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Quantum Genetic Optimization

Andrea Malossini, Enrico Blanzieri, and Tommaso Calarco

Abstract—The complexity of the selection procedure of a ge-
netic algorithm that requires reordering, if we restrict the class
of the possible fitness functions to varying fitness functions,
is O(Nlog N), where N is the size of the population. The
quantum genetic optimization algorithm (QGOA) exploits the
power of quantum computation in order to speed up genetic pro-
cedures. In QGOA, the classical fitness evaluation and selection
procedures are replaced by a single quantum procedure. While the
quantum and classical genetic algorithms use the same number
of generations, the QGOA requires fewer operations to identify
the high-fitness subpopulation at each generation. We show that
the complexity of our QGOA is O(1) in terms of number of
oracle calls in the selection procedure. Such theoretical results are
confirmed by the simulations of the algorithm.

Index Terms—Evolutionary computing and genetic algorithms,
quantum computation.

I. INTRODUCTION

mechanics in order to perform efficient computation.

Such efficiency is granted when the algorithm is run on
a quantum computer, whereas the simulation on a classical
computer can be very resource-consuming. It has been shown
that quantum computation can dramatically improve perfor-
mance for solving problems like factoring [1] or searching
in an unstructured database [2]. On the other hand, genetic
algorithms [3] can be described, basically, as search algorithms.
They work on a set of elements, called population, that evolves
by means of crossover and mutation, towards a maximum of
the fitness function. Since their proposition, genetic algorithms
have proved to be efficient and flexible algorithms for solving
a wide range of problems. Some attempts have been made
in order to have fast hardware implementation of genetic
algorithms [4]. In this perspective, having a quantum version
of a genetic algorithm seems to be a relevant topic in the
future, when quantum computers will be available. Moreover,
the integration between the two paradigms can be a way of
applying quantum computation to hard problems [5] for which
a quantum algorithm is not available yet.

QUANTUM algorithms exploit the laws of quantum
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The possible interplay between quantum and genetic algo-
rithms has been only partially explored. One of the first at-
tempts to analyze benefits and drawbacks of a quantum ap-
proach to genetic algorithms is presented by Rylander et al. [6],
where the elements of the population are quantum individuals
(qubits). The qubit representation for the elements of the popu-
lation is a key point for the use of the quantum algorithm. For ex-
ample, by adopting a qubit chromosome representation, a clas-
sical population can be generated by repeatedly measuring the
quantum population, and then its best elements are used to up-
date the quantum population [7]. Other interesting approaches
are to consider the elements of the population as quantum cir-
cuits and then to evolve them toward a target quantum circuit [§]
or to use a quantum neural network to measure simultaneously
the fitness values of all the possible elements of the population
[9]. A recent survey on quantum genetic algorithms, in general,
discussed some of the drawbacks of existing quantum genetic
algorithms and presented some genetic algorithms for quantum
circuit design [10]. Applications of quantum computation are
wide-spreading in many different areas, for example quantum
genetic algorithms for feature selection [11] or quantum algo-
rithms for handling probabilistic, interval, and fuzzy uncertainty
[12].

A promising area in which the combination of quantum
computation and genetic algorithms can give advantages is
that of applications with varying fitness functions. In these
applications, the fitness function varies between genetic steps
depending on some external time-dependent physical input.
A very relevant example is given by noise in quantum control
processes. In this scenario (already employed, in its classical
version, in quantum chemistry experiments), genetic algorithms
are used to select optimally shaped fields to drive a desired
physical process, for instance, a laser-assisted molecular reac-
tion [13], [14]. In such a case, the oracle consists of the physical
process itself, rather than of a mathematical construction.

In this paper, we present a quantum genetic optimization al-
gorithm (QGOA), a quantum algorithm that exploits the power
of quantum computation in the fitness evaluation and selection
procedures, and we show how to take advantage of quantum
phenomena to efficiently speed up classical computation. In par-
ticular, we will see that the QGOA outperforms a classical ge-
netic algorithm when the fitness function is varying [15] be-
tween genetic steps.

We exploit the power of quantum computation not only to
represent the population by means of qubits, but also to perform
fitness evaluation and selection. The algorithm is based on the
Diirr—Hgyer quantum algorithm for finding the minimum in an
unsorted table [16]. Our results rely on the observation that it
is possible to stop the quantum procedure of the Diirr—Hgyer
algorithm and to use the partial result for the selection. QGOA
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TABLE I
NOTATION USED IN THIS PAPER

QGOA Quantum Genetic Optimization Algorithm
C Complex space

[+) A Hilbert space vector

U A unitary operator

Up Unitary operator for fitness evaluation

® Tensor product of Hilbert spaces

N Number of elements of a population

M Number of genetic steps

n Number of qubits

HOn n—qubit Hadamard-Walsh gate

nh Number of Diirr-Hayer iterations

KBBHT Constant appearing in the BBHT algorithm

Fitness function
Fitness function computed on the element x;

Fy = F(i) = f(z1)
t Number of marked solutions

o(- Heaviside function
E(-) Expectation value
Z ZN— 1

1 =0

uses the whole population at each genetic step, and in this sense
it can be considered a “global search” algorithm.

