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Single ions held in linear Paul traps are promising candidates for a future quantum computer. Here, we
discuss a two-layer microstructured segmented linear ion trap. The radial and axial potentials are obtained
from numeric field simulations and the geometry of the trap is optimized.As the trap electrodes are segmented
in the axial direction, the trap allows the transport of ions between different spatial regions. Starting with
realistic numerically obtained axial potentials, we optimize the transport of an ion such that the motional
degrees of freedom are not excited, even though the transport speed far exceeds the adiabatic regime. In
our optimization we achieve a transport within roughly two oscillation periods in the axial trap potential
compared to typical adiabatic transports that take of the order 102 oscillations. Furthermore heating due to
quantum mechanical effects is estimated and suppression strategies are proposed.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

With a series of spectacular experiments the ion trap based quantum computing has proven its prominent
position for a future quantum computer among the list of candidates [1]. Starting with two-qubit gate
operations [2, 3], long lived two-qubit entanglement [4–6], teleportation experiments [7, 8], and different
sorts of multi-qubit entangled states [4,9–11], the record for qubit-entanglement is currently presented in
a 6-qubit cat state and a 8-qubit W-state [12,13]. Future improvement is expected using the technique of
segmented linear Paul traps which allow to shuttle ions from a “processor” unit to a “memory” section [14]. In
such a quantum computer, strategies of quantum error correction will be critical for the successful operation.
However, as a result, many additional ancilla qubits are required and a large fraction of the computational
time will be consumed by shuttling ions between different segments. Detailed simulations [15] show that
as much as 99% of the operating time would be spent with the transportation processes. The time required
for the transport should be reduced such that the gate times are improved and decoherence processes are
reduced.

Thus, we assume that the improvement of these transport processes is necessary. In recent experiments
[12, 16], the shuttling has been carried out within the adiabatic limit, such that the time required for the
transport by far exceeds the oscillation time of the ion in the potential. It is a common misbelief that this
adiabatic transport is necessary to avoid the excitation of vibrational quanta. In this spirit, we investigate
in this paper the optimization of fast and non-adiabatic transportation by applying classical optimal control
theory. Our simulations allow to predict the time sequence of control voltages such that ion heating is
suppressed.

∗ Corresponding author E-mail: kilian.singer@uni-ulm.de
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Fig. 1 Scheme of a two-layer micro structured segmented linear trap: The two electrode layers have a thickness t
and are separated by the distance s. The length of the trapping electrodes is w, the radio frequency electrodes (RF) and
the segmented electrodes (DC) are separated on each layer by the gap g (radial direction). The RF voltage is applied
on two continuous electrodes (black) and the static voltages are applied on the segmented DC electrodes (gray). The
DC electrode segments have the length k and are separated by a gap h. The symmetry axis is later denoted as the x- or
axial direction.

50 µm

Fig. 2 Detail view on the trap chip, 5 µm
gold plated alumina of 125 µm width cut by a
fs-pulsed Ti:Sapphire laser. The scanning elec-
tron microscope picture shows several DC elec-
trode segments of a single layer.

Certainly, non-optimized fast transport of qubit ions into the processor unit followed by sympathetic
cooling of a different ion species [17,18] would be an alternative strategy. However, the necessary cooling
time would render the overall computational time even slower. First experiments show that the qubit co-
herence is maintained during a transport, but that the vibrational quantum state may typically not be well
conserved after a fast shuttle of the ions. This impedes further qubit operations.

In the first section of this paper we start by numeric calculations of the electric trapping potential for
ions and show how to optimize the geometry of a two-layer microstructured segmented trap [19,20]. The
same techniques may be applied for the optimization of planar ion traps [21–24]. In the second section we
optimize the transport of a single ion between two regions and illustrate the application of optimal control
theory [25]. Even though shuttling is fast, we can show that an optimized non-adiabatic transport does not
lead to significant heating.
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2 Optimization of a two-layer microstructured ion trap

The idea of segmented linear Paul traps has been proposed to realize a scalable quantum computer [14,26,27].
Typically, these trap structures are fabricated out of etched semiconductor structures [20] or gold plated
insulators structured by microfabrication techniques [28]. Segmented traps come in various shapes and can
be categorized by the number of electrode layers forming the trapping potential: Planar traps with one layer
only, two-layer traps that are composed of two microstructured planar chips and traps with a higher number
of electrode layers. In our discussion, we will focus on the two-layer geometry which is shown in Fig. 1.
To illustrate the methods of fabrication, Fig. 2 gives an SEM picture of a gold plated laser cut alumina
wafer. Here, with fs-laser ablation [29], the cuts are clean and show a spatial resolution of about 2µm. The
DC-electrodes may be cut in form of “fingers” to reduce the insulating surface seen directly from the ion
position. This reduces the influence of the possibly charged surfaces to the trap potential and has also been
shown to reduce heating effects of the ion motion. Two structured wafers are assembled to form a two-layer
trap geometry as shown in Fig. 1.

