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Abstract – We introduce a quantum version of the Game of Life and we use it to study the
emergence of complexity in a quantum world. We show that the quantum evolution displays
signatures of complex behaviour similar to the classical one, however a regime exists, where
the quantum Game of Life creates more complexity, in terms of diversity, with respect to the
corresponding classical reversible one.
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The Game of Life (GoL) has been proposed by Conway
in 1970 as a wonderful mathematical game which can
describe the appearance of complexity and the evolution
of “life” under some simple rules [1]. Since its introduction
it has attracted a lot of attention, as despite its simplicity,
it can reveal complex patterns with unpredictable evolu-
tion: From the very beginning a lot of structures have
been identified, from simple blinking patterns to complex
evolving figures which have been named “blinkers”, “glid-
ers” up to “spaceships” due to their appearance and/or
dynamics [2]. The classical GoL has been the subject of
many studies: It has been shown that cellular automata
defined by the GoL have the power of a Universal Turing
machine, that is, anything that can be computed algo-
rithmically can be computed within Conway’s GoL [3,4].
Statistical analysis and analytical descriptions of the GoL
have been performed; many generalisations or modifica-
tions of the initial game have been introduced as, for exam-
ple, a simplified one-dimensional version of the GoL and a
semi-quantum version [5–7]. Finally, to allow a statistical-
mechanics description of the GoL, stochastic components
have been added [8].
In this letter, we bridge the field of complex systems

with quantum mechanics introducing a purely quantum
GoL and we investigate its dynamical properties. We show
that it displays interesting features in common with its
classical counterpart, in particular regarding the variety of
supported dynamics and different behaviour. The system
converges to a quasi-stationary configuration in terms
of macroscopic variables, and these stable configurations
depend on the initial state, e.g., the initial density of
“alive” sites for random initial configurations. We show
that simple, local rules support complex behaviour and

that the diversity of the structures formed in the steady
state resembles that of the classical GoL, however a regime
exists where quantum dynamics allows more diversity to
be created than possibly reached by the classical one.
The universe of the original GoL is an infinite

two-dimensional orthogonal grid of square cells with
coordination number eight, each of them in one of two
possible states, alive or dead [1]. At each step in time,
the pattern present on the grid evolves instantaneously
following simple rules: any dead cell with exactly three live
neighbours comes to life; any live cell with less than two
or more than three live neighbours dies as if by loneliness
or overcrowding. As already pointed out in [7], the rules of
the GoL are irreversible, thus their generalisation to the
quantum case implies rephrasing them to make them
compatible with a quantum reversible evolution. The
system under study is a collection of two-level quantum
systems, with two possible orthogonal states, namely the
state “dead” (|0〉) and “alive” (|1〉). Clearly, differently
from the classical case, a site can be also in a superpo-
sition of the two possible classical states. The dynamics
is defined as follows in terms of the GoL language: a site
with two or three neighbouring alive sites is active, where
active means that it will come to life and eventually die
on a typical timescale T (setting the problem timescale,
or time between subsequent generations). That is, if
maintained active by the surrounding conditions, the site
will complete a full rotation, if not, it is “frozen” in its
state. Stretching the analogy with Conway’s GoL to the
limit, we are describing the evolution of a virus culture:
each individual undergoes its life cycle if the environment
allows it, otherwise it hibernates in its current state and
waits for conditions to change such that the site may
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Fig. 1: (Colour on-line) Example of the evolution of the GoL
described by Hamiltonian (1) for a simple initial configuration.
Empty (blue) squares are “dead” sites, coloured (red) ones are
“alive”.

become active again. This slight modification allows us to
recover the reversibility of the dynamics and to introduce
a quantum model that, as we shall see, reproduces most
of the interesting complex behaviour of the classical GoL
from the point of view of a classical observer. However, its
evolution is purely quantum and thus we are introducing a
tool that will allow to study the emergence of complexity
from the quantum world.