A theoretical description of QGOA is provided, as well as a
detailed analysis of the algorithm complexity. In particular, we
show that the complexity of the quantum selection procedure
(which includes the quantum fitness evaluation) does not de-
pend on the size of the population N. Moreover, we show that
the convergence speed, in terms of genetic steps, of the QGOA is
comparable to the convergence speed of a classical steady-state
genetic algorithm with truncation selection. Finally, we provide
a simulation of the algorithm, which fully validates the theoret-
ical results.

The remainder of the present section is devoted to introducing
the concepts related to genetic and quantum computation that
are necessary for presenting the algorithm. In Table I, we
present the notations used in this paper. Section II presents our
QGOA. Section III presents the analysis of the complexity,
whereas Section IV is devoted to simulating the algorithm and
to empirically validating the theoretical results. Finally, we
draw some conclusions in Section V.

A. Introduction To Genetic Algorithms

Genetic algorithms are adaptive search algorithms based on
the evolutionary ideas of natural selection and genetics. They are
based on the principle first laid down by Charles Darwin of sur-
vival of the most fit. First pioneered by Holland [17], genetic al-
gorithms have been widely studied, tested, and applied in many
fields. A generic steady-state genetic algorithm is sketched in
Fig. 1. The first step is the creation of a random population
where each element is coded using a specific representation that
encodes a set of features defined by the problem. Then, a fitness
function is used to evaluate each individual, and the reproduc-
tive success varies with the fitness value. Two high-fitness el-
ements are chosen for crossover and mutation. The procedure
generates two new offspring that replace two random elements
of the population. The process continues until the population’s
total fitness reaches a specified threshold or the number of ge-
netic steps attains a predefined value.

In genetic algorithms, the fitness function of the problem leads
the population to converge toward a population that fits the so-
lution requirements. For complex problems, the definition of

Create initial population

[
Y

Evaluate fitness function on each element
of population

Select two elements

!

Perform crossover and mutation

]

Substitute two random elements of the
population with the new offspring

]

STOP?

NO

| YES

END

Fig. 1. A typical steady-state genetic algorithm.

an exact fitness function that describes perfectly the nature of
the problem is often not possible and one is forced to use ap-
proximate fitness functions. This implies that during the selec-
tion procedure one cannot discriminate between two individuals
with almost the same fitness value and a more fruitful approach
is to select a fraction of high-fitness individuals and to use them
for generating new offspring. This selection procedure is called
truncation selection [18], [19]. In the generational approach, a
new population is generated at every genetic step, which sub-
stitutes the old population. In the incremental (or steady-state)
approach, only two new offspring are generated at every genetic
step and inserted in the population. The latter approach is needed
when we are dealing with varying fitness functions.

B. Introduction To Quantum Search Algorithms

The basic unit of information in quantum computation is the
qubit. A qubit is a two-level quantum system and it can be rep-
resented by a unit vector of a two dimensional Hilbert space

(, 8 € C)
) = |0) + BI1),

where we denote with |0) and |1) the basis states, adopting the
ket notation for quantum state vectors. A two-level quantum
system is described by a superposition of the basis states,
whereas a two-level classical system can be just in one of the
basis states 0 or 1.

The evolution of a quantum system is described by special
linear operators, unitary operators! U which operate on qubits

Ulp) = Ulal0) + B]1)] = aU[0) + BU|1).

o + 187 =1

An important consequence of the linearity of quantum operators
is that the evolution of a two-level quantum system is the linear
combination of the evolution of the basis states |0) and |1). This
is known as quantum parallelism. On the contrary, in a two-level

1A linear operator is said to be unitary if UUT = UTU = 1, where U*
denotes the adjoint of the operator U.



MALOSSINI et al.: QUANTUM GENETIC OPTIMIZATION

classical system, we are forced to evolve the two possible states
0 and 1 separately. When we want to transfer information from
the quantum system to a classical one, we have to perform mea-
surements of the quantum state, whose result is probabilistic: we
get the state U|0) with probability |«|? and the state U|1) with
probability |3|2. The no cloning theorem, see [20], states that it
is not possible to clone a quantum state |1)) and, consequently,
to obtain full information on the coefficients « and 3 from a
single copy of |¢)). Another important feature arising from the
linearity of quantum mechanics is entanglement. The state of a
composite classical system AB is completely determined by the
state of its subsystems. On the contrary, the state of a composite
quantum system is the fensor product & of the states of the com-
ponent systems; so a state of a composite system [¢)) o could
be like

Bellyp = )a® [0)p +[1)a @[1)8]

=0
V2
which is not of the form |-} 4 ® |-)p. Such a Bell state is said to
be entangled. Entanglement is a quantum resource that permits,
for instance, quantum teleportation [16].

The two main quantum algorithms developed up to now are
quantum Fourier transform (QFT) [1], and the Grover search
algorithm [2]. QFT can be used to solve problems like discrete
logarithm, order finding and factoring [22] and it lies out of the
scope of this paper. The Grover algorithm has been used in the
BBHT algorithm [23] (BBHT is the acronym of the authors’
names) and in the Diirr—Hgyer algorithm [16]. We briefly review
the three algorithms next.

