism which gets less effective at higher temperatures. Such a mechanism could be
the coupling of the qubit to a bath of two-level fluctuators, which saturate at higher
temperatures.



Summary

In this thesis, the coherent dynamics of superconducting phase quantum bits (qubits)
are studied. A flux-biased phase qubit consists of a superconducting loop which is in-
terrupted by a Josephson junction. The single degree of freedom of such a device is the
phase difference ϕ of the superconducting order parameter across the junction, which
depends on the magnetic flux threading the loop. As the logical states, a phase qubit
uses two eigenstates of the Josephson phase ϕ which are kept confined in a metastable
potential well. An externally applied magnetic flux is used to control the energy differ-
ence between the two qubit states.

I describe the phase qubit principles and designs of samples which were fabri-
cated using a standard commercial photolithographic process. These samples were
successfully operated in the quantum regime, demonstrating coherent qubit control by
microwave and dc flux pulses.

The experimental methods required to operate phase qubits in the coherent quan-
tum regime are discussed. For qubit readout, we implement a technique which is based
on the application of a short magnetic flux pulse. It reaches a contrast close to 100%,
which is limited only at higher temperatures by thermal activation occurring during
the readout pulse. Microwave spectroscopy was used to characterize the energy level
structure of the samples. For strong driving, we observed transitions to higher ex-
cited qubit states induced by multi-photon absorption processes. We evaluate the qubit
coherence time T ′2 by analyzing the resonance peak width dependence of microwave
power. These experiments indicate the existence of decoherence sources which give
rise to inhomogeneous resonance broadening.

A prominent source of phase qubit decoherence is energy relaxation, which we
measure directly by observing the exponential decay of the excited state. The samples
fabricated in standard technology had T1 decay times of less than 8 ns. Short coherence
times in this type of qubits are due to a coupling of the qubit to a large number of two-
level fluctuators which reside in the oxide dielectrics used in junction fabrication. This
is confirmed by our measurements on a sample which was made using SiNx dielectric,
showing a much longer T1 time of about 100 ns.

Logical operations on the phase qubit are accomplished by resonant interaction
with an applied microwave field, inducing coherent Rabi oscillation between the energy
levels. We observe these oscillations in the time domain by driving the qubits with
microwave pulses of varying duration. In standard samples fabricated using SiO2-
dielectric, the oscillations decay after a mean time of about 3 - 5 ns. In the SiNx-based
sample, we observe Rabi oscillation decay times of about 100 ns, in agreement with
independent measurements of the UCSB group. This confirms that the noise level in

111



SUMMARY 112

our experimental setup is low enough not to affect the coherent dynamics on the studied
time scale.

For weakly driven qubits, the Rabi frequency depends linearly on drive amplitude,
as expected. At strong driving, we find a saturation of the oscillation frequency at a
value which is close to the anharmonicity of the qubit potential well, which indicates
that higher excited states are taking part in coherent oscillations.

Using the high quality SiNx-based sample, we demonstrate a Ramsey fringe ex-
periment and characterize qubit decoherence caused by dephasing. In agreement with
independent measurements, we find a dephasing time of T ∗2 ≈ 90 ns, which indicates
that no significant sources of low-frequency noise exist in our experimental setup. In
a similar experiment, we demonstrate an implementation of the phase gate which is
based on the application of a short detuning flux bias pulse. This technique will be
useful for qubit state tomography.

We performed a first systematic study of the temperature dependence of coherence
times in phase qubits. In order to avoid thermal activation, at higher temperatures it
is necessary to operate the qubit in a deep potential well. As this reduces the anhar-
monicity of the well, parasitic population of higher excited states can only be avoided
for small drive amplitude and, accordingly, small Rabi frequency. Since our Nb/SiOx-
based samples have short coherence times of below 8 ns, we must drive them strongly
for observation of several periods of the Rabi oscillation. Therefore, these qubits were
operated in the multi-level limit using the deep potential wells required at higher tem-
peratures. In contrast, the qubit sample which was made using SiNx as a dielectric
could be operated in the two-state quantum limit also at high temperature due to its
long coherence time.

Semi-classical Rabi-like oscillations were observed in samples operated in the multi-
level limit up to temperatures of 900 mK. Hereby, a loss of contrast due to thermal ac-
tivation in the detector dc SQUID is avoided by a newly implemented data evaluation
procedure which is based on weighted fitting of the switching-current distribution. A
systematic evaluation of the temperature dependence of the Rabi-like oscillation am-
plitude and decay time shows that these values depend only weakly on temperature in
samples operated in the multi-level limit. A similar result was obtained for the temper-
ature dependence of the T1 time.