Model. – The Hamiltonian describing the aforemen-
tioned model is given by

H =

L−2∑
i=3

(bi+ b
†
i ) ·
(N 3i +N 2i ) , (1)

where L is the number of sites; b and b† are the usual
annihilation and creation operators (�= 1); the operators
N 2i =

∑
P nαnβn̄γ n̄δ and N 3i =

∑
P ′ nαnβnγ n̄δ (n= b

†b,
n̄= 1−n, the indices α, β, γ, δ label the four neighbouring
sites) count the population present in the four neighbour-
ing sites (the sum runs on every possible permutation P
and P ′ of the positions of the n and n̄ operators) and N 2
(N 3) gives the null operator if the population is differ-
ent from two (three), the identity otherwise. For classi-
cal states, as for example an initial random configuration
of dead and alive states, the Hamiltonian (1) is, at time

zero, HActive = bi+ b
†
i on the sites with two or three alive

neighbours and HHibernate = 0, otherwise. If the Hamil-
tonian remained constant, every active site would oscil-
late forever while the hibernated ones would stand still.
On the contrary, as soon as the evolution starts, the state
evolves into a superposition of possible classical configura-
tions, resulting in a complex dynamics as shown below and
the interaction between sites starts to play a role. Thus,
the Hamiltonian introduced in eq. (1) induces a quantum
dynamics that resembles the rules of the GoL: a site with
less than two or more than three alive neighbouring sites
“freezes” while, on the contrary, it “lives”. The difference
with the classical game —connected to the reversibility
of quantum dynamics— is that “living” means oscillat-
ing with a typical timescale between two possible classical
states (see, e.g., fig. 1).

Dynamics. – To study the quantum GoL dynamics
we employ the time-dependent Density Matrix Renor-
malization group (DMRG). Originally developed to

investigate condensed-matter systems, the DMRG and its
time-dependent extension have been proven to be a very
powerful method to numerically investigate many-body
quantum systems [9–12]. As it is possible to use it effi-
ciently only in one-dimensional systems, we concentrate
to the one-dimensional version of the Hamiltonian (1):
the operators N 2 and N 3 count the populated sites on
the nearest-neighbour and next-nearest-neighbour sites
and thus α= i− 2, β = i− 1, γ = i+1, δ = i+2. Note that
it has been shown that the main statistical properties
of the classical GoL are the same in both two- and
one-dimensional versions [6].
To describe the system dynamics we introduce different

quantities that characterise in some detail the system
evolution. We first concentrate on the population dynam-
ics, measuring the expectation values of the number
operator at every site 〈ni(t)〉. This clearly gives a picture
of the “alive” and “dead” sites as a function of time, as
it gives the probability of finding a site in a given state
when measured. That is, if we observe the system at some
final time Tf we will find dead or alive sites according to
these probabilities. In fig. 2 we show three typical evolu-
tions (leftmost pictures): configuration A corresponds
to a “blinker” where two couples of nearest-neighbour
sites oscillate regularly between dead and alive states
(a schematic representation of the resulting dynamics
of the discretised population Di(t) is reproduced also in
fig. 3); configuration B is a typical overcrowded scenario
where twenty-four “alive” sites disappear leaving behind
only some residual activity; finally a typical initial random
configuration (C) is shown. Notice that in all configura-
tions it is possible to identify the behaviour of the wave
function tails that propagate and generate interference
effects. These effects can be highlighted by computing the
visibility of the dynamics, the maximum variation of the
populations within subsequent generations, defined as

vi(t) = |max
t′
ni(t

′)−min
t′
ni(t

′)|; t′∈
[
t− T
2
; t+

T

2

]
; (2)

that is, the visibility at time t reports the maximum
variation of the population in the time interval of length
T centered around t. The visibility clearly follows the
preceding dynamics (see fig. 2, second column) and
identifies the presence of “activity” in every site.
To stress the connections and comparisons with the