1) Grover Algorithm: The algorithm solves the problem of
searching in an unstructured database. It has been shown that
the Grover algorithm is O(y/N/t), where N is the number of
entries in the database and ¢ is the number of possible solutions
[2]. Classical algorithms for solving this problem must, instead,
look at each entry of the database until a solution is found, i.e.,
they are O(N/t). The basic idea of the Grover’s algorithm is
to amplify the coefficients of the superposition of all elements
that correspond to the solutions of the given problem, while re-
ducing the others. This procedure is performed by applying a
unitary operator O(y/N/t) times. Then a measurement of the
quantum state obtained will yield, with high probability, one of
the possible solutions. The nonstructuredness requirement is es-
sential for achieving the speedup stated above, otherwise, clas-
sical binary tree search would solve the problem in O(log N). It
should be emphasized that a classical procedure always permits
to collect all the solutions in the database (by seeking through all
the entries); on the contrary, the probabilistic nature of quantum
measurement allows to get one solution at random among the
solutions of the database. By repeating the whole quantum pro-
cedure, however, it is possible to obtain other solutions.

2) BBHT Algorithm: When the number of solutions is known
in advance, one can use Grover’s algorithm to look for one of
them. Without previous knowledge of the number of solutions
t marked by the oracle, one cannot use the Grover algorithm.
This impossibility arises because in the amplitude amplifica-
tion process we cannot compute the number of iterations to be
performed in order to maximize the coefficients of the solu-
tion. However, when the number of solutions % is a priori un-
known, it is still possible to use a remarkable quantum algo-
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rithm called BBHT [23] for finding a solution in a set of items
{T;}i=0,..., n—1 given an oracle that recognizes a solution.

Here, we give a brief summary of the BBHT algorithm and
report the main complexity result. We assume, at first, that 1 <
t < 3N/4, where N is the total number of elements.

1) Initialize m = 1, set A = 6/5 (any value between 1 and
4/3 would do) and create the state |Uy) = H®"|0) =
(V) S, i)

2) Choose 7 uniformly at random among the non-negative in-
tegers smaller than m.

3) Apply ¢ iterations of Grover’s algorithm starting from the
initial state |¥p).

4) Measure the register: let o be the outcome.

5) If the selected element 7}, is a solution then exit.

6) Otherwise, set m to min(Am, VN ) and go back to step 2.
The case t > 3N/4 can be treated in constant time by classical
sampling.

Theorem 1.1: The BBHT algorithm finds a solution in an
expected time of O(y/N/t).

Proof: See [23]. |

Remarks 1.2: As a step of the proof, the authors showed
that the number of oracle queries is bounded from above by
4\/N/t = KJBBHT\/N/t whent < N.

3) Diirr—Hgyer Algorithm: The Diirr—Hgyer algorithm is a
quantum algorithm for finding the minimum within an unsorted
table of N items [16]. The core of the algorithm is a procedure
which returns the index of an item smaller than the item deter-
mined by a particular threshold, by using the BBHT algorithm.
This procedure is iterated until the minimum is reached. Diirr
and Hgyer showed that such an algorithm requires an expected
number of O(y/N) iterations.

4) Quantum Evaluation of Functions: In classical computa-
tion, a small set of classical gates (e.g., AND OR NOT) can be
used to compute an arbitrary classical function; a similar result
is still true in quantum computation.

A set of gates is said to be universal for quantum computa-
tion if any unitary operation may be approximated to arbitrary
accuracy by a quantum circuit involving only those gates. It has
been shown that using Hadamard, phase, CNOT, and 7 /8 gates,
any arbitrary unitary operation can be approximated to arbitrary
accuracy [22] Moreover, any classical circuit can be made re-
versible by introducing a special gate named Toffoli gate. The
Toffoli gate has three input bits, a, b, and c; a and b are the first
and the second “control bits,” while c is the “target bit.” The
gate does not change the control bits and flips the target bit
only if both control bits are set. The Toffoli gate can be used
to implement NAND and FANOUT and it is reversible. Since
a quantum version of the Toffoli gate has been developed (see,
e.g., [22]), a classical reversible circuit that computes a function
f:{0,1}™ — {0,1}™ can be converted to a quantum circuit
that computes the same function. Note that if the function is not
injective, one can use ancilla qubit to make the circuit reversible.

II. QUANTUM GENETIC OPTIMIZATION ALGORITHM (QGOA)

The basic structure of our QGOA is based on the classical
structure of a steady-state genetic algorithm. We present here
the problem using a “global search” strategy, where we are con-
sidering all the elements of the population. In particular, we
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CLASSICAL GENETIC ALGORITHM

Given a representation of the population and the fitness function

Repeat M times

« Evaluate fitness: Evaluate the fitness of every element of the population.

« Select two elements: Select a subpopulation using fruncation selection (a fraction p of the best elements of the
population) and then choose randomly two elements from it.

o Crossover and mutation: Perform crossover of the two elements by exchanging two random substrings. Then
with probability Py mutate each allele (i. e. bit) of the strings.