2.1 Design objectives

What are the optimal dimensions and aspect ratios in such an ion trap structure? What are the optimal
electric trap parameters?

Radial configuration At first, we aim for a high secular trap frequency ωsec/2π, such that there is a tight
dynamical confinement of the ions within the Lamb-Dicke regime. The confinement should typically reach
frequencies of several MHz in the radial direction. The required radial frequencies should be achieved with
moderate voltages on the electrodes of several hundreds volts. Therefore, the RF trap drive may not exceed
the break-through voltage - a limitation which plays a significant role in the case of very small traps [20,21].

A second aspect is the anharmonicity of the radial trapping potential. From the fact that linear traps with
optimized electrode shapes have been shown to load large crystals of ions [30], we would try to improve the
loading rate by reducing non-harmonic contributions to the potential. Especially for larger q-values when
the trap drive power is chosen relatively high, non-linear resonances have been observed [31]. This confirms
that even small anharmonicities are relevant in the case of large crystals.

Axial configuration In order to maintain the linear appearance of the ion crystals, the axial trap frequencies
have to be lower than the radial frequency. Nevertheless, the axial frequencies ωax/2π should exceed a few
MHz. Then, cooling techniques are simpler [32], gate operations may be driven faster, and a faster adiabatic
transport of ions between segments may be achieved. Ion transport between axial segments requires a fast
temporal change of the trap control voltages on the order of several µs. This is accomplished by controlling
the DC-electrode voltages by means of fast digital-to-analog converters (DAC) and would be technically
much more involved for high voltages.1

Furthermore, single ions will have to be split off and merged to ion strings throughout the operation of a
segmented ion trap quantum computer. The investigation of splitting and merging operations is not within
the scope of this paper [33], however, it was pointed out that a highly non-harmonic axial potential improves
this situation [34]; it implies certain geometrical ratios in the axial trap construction.

2.2 Operating mode and modeling of the segmented linear Paul trap

Linear Paul traps are characterized by a two-dimensional dynamical confinement in the radial direction
(yz plane) and a static confinement in the axial direction (x-axis). The applied radio frequency ωrf/2π to
the RF electrodes (see Fig.1) generates a dynamical electric potential φrad(y, z, t) which leads to a strong
confinement of single ions along the axial direction at the radio frequency node. Typically, the axial potential

1 Therefore the geometry should also take into account the limited voltage range of the DACs.
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Fig. 3 Electric potential of the two-layer mi-
crostructure trap in radial direction (yz cross sec-
tion). Ions are confined by a pseudo-potential on
the x-axis. Here, the potential lines are normal-
ized to a trap drive amplitude Urf of 1V. In the
central trapping region near the x-axis the electric
potential may be approximated by a quadrupole
potential as the radial harmonic pseudopotential
for single ions.
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Fig. 4 a) Numerical simulation of the trap stiffness c2 in radial direction as a function of the slit width.
For a slit width of 126 µm we estimate a value of 5.5·107m−2 which corresponds to a radial frequency
of ωrad/2π = 5MHz. b) Dependence of the fourth order parameter c4 to the slit width g. The dashed line
near 126 µm indicates the optimization result. c) The normalized hexapole coefficient c4 normalized by the
quadrupole coefficient c2 indicates the descreased loss of the trap drive power.

φax(x, t) formed by the quasistatic voltages applied to the segmented DC electrodes is weaker than the radial
confinement to support a robust alignment of the linear ion string. The shape of this axial potential depends
on the geometry of the segmented DC electrodes. The time-dependent variation of the DC control voltages
allows to transport ions in the axial direction without micromotion. We separate the numerical optimization
of the linear Paul trap into a radial and axial calculation – first, the radial geometry configuration is optimized
for strong confinement in the RF node, then the axial electrode geometry is calculated based on the radial
geometry.