In contrast, the Al/SiNx-sample which was operated in the two-level quantum limit
showed a qualitatively different temperature dependence. The T1 time, the decay time
of Rabi oscillations and the T ∗2 time, which was measured from a Ramsey fringe exper-
iment, altogether rapidly decrease close to the temperature where the thermal energy
kBT is equal to the energy difference ∆E of the two qubit states. Below this tem-
perature, which for the used sample was ≈ 400 mK, the coherence times depend only
weakly on temperature. The Rabi oscillation amplitude in contrast showed a particular
non-monotonic temperature dependence when the qubit was operated in very deep po-
tential wells.
These striking new results remain to be analyzed by theoretical models dealing with
mechanisms that cause decoherence in superconducting Josephson junction qubits. Our
experimental results also suggest that currently existing qubits can be operated at much
higher temperatures than those reported till now, without degrading already achieved
coherence times.



Zusammenfassung

Diese Dissertation fasst die Ergebnisse einer Untersuchung der quantenkohärenten
Zeitentwicklung von supraleitenden Phasen-Quantenbits (Qubits) zusammen. Diese
bestehen aus einer supraleitenden Schleife, die durch einen kleinen Josephson-Kontakt
unterbrochen ist. Der einzige Freiheitsgrad eines solchen Systems ist die Phasendif-
ferenz ϕ des supraleitenden Ordnungsparameters über dem Kontakt, welche vom mag-
netischen Fluss durch die Schleife abhängt. Ein Phasenqubit verwendet als logische
Zustände zwei Eigenzustände der Josephson-Phase ϕ, wobei diese auf eine metasta-
bile Potentialmulde beschränkt werden. Die Energiedifferenz zwischen den beiden
Zuständen des Qubits wird durch einen angelegten magnetischen Fluss kontrolliert.

Ich beschreibe die Grundlagen des Phasen-Qubits und stelle das Design der Proben
vor, welche mittels eines standardisierten photolithographischen Verfahrens kommer-
ziell hergestellt wurden. Diese Proben wurden erfolgreich im Quantenregime be-
trieben, wobei die Manipulation des Qubitzustandes mittels Mikrowellen- und Mag-
netfeldpulsen demonstriert wurde.

Es werden die zum Betrieb von Phasen-Qubits im kohärenten Quantenregime not-
wendigen experimentellen Methoden dargelegt. Zum Auslesen des Qubits verwenden
wir ein Verfahren, welches auf der Erzeugung eines kurzen Magnetfeldpulses basiert.
Gemäß einer numerischen Untersuchung dieses Verfahrens erwarten wir eine hohe
Auslesegenauigkeit von nahezu 100 %, die lediglich bei hohen Temperaturen durch
thermische Aktivierung während der Dauer des Magnetfeldpulses begrenzt wird.

Wir charakterisieren die Struktur der Energieniveaus der Proben mittels Mikrow-
ellenspektroskopie. Im Fall großer Mikrowellenamplituden beobachten wir Übergänge
zu höher angeregten Qubitzuständen, welche durch Mehrphotonenabsorption entste-
hen. Wir haben die Kohärenzzeit T ′2 der Proben durch eine Analyse der Abhängigkeit
der Resonanzlinienbreite von der Mikrowellenamplitude bestimmt. Diese Experimente
deuten darauf hin, dass in den getesteten standard-Qubits die Ursache der Dekohärenz
auch zu inhomogener Resonanzlinienverbreiterung führt.

Die hauptsächliche Ursache von Dekohärenz bei Phasen-Qubits ist Energierelax-
ation. Diese führt zum Zerfall des angeregten Qubitzustandes, welchen wir im zeitlichen
Verlauf direkt beobachten. Die in standardisierten Prozessen hergestellten Qubits zeigten
eine Zerfallszeit T1 von weniger als 8 ns. Solch kurze Kohärenzzeiten sind in diesen
Proben bedingt durch die Kopplung des Qubits an eine grosse Zahl von zwei-Niveau
Zuständen, welche im SiO2-Dielektrikum des Josephson-Kontaktes bestehen. Dies
wurde durch unsere Messungen an einem Qubit bestätigt, welches in einem speziellen
Prozess unter Verwendung eines SiNx-Dielektrikums hergestellt wurde und entsprech-
end lange Kohärenzzeiten von T1 ≈ 100 ns zeigt.
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Logische Qubit-Operationen werden durch resonante Wechselwirkung mit einem
angelegten Mikrowellenfeld erreicht, die zur Erzeugung von Rabi-Oszillationen in der
Besetzung der Energieniveaus führt. Wir beobachten diese Oszillationen im zeitlichen
Verlauf unter Verwendung eines Mikrowellenpulses variabler Dauer. In herkömmlichen
Proben, die unter Verwendung eines SiO2-Dielektrikums hergestellt wurden, zeigen
diese Oszillationen eine Abklingzeit von 3 bis 5 ns. In den Proben, die auf SiNx-
Dielektrikum basieren, beobachten wir Abklingzeiten der Rabi-Oszillation von etwa
100 ns in Übereinstimmung mit unabhängigen Messungen. Dieses Ergebnis bestätigt,
dass der Rauschpegel unseres experimentellen Aufbaus niedrig genug ist, um die ko-
härente Qubit-Dynamik auf einer Zeitskala von 100 ns nicht zu beeinträchtigen.