Substitution: Choose two random elements from the population and then replace them with the new offspring.

QUANTUM GENETIC OPTIMIZATION ALGORITHM

Given a qubit representation of the population and a quantum evaluation unit

Repeat M times

o Select two elements [Quantum]: Use the quantum selection procedure (which performs the creation of a
superposition of all elements of the population and the application of the quantum fitness evaluation unit) to
choose one element. Run it again to choose another element.

o Crossover and mutation [Classical]: As above.
o Substitution [Classical]: As above.

Fig. 2. Classical and QGOA. Note that we need to run the quantum selection procedure twice because the measurement process destroys the superposition of the

elements.

have developed a quantum selection procedure that includes a
quantum fitness evaluation unit.

In Fig. 2(a), comparison between the classical genetic algo-
rithm and the QGOA is shown. Notice that no external quantum
evaluation procedure is needed since quantum fitness recalcula-
tion is computed inside the quantum selection procedure. This
procedure is based on the quantum algorithm for finding the
minimum proposed by [16], where it was shown that it is pos-
sible to find the minimum of a list by using a variant of the
Grover quantum search algorithm in O(v/N).

By reducing the number of iterations, we show that we can
select a subpopulation of optimal elements in constant time and
that the convergence speed, in terms of genetic steps, of such
an algorithm is comparable to the convergence speed of a clas-
sical steady-state genetic algorithm with truncation selection.
The main difference is that, in the quantum selection procedure,
at each genetic step the choice of an optimal subpopulation is
performed in constant time, whereas in a classical selection pro-
cedure an ordering algorithm is needed.

A. Quantum Fitness Evaluation Unit

As explained in the introduction, given a classical reversible
circuit that computes a fitness function F(j) = F;, where j €
{0, ..., N —1} are the elements of the population in binary rep-
resentation, it can be converted into a quantum circuit yielding
a quantum fitness evaluation operator Ur. Clearly, there is no
general recipe for constructing U because its physical realiza-
tion depends on the problem at hand.

If we use quantum binary encodings? for the elements, the
superposition of all elements of the population is denoted by

1 Nl
V) = i ;0 1)
and the action of the quantum black box results in
| N1
Up|¥)|0) = Wi ]Z:;) ) F5)-

2Given j = by * 20 + by * 21 4+ - + b, * 2771, where b; € {0,1},
then [7) = |bo)} @ |b1) @ -+ @ |bno1)

Hence, using Ur only once, we can compute all the fitness
values {F;|j = 0,..., N — 1} of the population, whereas the
classical procedure requires /V fitness evaluations. The process
of measurement would destroy such a superposition, giving us
only one fitness value. So at this stage, we could not gain any
useful information on the best elements of the population. The
oracle of the quantum selection procedure includes this unit to
“mark” all the elements of the population that fulfill the condi-
tion F; > F),, where y is a threshold index.

The oracle is always the same during the computation. Its
input is a superposition of all the NV elements of the population at
every genetic step (this is a “global search”). Hence, its capacity
is N. The oracle is the same at every genetic step; however,
the fitness function can vary between steps depending on some
external time-dependent physical input, in addition to the logical
input provided by the qubits.

B. Quantum Selection Procedure

The quantum selection procedure is based on the algorithm
for finding the minimum of a list of N items [16]. The au-
thors showed that for finding the (absolute) minimum, a number
of iterations O(V/N) is needed. Here, we are not interested
in finding the minimum, but in selecting a subpopulation of
near-optimal elements of the whole population, namely, ele-
ments with a relatively high value of fitness. The algorithm
works as described in Fig. 3.

Defination 2.1: A Diirr—Hgpyer iteration is the sequence of
operations defined in 2a, 2b, and 2c of the quantum selection
algorithm. We denote with n; the number of Diirr—Hgyer
iterations.

Remarks 2.2: When ny, = 1, we obtain the BBHT algorithm.
Diirr and Hgyer analyzed the case ny, = oo.

One might argue that a probabilistic algorithm could do about
the same, by choosing O(log R) elements, where R is a frac-
tion of the entire population, evaluating the fitness function for
the chosen elements (and only for them), and picking the best
one. Such an assumption is not correct since the convergence
of the genetic algorithm is different for the two selection pro-
cedures. After ny, iterations, we have a probability for choosing
the best element of the population equal to R/N ; instead, in this
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QUANTUM SELECTION PROCEDURE

1) Choose randomly an index y € {0,1,..., N — 1} corresponding to the threshold F,. Compute classically F} =

F(y).
2) Perform ny, times:

a) Initialize memory to |0)|y).

b) Perform the algorithm BBHT (the step 1 of BBHT transforms the state |0)|y) into ﬁ > 17)y)), where
the oracle (that includes a quantum fitness evaluation unit) inverts the amplitude of the elements that satisfy

Eizer

¢) Measure the first ket and get a new index y’. Compute classically Fy = F(y’). If Fyy > F, then set the

index y to 3.
3) Return the index y.