The lowest-order approximation of the dynamical trap potential φrad(y, z, t) in radial direction is similar
to that of a quadrupole mass filter [35]. The geometric factor c2 describes the quadrupole potential strength
in both radial directions for a symmetric radial electrode geometry:

φrad(y, z, t) = c2/2 (y2 − z2) (Udc + Urf · cos(ωrf t)) (1)

An ion trajectory is described as a superposition of a harmonic secular motion at frequency ωsec =
ωrf/2

√
a + q2/2 (lowest order approximation) and the superposed micromotion at the radio frequency ωrf.

The frequency of the secular motion is characterized by the dimensionless stability parameters a and q of
the radial motion [36] which depends on mass m and charge e of the ion, the RF amplitude Urf applied to
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the RF electrodes and the static voltages Udc applied to the segmented electrodes of the trap:

a =
4e Udc

m ω2
rf

c2 , q =
2e Urf

m ω2
rf

c2 (2)

A two-dimensional domain of the stability parameters a and q defines a region of stable trajectories as
solutions of the classical equations of motion2. In general, the electrode configurations result in an electric
potential that may be expanded in spherical multipole components, where the quadrupole contribution c2
represents the dominating part for reasonable Paul trap geometry; the hexapole contribution c4 contributes
mainly to the non-harmonic part.

The quadrupole approximation of the confining potential is inaccurate if the electrode shapes deviate
strongly from the ideal hyperbolic form. As a result, anharmonicities and coupling terms appear inside
the stability region [31]. As the radio frequency voltage is portioned to various higher order terms and
not only to the quadrupole contribution of the potential a loss of the trap stiffness c2 is observed (Fig. 4).
For simplicity we idealize Udc as zero and characterize the anharmonicity of the pseudopotential in radial
direction along the two radial principal axes, here denoted by a radial coordinate r(y, z), by the leading
terms of the following polynomial expansion:

φrad(r(y, z), t) ∝
∑

n

cn rn (3)

Because of the radial electrode symmetry the odd-numbered terms c1, c3, . . . are negligible and the
potential offset c0 is irrelevant. The optimization of the radial trap potential leads to a suppression of the
higher order potential contribution, such that the hexapole term c4 as the leading non-harmonic contribution
is small.

Based on the geometry for an optimized radial confinement the axial static trap potential along the
symmetry axis x can be analogously expanded,

φx(x, t) ∝
∑

n

dn xn. (4)

The axial potential properties are determined by the segmented electrode geometry, especially the axial
width of the individual electrode segments. An optimal axial confinement of the ion requires a maximum
quadratic term d2. The transport of a single ion between axial segments is facilitated if the potentials from
adjacent segments exhibit a large overlap. For the splitting operation of an aligned two-ion crystal into
single ions in independent axial potentials, Steane et al. [34] suggest a potential shape with a maximum
quartic term d4 and minor quadratic contribution d2.

Relevant parameters of various linear ion traps are summarized in Table 1. The Aarhus hexapole design
with endcaps [37] and the Innsbruck blade design [38] show a traditional macroscopic approach of mm-
size linear trap design without segmentation of the control electrodes. The Michigan trap designs, the
microstructured three-layer trap [39] and the semiconductor two-layer trap [40], represent the progress in
the miniaturization of linear ion traps and the segmentation of the control electrodes for the transport of
single ions and the splitting of ion crystals.

2.3 Optimization of the radial potential

In the first step we optimize the radial confinement of the trap. The width of the slit is varied and the electric
potential is calculated, see Fig. 3. The distance of the two layers is fixed to the thickness of a commercial
alumina wafer (125 µm) which acts as a spacer. Then a variable parameter is the width g of the lateral laser
cut in the trap chips, respectively the distance between the RF and the DC-electrodes of the trap chips.
We find that the radial confinement increases with decreasing slit width g, see Fig. 4. Interestingly, for this

2 We discuss the optimization in the so-called lowest stability region including a = 0 and q ≤ 0.9
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Table 1 Trap design parameters of several types of linear ion traps: The geometric trap R size given by the minimal
distance between ion position and electrode surface, the quadratic geometry factor c2 of the radial cross section describes
the magnitude of the radial confinement at the given electrode voltage, the trap drive frequency ωrf/2π together with the
trap drive voltage Urf and the RF stability parameter q results in the radial motional frequency ωrad/2π. For comparison
the axial motional frequency ωax/2π is shown. The trap depth ∆ summarizes the confinement of a single ion.