original GoL we introduce a classical figure of merit
(shown in the third column of fig. 2): we report a
discretized version of the populations as a function of
time (Di(t) = 1 for ni(t)> 0.5 and Di(t) = 0 otherwise).
Notice that Di(t) gives the most probable configuration
of the system after a measurement on every site in the
basis {|0〉, |1〉}. Thus, we recover a “classical” view of the
quantum GoL with the usual definition of site status.
For example, configuration A is a “blinker” that changes
status at every generation (see figs. 2 and 3). More
complex configurations appear in the other two cases.
The introduction of the discretized populations Di can
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Fig. 2: (Colour on-line) From left to right: Countour plot of the time evolution of the populations 〈ni(t)〉 (column 1),
visibility vi(t) (column 2), discretized populations Di(t) (column 3) and clustering C(�, t) (column 4) for three different initial
configurations: four alive sites separated by two dead ones (A), twenty-four alive sites grouped together (B) and a random initial
configuration (C). Time is reported on the x-axis (in arbitrary units), and position (cluster size) i= 1, . . . , L on the y-axis in
columns one to three (four). Arrows in panel 3A highlight the three subsequent generations of a “blinker” reported schematically
in fig. 3. The colour code goes from zero to M = 1 (M = 4 for the clustering and to M = .1 for the visibility), from blue through
green to red.

Fig. 3: (Colour on-line) Schematic representation of a one-
dimensional time evolution of the discretized population Di(t)
of a “blinker” (case A of fig. 2). From left to right the states
of subsequent generations are sketched. Empty (blue) squares
are “dead” sites, coloured (red) ones are “alive”.

also be viewed as a new definition of “alive” and “dead”
sites from which we could have started from the very
beginning to introduce a stochastic component as done
in [8]. This quantity allows analysis to be performed
as usually done on the classical GoL and to stress the

similarities between the quantum and the classical GoL.
Following the literature to quantify such complexity, we
compute the clustering function C(�, t) that gives the
number of clusters of neighbouring “alive” sites of size � as
a function of time [6]. For example, the function C(�, t) for
a uniform distribution of “alive” sites would be simply
C(L) = 1 and zero otherwise, while a random pattern
would result in a random cluster function. This function
characterises the complexity of the evolving patterns, e.g.
it is oscillating between zero- and two-size clusters for the
initial condition A, while it is much more complex for the
random configuration C (see fig. 2, rightmost column).

Statistics. – To characterise the statistical properties
of the quantum GoL we study the time evolution of
different initial random configurations as a function of
the initial density of alive sites. We concentrate on two
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Fig. 4: (Colour on-line) Left: average population ρ(t) (upper)
and diversity ∆(t) (lower) as a function of time for different
initial population density ρ0. Right: equilibrium average popu-
lation ρ (upper) and diversity ∆ (lower) for the quantum (blue
squares) and classical (red circles) GoL as a function of the
initial population density ρ0. Simulations are performed with
a t-DMRG at third order, Trotter step δt= 10−2, truncation
dimensionm= 30, size L= 32, averaged over up to thirty differ-
ent initial configurations.

macroscopic quantities: the density of the sites that if
measured would with higher probability result in “alive”
states

ρ(t) =
∑
i

Di(t)/L; (3)

and the diversity

∆(t) =
∑
�

C(�, t), (4)

the number of different cluster sizes that are present in
the systems, that quantifies the complexity of the gener-
ated dynamics [6,8]. Typical results, averaged over differ-
ent initial configurations, are shown in fig. 4 (left). As can
be clearly seen the system equilibrates and the density of
states as well as the diversity reach a steady value. This
resembles the typical behaviour of the classical GoL where
any typical initial random configuration eventually equi-
librates to a stable configuration. Moreover, we compare
the quantum GoL with a classical reversible version of
GoL corresponding to that introduced here: at every step
a cell changes its status if and only if within the first
four neighbouring cells only three or two are alive. Notice
that, the evolution being unitary and thus reversible, the
equilibrium state locally changes with time, however the
macroscopic quantities reach their equilibrium values that
depend non-trivially only on the initial population density.
In fact, for the classical game, we were able to check
that the final population density is independent of the
system size while the final diversity scales as L1/2 (up to
210 sites, data not shown). Moreover, the time needed to
reach equilibrium is almost independent of the system size