Fig. 3. The quantum selection algorithm.

classical probabilistic algorithm, the probability would be only
log R/N (exponentially smaller). The main difference is that in
one case we choose among the best elements, in the other, we
choose in a completely random way.

III. COMPLEXITY OF THE ALGORITHM

In this section, we present a complexity analysis of the
QGOA, in order to compare it with a classical genetic algo-
rithm. We do not consider the computational cost of crossover,
mutation, and substitution of the QGOA because they are con-
stant for each genetic step and classical for both algorithms, and
concentrate our analysis on the quantum selection procedure,
whose time-complexity in terms of oracle calls will be deeply
investigated. The time required for a single oracle call will
depend on the technology used for implementing the oracle.

Let us consider the complexity of the quantum selection pro-
cedure step by step. Steps 1) and 3) of the quantum selection pro-
cedure do not enter in the complexity calculation since they are
performed only once and in constant time. Step 2a) initializes
the quantum memory and it is performed n;, times. Step 2¢) per-
forms the measurement process and it requires 7, classical com-
putations of the fitness function. Step 2b), in terms of number
of n-qubit operators, is the most onerous and, from the point of
view of the complexity, it requires a deeper analysis. We will
analyze this step in terms of number of oracle calls. The oracle
includes the quantum fitness evaluation unit and inverts the am-
plitude of the elements with fitness greater than or equal to a
given threshold F. We will consider an oracle call as the time
step unit for our analysis of step 2b) without taking into account
steps 1), 3), 2a), and 2c¢), because their cost depends linearly on
ny, and it does not depend on the number of qubits n = log N.

We are interested in the expected number of oracle calls in the
quantum selection procedure; it is known that the BBHT algo-
rithm requires O(/ N/t) oracle calls, where ¢ is the number of
marked elements (see Theorem 1.1). Diirr and Hgyer found that

of Diirr—Hgyer iterations is a parameter, and we need to char-
acterize its relation with the expected number of oracle calls.
We will show in this section (Theorem 3.4) that the expected
number of oracle calls is bounded from above by x-2(2™ — 1),
where £ is a constant and ny, is the number of Diirr—Hgyer iter-
ations. This is our main result because it states that the expected
number of oracle calls does not depend on the dimension of the
population N. In order to show this result, we will need a bound
on the expected number of oracle calls (Theorem 3.3). More-
over, we will show that ny, is directly related to the selection
pressure (Theorem 3.7).

In order to characterize the expected number of oracle calls of
step 2b) of the quantum selection procedure, we need to prove a
Lemma. We consider a list of NV elements and a fitness function
f that maps each element onto a real positive value.

We define as the rank of an element its position s € {1, N}
in the list sorted in descending order of fitness function values.

Lemma 3.1: The probability Pr(s,m) of choosing an ele-
ment of rank s as threshold before the mth Diirr—Hgyer itera-
tion, as shown in (1) at the bottom of the page, where §(z) is
the step function.3

Proof: We denote with Pr(s,l) the probability that we
choose an element of rank s before the [th Diirr—Hgyer iteration
and with Pr(s|j,!) the conditional probability that we choose
an element of rank s before the [th Diirr—Hgyer iteration, after
an element of rank j has been chosen in the previous iteration.
We use the total probability equation

N

Pr(s,l) = > Pr(s|j,1) - Pr(j,l — 1)

=1

which holds because the set of possible events “choosing an
element of rank j” is a partition of the set of events. During

3

1, >0
the expected number of oracle calls of their algorithm in order O(x) = {0’ otie;wise .
to find the minimum is 22.5v/N.. In our algorithm, the number ’ '
%, itm=1
Pr(s,m) = { &N 0(im =)0 (im—1 = jm)+0(j2—j3) Q)

ij:l; Jm—1=1,..., jo=1

G dm—1 43 G2 N
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each Diirr—Hgyer iteration, we have that Pr(s|j,l) = (1/j) if
s < j or zero, otherwise, as ensured by step 3 of the algorithm

Pr(slj, 1) = 2 =3).

The first index is chosen uniformly at random from all elements,
so Pr(s,1) = (1/N), where N = 2". Using the fotal proba-
bility equation recursively, we finally obtain the first equation at
the bottom of the page.

Definition 3.2: Let N, be the random variable number of
oracle calls during the mth Diirr—Hgyer iteration. Moreover,
let V be the random variable fotal number of oracle calls in the
quantum selection procedure.

The following theorem uses the previous Lemma in order to
bound the expected number of oracle calls.

Theorem 3.3: The expectation of the total number of oracle
calls in the quantum selection procedure is

E[V] < )

K 1
\/—N;ﬁQ()

where ()(s) is defined in the second equation at the bottom of
the page and « is a constant.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 2, APRIL 2008

Proof: From the very definition of expectation and The-
orem 1.1, the expected number of oracle calls during the mth
Diirr—Hgyer iteration is

N
[E[Nm] < Z K \E ! Pr(s7m)

using Lemma 3.1 (1), we show equation (3) at the bottom of the
page. From the definition of AV, it is clear that

Nh

[N] = Z N, m
m=1
whence we obtain

EN] < Z ENm.-
L

The bound of Theorem 3.3 depends on the number of ele-
ments of the population. We now want to calculate another upper
bound for the expectation of V. In particular, this upper bound
is independent of the cardinality of the population, as stated by
the following theorem.