R c2 ωrf/2π Urf q ωrad/2π ωax/2π ∆

[µm] [1/m2] [MHz] [V] [MHz] [MHz] [meV]

Aarhus [37] 24Mg+ 1750 1.6 · 105 4.2 2 · 50 · · · 2 · 150 0.2 · · · 0.6 0.3 · · · 0.8 ≤ 0.4 ≤ 105

Innsbruck [38] 40Ca+ 800 3.9 · 106 23.5 700 0.6 5.0 1.0 1000

Michigan [39] 112Cd+ 100 2.2 · 107 48.0 0.3 5.0 2.5

Simulation 40Ca+ 89 5.3 · 107 50.0 120 0.3 5.0 2.5 300

Michigan [40] 112Cd+ 30 4.7 · 108 15.9 8 0.6 4.3 1.0 80

geometry, the radial potential is almost harmonic since the fourth order parameter c4 is nearly vanishing.
For a width of 126 µm the radial frequency of ωrad/2π = 5 MHz is reached for a singly charged 40Ca+ ion
with a peak RF voltage of 120 V at 50 MHz.

2.4 Optimization of the axial potential

The optimization of the axial potential determines the performance of the fast ion transport. Additional
requirements are a deep axial potential even with moderate DC control voltages and the capability of the
segments to split a two-ion crystal into two single ions trapped independently in distinct potential minima.

In a first step we investigate the maximization of the axial trap frequency ωax as a function of the segment
width k and the cut width h, see Fig.1. The numerical three-dimensional electric potential simulation is
depicted in Fig. 6 which shows the expected result. For a large width of the segments, the potential is expected
to be shallow, and for a very short width the electric potential falls rapidly off from the electrode tips such
that again, a weak confinement is found. The maximum axial trap frequency is reached for a segment width
kopt � 70 µm, a gap between DC and RF electrode g= 126 µm between DC and RF electrode and a cut
width of h= 30 µm. Changing the size of the segment width by 50% results only in a 20% variation of d2
which is easily compensated by the DC voltage.

The trapping of single ions and transport require a different electrode configuration. For the transport
problem, it is important that the potentials generated by adjacent DC segments exhibit a large spatial overlap
(see Fig. 5). To achieve both ideal trapping and transport conditions we split each electrode into two parts (b).
For trapping we bias two neighboring electrodes with an equal voltage in order to obtain a larger “effective”
electrode. Due to the smaller segmentation a better overlap of the individual potentials is provided during
transport.As the ion is displaced during the transport process we expect that the anharmonic terms d4, d5, . . .
of the potential will cause heating, see Sect. 3.5. Therefore we have determined the optimal effective segment
width such that the d4 term is minimized. The results are shown in Fig. 6.

In the following, we will use the simplified transport scheme in Fig. 5 (c) with one start and one target
electrode only and investigate the necessary time dependence of both DC segment control voltages.

3 Open loop control of ion transport

After the optimization of all geometric trap parameters we now focus on the optimization of the time
dependent trap control voltages which are applied on the DC segments in order to transport the ion: Our goal
will be to decrease the time required for the transport far below the limit of adiabaticity, such that the transport
is finished within a single oscillation period only, with the constraint to avoid vibrational excitation. To a
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Fig. 5 Numerical calculation of the axial electric potentials φax, all cases (a) to (c) for the optimized radial
slit width of g = 126 µm. a) DC segments with a width of k = 90 µm and gaps between axial electrodes of
h = 30 µm result in a maximal d2 coefficient. The potential of the adjacent electrode is plotted and shows
only partial overlap (dashed gray). b) Optimized transport scheme: The DC electrodes are divided into equal
parts with k = 45 µm and h = 15 µm. If both electrodes are at the same voltage of 1V, the potential is nearly
identical to the optimized case (a). For transporting an ion, the potential minimum is shifted by changing
the voltages from ..0/0/1/1/0/0.. → ..0/0/0/1/1/0.. continuously. The axial potentials exhibit a large overlap
which improves the transport of the ions. c) Simplified transport scheme: Axial potential for DC segments
with k = 45 µm and h = 15 µm. Now, only a single segment is at 1 V. For transporting the voltages are
changed from ..0/1/0/0/.. → ..0/0/1/0/...