and initial population density. These results on the scaling
of classical system properties support the conjecture that
our findings for the quantum case will hold in general,
while performing the analysis for bigger system sizes is
highly demanding. A detailed analysis of the size scaling
of the system properties will be presented elsewhere. In
fig. 4 we report the final (equilibrium) population density
(right upper) and diversity (right lower) as a function of
the initial population density for both the classical and
the quantum GoL for systems of L= 32 cells. The equi-
librium population density ρ is a non linear function of
the initial one ρ0 in both cases: the classical one has an
initial linear dependence up to half-filling where a plateau
is present up to the final convergence to unit filling for
ρ0 = 1. Indeed, the all-populated configuration is a stable
system configuration. The quantum GoL follows a simi-
lar behaviour, with a more complex pattern. Notice that
here a first signature of quantum behaviour is present: the
steady population density reached by the quantum GoL is
always smaller than its classical counterpart. This is prob-
ably due to the fact that the evolution is not completely
captured by this classical quantity: the sites with popula-
tion below half filling, i.e. the tails of the wave functions,
are described as unpopulated by Di. However, this miss-
ing population plays a role in the evolution: within the
overall superposition of basis states, a part of the proba-
bility density (corresponding to the states where the sites
are populated) undergoes a different evolution than the
classical one. In general, the quantum system is effectively
more populated than the classical ρ indicates. This differ-
ence in the quantum and classical dynamics is even more
evident in the dependence of the equilibrium diversity on
the initial population density ρ0. In the classical case the
maximum diversity is slightly above three: on average, in
the steady state, there are no more than about three differ-
ent cluster sizes present in the system independently of
the initial configuration. On the contrary —in the quan-
tum case— the maximal diversity is about four, increasing
the information content (the complexity) generated by the
evolution by about 10–20%.
These findings are a signature of the difference between

quantum and classical GoL. In particular we have shown
that the quantum GoL has a higher capacity of generating
diversity than the corresponding classical one. This prop-
erty arises from the possibility of having quantum super-
positions of states of single sites. Whether purely quantum
correlations (entanglement) play a crucial role is under
investigation. Similarly, as there is some arbitrariness in
our definition of the quantum GoL, the investigation of
possible variations is left for future work.
The investigation presented here fits perfectly as a

subject of study for quantum simulators, like for exam-
ple cold atoms in optical lattices. Indeed, the five-body
Hamiltonian (1) can be written in pseudo spin–one-half
operators (Pauli matrices) and thus it can be simulated
along the lines presented in [13]. In particular, these
simulations would give access to investigations in two
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and three dimensions that are not feasible by means of
t-DMRG [10].
In conclusion we note that this is one of the few available

simulations of a many-body quantum game scalable in the
number of sites [14–16]. With a straightforward generali-
sation (adding more than one possible strategy defined in
eq. (1)) one could study also different many-player quan-
tum games. This approach will allow different issues to be
studied related to many-player quantum games such as the
appearance of new equilibria and their thermodynamical
properties. Moreover, the approach introduced here shows
that one might investigate many different aspects of many-
body quantum systems with the tools developed in the
field of complexity and dynamical systems: In particular,
the relations with Hamiltonian quantum cellular automata
in one dimension and quantum games [14,17]. Finally, the
search for the possible existence of self-organised criti-
cality in these systems along the lines of similar inves-
tigations in the classical GoL [18], if successful, would
be the first manifestation of such effect in a quantum
system and might have intriguing implications in quantum
gravity [19,20].
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Additional remark : After completing this work we became
aware of another work on the same subject [21].
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