PI‘(S7 2) = J2, 1)
j2=1
N
, 1
229(12—8)] N
Jj2=1
N
Pr(s,3) = Y Pr(s|js,3) - Pr(js, 2)
ja=1
:iiem—s (J2 — Ja)
poipm Jaaz N
3 Oim = $)0im=1 = dm) - 0lG2 = 33)
Pr(s,m) = et st
Gn=1, 11, ja=1 Jm Jm—1°""]J3"J2"
|
Nnh N 9( —8)9(’ s )~6(’ _ )
Qs) =1+ > fm ] e 2 0
M=2 jon =1, o 1=1,...ja=1 Jm *Jm-1 J3J2
- Zivz 1< iftm=1
EWN,) < { V¥ bV (3)

S
N s=1, jm=1, jm_1=1,...,j2=1

0(_7717_S 0(ji—i—51) 1
[Hz 3 71 "2
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Theorem 3.4: The expected number of oracle calls in the
quantum selection procedure is bounded by

EN] < k-2(2™ —1) “4)
where « is a decreasing function of ny,.
Proof: First, we show that for all m € {1, N}
ENm] < k2™ 5)

From calculus, we have that

N N oq
> —<1+/ —_ds=2VN -1 < 2VN.
— /s 1 Vs

Taking ~ = 1 for simplicity of notation, for m = 1, from (3) it
follows:
N
1 1 1

R R

VNZ= Vs VN
For m > 1, we have the equation shown at the bottom of the
page. Now, using Theorem 3.3 and the above results

(2VN - 1) < 2.

Mh

EINI <k Y 2™ =k-2(2™ —1).
m=1 u

Remarks 3.5: Tt is important to emphasize that the bound
depends on ny, only and does not depend on the dimension of
the population V.

We have seen that the number of Diirr—Hgyer iterations ny,
determines an upper bound to the number of oracle calls during
the quantum selection; it is an important parameter of our algo-
rithm and we want to understand deeply its meaning.

Defination 3.6: We denote with 7, the random variable
number of marked elements after the mth Diirr—Hgyer iteration.
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Theorem 3.7: Let N = 2"; the expected number of marked
elements after m Diirr—Hgyer iterations is

E[Z7.]=1+(2"—-1)-27™. (6)

Proof: Form = 1, E[T1] = Zi\;ls -Pr(s,1) = (N +
1)/2. For m > 1, we change the order of summation and ob-
tain the equation shown at the bottom of the next page. With
m = ny,, Theorem 3.7 shows clearly how 7y, determines the ex-
pected number of marked elements, and thus the selection pres-
sure. The effect of Diirr—Hgyer iterations is shown in Fig. 4. The
cardinality of the marked subpopulation approximatively halves
for increasing ny,. This implies that n}, grows logarithmically
with the number of marked elements.

IV. SIMULATION

In this section, we present the results of a simulation of
the QGOA in order to show the validity of Theorem 3.3 and
Theorem 3.7 which bound the expected number of oracle calls
and characterize the selection pressure, respectively. We used a
particular fitness function in order to compare the convergence
speed of the total fitness of the QGOA with respect to a classical
genetic algorithm with truncation selection.

Simulations of the classical genetic algorithm and of the
quantum genetic algorithm were performed using the symbolic
language Mathematica™. The quantum fitness evaluation unit
was simulated as a black box without modeling the quantum
circuits. The maximum number of qubits used is n 8,
because beyond that value too many computational resources
were needed, since the resources needed to simulate a quantum
computer on a classical one increase exponentially with n.

A. Fitness Function

The fitness value of each element of the population reflects the
quality of the characteristics that it encodes. It is quite common

0(jm

— 8)0(Jm—1 — Jm) - - 0(j2 — j3)

>

Jm Jm—1---J3-J2- N

1 1 1
IR 2D NP 2P DA ey s ey
NiZtimt ozt Jm Jm—17"33"J2
9 J2 Jm—1 1 1
IR 2D 2P D it sy ey
92 N 2 Jm—2 1
< 7= Z Z Vim-1
N ==t gaom Jm—177"J3 "2
2m71 N 1 2m71
< —= < -2V/N =2m
VN Z j2 VN
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()

Fig. 4. Change in the cardinality of the subpopulation when 7y, is changed from 1 to 3.

to have a noisy environment in which the problem is being the mutation probability.* The multipeak varying fitness func-
studied, which means that the fitness function can vary at every tion used in the simulations is

genetic step. We refer to the class of fitness functions which can

vary at every genetic step as varying fitness functions. We have )

simulated a varying function by adding to the fitness value of f(z) = sin(mz) - (92 mod 1) + egaussian(0,7¢).  (7)
an element a random quantity € obtained from a Gaussian dis- 4If the value of . is too small, the mutation procedure masks the noisy effect
tribution of mean value O and variance 0. = 10 - p, where 4 iS  of the noisy fitness function.