Bei kleiner angelegter Mikrowellenleistung messen wir die erwartete lineare Ab-
hängigkeit der Rabi-Frequenz von der Amplitude der Anregung. Bei höheren Leistun-
gen beobachten wir eine Sättigung der Oszillationsfrequenz bei einem Wert nahe der
Anharmonizität der die Qubitzustände enthaltenden Potentialmulde. Dies deutet da-
rauf hin, dass bei diesen Leistungen höhere Qubitzustände angeregt werden und an der
kohärenten Oszillation teilnehmen.

Unter Verwendung des hochwertigen, auf SiNx-basierenden Qubits demonstrieren
wir ein Experiment zur Messung von Ramsey-Oszillationen, welches erlaubt, den An-
teil von Dephasierung an der Dekohärenz zu bestimmen. In Übereinstimmung mit un-
abhängigen Messungen beobachten wir eine Dephasierungszeit von T ∗2 ≈ 90 ns, was
darauf schliessen lässt, dass in unserem experimentellen Aufbau keine signifikanten
Quellen von niederfrequentem Rauschen vorhanden sind. In einem ähnlichen Experi-
ment zeigen wir die Realisierung des Phasengatters, welches auf der Erzeugung eines
kurzen Magnetfeldpulses zur Verstimmung des Qubits basiert. Diese Methode wird
sich für tomographische Messungen des Qubitzustandes als nützlich erweisen.

Wir präsentieren die erste systematische Untersuchung der Temperaturabhängigkeit
der Kohärenzzeiten in Phasenqubits. Bei hohen Temperaturen muss thermische Ak-
tivierung dadurch vermieden werden, dass das Qubit in einer tiefen Potentialmulde be-
trieben wird. Da dies die Anharmonizität der Potentialmulde verkleinert, kann eine
ungewünschte Anregung hoher Qubitzustände nur bei kleiner Anregungsamplitude
und enstprechend kleiner Rabi-Frequenz vermieden werden. Da unsere auf Nb/SiOx-
basierenden Proben sehr kurze Kohärenzzeiten von weniger als 8 ns haben, ist es
notwendig, diese mit hoher Anregungsamplitude zu betreiben, um einige Perioden der
Rabi-Oszillation beobachten zu können. Es ist deshalb unmöglich, diese Proben als
Zweiniveausystem in den bei hohen Temperaturen notwendigen tiefen Potentialmulden
zu betreiben. Im Unterschied dazu ist es möglich, die über ein Dielektrikum aus SiNx

verfügende Probe auch bei höheren Temperaturen im Zweiniveau-Quantenlimit zu be-
treiben.

Unter Verwendung der als Mehrniveausystem betriebenen Proben konnten wir semi-
klassische Oszillationen, welche Rabioszillationen ähneln, bis zu einer maximalen
Temperatur von 900 mK beobachten. Hierbei konnte eine Abnahme des Messkon-
trastes aufgrund von thermischer Aktivierung im Detektor-DC-SQUID durch eine neuar-
tige Methode der Datenauswertung vermieden werden, welche auf einer Regression-
sanalyse der Schaltstrom-Wahrscheinlichkeitsverteilung basiert. Eine systematische
Auswertung der Temperaturabhängigkeiten von Amplitude und Abklingzeit der semik-
lassischen Oszillationen sowie der Lebenszeit des angeregten Zustandes T1 erbrachte,
dass diese Werte nur schwach von der Temperatur abhängen.

Im Gegensatz hierzu zeigt die als Zweiniveau-System betriebene Probe eine quali-
tativ unterschiedliche Temperaturabhängigkeit. Die T1-Zeit, die Abklingzeit der Rabi-
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Oszillation als auch die Abklingzeit T ∗2 der Ramsey-Oszillation nahmen schnell ab
sobald die Probentemperatur einen Wert erreichte, bei dem die thermische Energy kBT
gleich der Energiedifferenz ∆E zwischen den beiden Qubitzuständen ist. Unterhalb
dieser Temperatur, welche für die verwendete Probe bei ca. 400 mK liegt, hängen die
Kohärenzzeiten nur schwach von der Temperatur ab.

Diese bemerkenswerten neuen Ergebnisse müssen in theoretischen Modellen Be-
rücksichtigung finden, die die Dekohärenz von auf Josephson-Kontakten basieren-
den Qubits beschreiben. Unsere Experimente zeigen darüber hinaus, dass momentan
verfügbare Qubits bei sehr viel höheren Temperaturen betrieben werden können als es
bisher bekannt war.
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