good approximation the radial ion confinement does not influence the axial transport between two segments
as the ion is moving along the central RF-node with negligible micromotion. Note, that our calculation
takes into account two axial segments but may be adapted to a larger number of segments, see Fig. 5 (c).
The potential which we use for the optimization of the ion transport is the result of a boundary element
calculation, see appendix A. In order to transport the ion, the potential minimum is shifted by changing the
DC control voltages ui(t). Intuitively, we estimate that a smooth acceleration and a smooth deceleration of
the ion is advantageous. Searching for the precise shape of the segment control non-adiabatic heating due
to fast transport has to be minimized.
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Fig. 6 a) Numerical simulation of the axial trap stiffness d2 as a function of the segment width k with h =
30 µm. b) Dependence of the fourth order parameter d4, the dashed line near k =160 µm indicates the zero
crossing.

3.1 Non-adiabatic heating sources

For a transport duration approaching the timescale given by the axial trap frequency, the following non-
adiabatic effects are expected to occur:

1. Classical displacement error: The ion cannot adiabatically follow the potential minimum and starts
oscillating, such that it possesses excess energy after the transport process. This behavior may be under-
stood classically. In the quantum picture it corresponds to the buildup of a nonvanishing displacement
α during transport.

2. Wavepacket dispersion heating: With a spatial extension of about 10 to 20 nm, the undisplaced wave-
function hardly senses any anharmonicity in an electric potential that is generated by 50 to 100 µm sized
electrode structures. However, during the transport the wavepacket undergoes significant excursions of
a few µm out of the minimum of the potential. Here, exposed to higher anharmonic d4 contributions,
the shape of the ion wavepacket disperses which results in vibrational excitation.

3. Parametric heating:As the control voltages are changed, the harmonic frequency ω of the instantaneous
potential is temporarily varying. If the width of the wavepacket can not follow the variation of ω(t)
adiabatically, parametric heating to higher vibrational states will occur.

3.2 Overview of the applied optimization strategies

In the following Sect. 3.3 we minimize the classical displacement error by applying the optimal control
method. For the optimization of this entirely classical error source we need to optimize the ion’s classical
trajectory such that a cost function – weighting the ion’s phase space displacement after the transport –
is minimized. The solution obtained by the optimal control algorithm does not show considerable heating
by wavepacket dispersion. However, we find a significant contribution of parametric heating. A first guess
would be to include an additional term in the cost function to prevent parametric heating, involving time
derivatives of the control fields.

As this approach fails due to implementational difficulties, we suppress parametric heating by an ap-
propriate initial guess which keeps the trap frequency perfectly constant. This is achieved by a variable
transformation from u1,2(t) to new parameters that allow to decouple the strength of the potential and its
minimum position. Starting now the optimal control method yields a solution that reduces the displacement
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error. Since the control parameters are only slightly modified by the optimization algorithm, the parametric
heating and also the wavepacket dispersion heating are negligible.

We conclude that in our case, the choice of variables that decouple the essential optimization parameters
[41,42] and a well suited initial guess function are helpful and maybe critical for the success of the optimal
control method.

3.3 The optimal control method

This section will give an introduction to optimal control theory applied to single ion transport. We use
the method derived from a variational principle with unbounded controls and fixed final time [43]. We
consider the dynamics of a singly charged single 40Ca+ ion confined in a segmented linear Paul trap. We
assume that the ion is laser cooled to its motional ground state 3 pertaining to the axial degree of freedom.
Neglecting the radial motion, the motional state of a trapped ion is classically represented by a coordinate
vector �ξ(t) = (x, v)T in a two dimensional phase space.

The equation of motion under consideration of two uniform electrode segments with arbitrary voltages
applied on them, reads

�̇ξ = �a(�ξ, {ui}) =

(
v

− 1
m

∑
i

∂Vi(x)
∂x ui(t)

)

. (5)

Here, the index i runs over the two electrodes and Vi(x) are the normalized electrostatic potentials at
electrode i. Eq. (5) then holds for arbitrary electrode voltages due to the linearity of the Laplace equation.
Our goal is now to find time-dependent control voltages ui(t) that move the ion from the center of electrode
1 to the center of electrode 2. We desire to have the ion at rest after the transport process. The performance
of a given control field is judged by the cost function

h(�ξ(tf )) = α (x(tf ) − xf )2 + β v(tf )2, (6)

which is a measure of the phase space displacement at the final time tf . α and β weight the contributions
relative to each other. Taking Eq. (5) as a constraint for all times t, we obtain the cost functional