Tm] = Z s-Pr(s,m)

N g.m—salm_l—.m"'e .2_.3
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f(x)

0.2 0.4 0.6 0.8 1

Fig. 5. Main fitness function used in the simulation. A realization of the added
Gaussian noise is also shown.

TABLE II
MEAN NUMBER OF ORACLE CALLS AND ITS STANDARD DEVIATION IN THE
QUANTUM SELECTION PROCEDURE AS RESULTS OF THE SIMULATIONS

n ny =1 ny =2 ny =3 ny, =4
2 [ 63+£1.3 ] 109£1.6 - -
3 6.4+09 | 106 1.3 | 13.44+1.2 -
4 68+08 | 10.8+£0.8 | 1444+0.8 | 182+1.0
5 6.6+04 | 11.24+04 | 156 0.6 | 21.0£0.8
6 | 6.840.3 | 11.7+0.3 | 17.6 £0.4 | 25.1 £0.6
TABLE III

REGRESSION COEFFICIENTS OF THE (2) DATA IN TABLE II

ny, | Coefficient kreg | Coefficient of determination R?

1 3.79 £ 0.08 0.9984

2 2.52 +0.07 0.9965

3 2.00 +0.03 0.9989

4 1.76 £+ 0.02 0.9997

This function is plotted in Fig. 5. Notice that even if the function
in not injective, it is possible to build a reversible circuit for
computing such function (as discussed in the introduction).

B. Expected Number of Oracle Calls

Equation (2) gives a bound on the expected number of oracle
calls in the quantum selection procedure. We recall that we need
two elements of the population to cross over, so we have to run
the quantum selection algorithm twice (or more if the elements
coincide) to obtain two different elements because the measure-
ment process destroys the quantum superposition. We can argue
that for a large population it suffices to run it only twice.

To verify (2) (notice that (s) depends on ny,, which is a pa-
rameter of the QGOA), we considered different population car-
dinalities N = 2™ with n = 2,3,4,5, 6. For each population
cardinality, we have generated 100 random populations, and for
different values of ny, = 1,2, 3,4, we have computed the mean
number of oracle calls in the quantum selection procedure.’ Re-
sults are shown in Table I1.6 In order to verify the bound, we need
an estimate of the constant x appearing in (2). Unfortunately, an
estimate is known only for n;, = 1 and t < N (BBHT algo-
rithm). Our strategy was to fit the bound against the data and to
compare the values of the parameters. Then, we ran a regression
on the experimental points using (2) and estimated x, as shown

5Theorem 3.7 shows clearly how n;, determines the expected number of
marked elements, and thus the selection pressure (see Fig. 4).

6Some combinations of 7 and n,, are useless because the quantum selection
procedure selects almost always the element with maximum fitness, hence, it is
not possible to cross over two different elements.
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10 20 30 40 50 60 70 80
Fig. 6. Mean number of oracle calls for different values of the number of el-

ements of the population N and with numbers of Diirr—Hoyer iterations n;,, =
1,2, 3,4. Experimental data and fitted curves based on Theorem 3.4.

total fitness

50 100 150 200 250 300
genetic step

Fig. 7. Total fitness (mean and variance) of quantum genetic optimization al-
gorithm (brighter line) and classical genetic algorithm with truncation selec-
tion as a function of the number of genetic steps. Each genetic step requires
O(Nlog N) in the classical selection procedure and (1) in the quantum se-
lection procedure.

in Table III. Finally, Fig. 6 shows the experimental plots (and
error bars) and the regression function for different numbers of
Diirr—Hgyer iterations.

When ny, = 1, our quantum selection procedure coincides
with BBHT (Remark 2.2), so it is interesting to compare the
empirical value with the theoretical bound. From Remark 1.2,
kBBHT ~ 4.In Table III, we obtain ke = 3.79 £ 0.08 for
ny = 1. However, since in the selection procedure we need two
different elements to crossover, we expect to use the quantum se-
lection procedure at least twice. Hence, k < 3.79/2 = 1.895 <

4 = KBBHT-

C. Performance Comparison

Here, we show that the convergence speed, in terms of ge-
netic steps, of the QGOA is comparable to a classical truncation
selection algorithm, where two elements of the fraction of the
population are used to generate the new offspring. This means
that the total fitness function (the sum of all fitness values of
the elements of the population) versus genetic steps should be
equal within the statistical errors. The real power of the QGOA
is exploited at each genetic step, where the computational com-
plexity of the fitness selection procedure is O(1).
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Fig. 8. Mean number of marked elements for different values of the number of
Diirr—Hgyer iterations. Experimental data and regression fitted curves based on
Theorem 3.7.

TABLE IV
REGRESSION OF SIMULATION DATA
n E[7n,] R?
2 (1.01 £0.02) + (2.81 £0.12) -2 ™ | 0.9816
3 (0.98 £ 0.03) + (7.76 £0.19) -2~ ™h | 0.9940
4 (0.95 £+ 0.03) + (16.16 £ 0.17) -2 ~™h | 0.9989
5 (1.06 £ 0.11) + (30.53 £ 0.69) - 2 ~"h | 0.9944
6 (1.19 £ 0.13) + (64.46 = 0.78) -2~ ™ | 0.9986
7 (0.96 4 0.52) + (125.81 4+ 2.53) -2 ~"h | 0.9976

The number of genetic steps performed during the simulation
is a multiple of N/2. After N/2 genetic steps, we expect on
average a complete change of the population (namely, a new
generation). Hence, after M genetic steps, we expect a number
of generations I ~ 2M /N. The simulation has been performed
using the same fitness function of (7) and with I = 10. The
results of a simulation with a population of cardinality 64 = 25
and ny, = 3 (i.e., about a fraction of 1/8 of the population at each
genetic step) are shown in Fig. 7 and they confirm the analysis
made.” Finally, the regressions for the mean number of marked
solution as a function of n}, and for different values of n are
shown in Table IV; the corresponding plot is shown in Fig. 8.

TWe have done other simulations by changing the number of qubits and 7,
we obtain that the two curves are the same within the errors. See [24].
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V. CONCLUSION

When the first quantum computers will start becoming
available for applications, the need for quantum algorithms
exploiting the power of such hardware will be pressing and
the existing quantum algorithms will be subject to test. The
number of quantum algorithms that fully exploit the power of
quantum computation in order to gain significant speedup is
rather limited. Hence, a general approach for applying quantum
computation to a wide range of problems is needed.

Our efforts in a such direction have yielded a QGOA that
outperforms its classical analogue in terms of number of or-
acle calls. However, as explained previously, starting from the
complexity of Grover’s algorithm, we know that we can speed
up the process only if no structure is defined on the problem
(hence, the name “unstructured database search” used to refer
to the Grover quantum search algorithm).8 Such a requirement
implies that, in order to achieve a quantum speedup, we must
restrict the problem class to varying fitness functions, where
the structure created by the evaluation of population elements
is “broken” at every genetic step. In other words, in order to
gain a significant advantage over a classical approach using a
quantum algorithm based on Grover search algorithm, we have
to consider problems where the fitness function is varying.

Under these conditions, our QGOA outperforms the classical
one in terms of oracle calls. In fact, whereas the classical se-
lection procedure requires O(N log N) for reordering of the el-
ements, we have shown that the quantum selection procedure
requires only O(1) quantum oracle calls. Our results do not
contradict the well-known fact that in the black-box model the
quantum speedup can be at most polynomial in the number of
qubits. In fact, our algorithm does not search for a single marked
element but for a fraction of marked elements with high fitness.

The quantum fitness evaluation unit has to be implemented in-
side the quantum selection procedure, which is performed twice,
and it computes the fitness in parallel on a superposition of ele-
ments at every genetic step. On the contrary, a classical fitness
evaluation has to be performed N times at every genetic step.
We have to note that the quantum selection procedure selects the
best elements of the population (the selection pressure depends
on a parameter of the QGOA, ny,), and from them two elements
are randomly chosen for the mating pool.

Truncation selection is one of the selection procedures used
in classical genetic algorithms. It computes the fitness values of
all the elements of the population, it orders them accordingly,
and it picks randomly two or more elements among a fraction
of the best ones.

The convergence speed of our algorithm, in terms of genetic
steps, is comparable to a classical genetic algorithm with trun-
cation selection, and the real power of quantum computation is
exploited at every genetic step, where the fitness evaluation and
selection procedure are performed in O(1). Moreover, the selec-
tion pressure of the algorithm can be controlled by a parameter
of the QGOA ny,.

QGOA is a quantum algorithm that combines the principles
of genetic computation with the principles of quantum search.

8If the fitness function is fixed a structure can be created by ordering the ini-
tial results of fitness computation in O(N log V') and maintaining the order in
O(log N), exploiting such informations to speed up the computation.
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The result is that running on a quantum machine QGOA will
provide a sensible speedup from O(N log N) to O(1) on each
genetic step, where N is the dimension of the population. This
result permits the use of bigger populations as the number of
qubits (log V) used for the encoding will hopefully grow thanks
to technology. The advantage will be far more useful for varying
fitness function, for example, in quantum control processes. In
this case, each oracle interrogation is affected via an instant re-
alization of the process involved and, therefore, it is affected
by unavoidable imperfections and noise, as no real laboratory
experiment can be performed with ideally perfect conditions.
Thus, the physical “black box” embodying the oracle remains
the same and does not need to be rebuilt at every step; never-
theless, the value of the fitness function (in our example, the
probability amplitude to reach a desired final state as a result of
the quantum chemical reaction) is subject to fluctuations from
step to step. This is relevant to quantum computation in general,
beyond the specific example outlined here, as in that context one
can never fully disregard the physical embodiment of the logical
operations.

In this sense, a genetic algorithm (like QGOA) that works in
the presence of noise can be regarded as an example of built-in
algorithmic fault tolerance, and this is a major advantage with
respect to its classical counterpart, as we have demonstrated
quantitatively in our work.

When and how a quantum machine will be available is an
open question. However, our proposal will permit to apply the
advantages of quantum computation to a broader set of problems
related to genetic algorithms.
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