J(�ξ, �ξp, {ui}) =
∫ tf

t0

∂h

∂�ξ
· �̇ξ + �ξp ·

(
�a(�ξ, {ui}) − �̇ξ

)
dt (7)

where we have introduced the costate vector ξp =
(
xp, vp

)T
as a Lagrange multiplier in order to guarantee

that the optimization result obeys the equation of motion Eq. (5). The time dependence of all variables has
been dropped in the notation. For an optimal control field, δJ = 0 has to hold, therefore the variational
derivatives with respect to �ξ, �ξp and �u have to vanish. The derivative with respect to �ξp restores the equations
of motion Eq. (5) for the state vector, the derivative with respect to �ξ yields equations of motion for the
costate vector:

�̇ξp = − ∂�a

∂�ξ
· �ξp ⇒

ẋp = vp
1
m

∑

i

∂2Vi(x)
∂x2 ui

v̇p = −xp. (8)

Variation of J with respect to the control field leads to an additional algebraic equation:

∂�a

∂ui
· �ξp = 0 ⇒ − 1

m

∂Vi(x)
∂x

vp = 0. (9)

3 The calculation is valid also for thermal and coherent states with modest excitation.
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Fig. 7 Initial guess for the control voltages,
corresponding to Eq. (13).

The boundary condition for �ξp is derived by variation with respect to the final state:
∣∣∣∣∣
∂h

∂�ξ

∣∣∣∣∣
tf

= 0. (10)

If we let the ion start at rest in the potential well pertaining to the first electrode, the set of boundary
conditions for the state and costate vector reads

x(t0) = 0

v(t0) = 0

xp(tf ) = 2 (x − xf )

vp(tf ) = 2 v. (11)

Eqs. (5), (8) and (11) together with (9) represent a system of coupled ordinary nonlinear differential
equations with split boundary conditions, i.e. for two of the variables, initial conditions are given whereas
for the other two, the values at the final time are specified. This makes a straightforward numerical integration
impossible. The system is therefore solved in an iterative manner by means of a gradient search method.
The scheme of this steepest descent algorithm is as follows:

1. Choose an initial guess for the control field ui(t).
2. Propagate x and v from t = t0 to t = tf while using ui(t) in the corresponding equations of motion.

At each time step, save the value of x(t).
3. Determine xp(tf ) and vp(tf ) according to (11).

4. Propagate xp and vp backwards in time from t = tf to t = t0. At each time step, save the value of
vp(t).

5. For each time step, update the control field according to

unew
i (t) = uold

i (t) + τ vp
1
m

∂V1(x)
∂x

(12)

6. Repeat steps 2 to 5 until the specified threshold fidelity is reached.
In Eq. (12), the gradient search step width τ is simply chosen by trial and error. If it is too small, the
algorithm converges too slowly, if it is too large, the algorithm starts to oscillate. The values of α and β in
Eq. (6) are determined based on experience. For the data presented in the following section, these values
are α = 10, β = 1 and τ = 5 · 10−8. The algorithm converged after about 200 iterations.
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Fig. 8 Optimized control voltages given in
terms of change with respect to the initial guess
values. The solid curve indicates the voltage
u1(t) at the start electrode, the dashed one the
voltage u2(t) at the destination electrode.

3.4 Optimization results

For the initial guess the control field is chosen as follows:

u
(0)
0 (t) =






V0 for t ≤ 0

V0 sin2( πt
2∆t ) for 0 < t ≤ ∆t

0 for t > ∆t

u
(1)
1 (t) = V0 − u

(0)
0 (t) (13)

This provides on the one hand a smooth and symmetric acceleration and deceleration of the ion, on the
other hand the potential minimum exactly coincides with the desired positions at the initial and final times.
In principle, other initial guess voltages like Gaussian flanks can be used as well. The reference voltage is
V0 = −0.1V , corresponding to ω ≈ 2π · 0.5 MHz in the initial and final potential wells. The switching
time is set to ∆t = 8.0 µs, the total time interval runs from −1.0 µs to 9.0 µs.

3.5 Ion heating due to anharmonic dispersion

Quantum mechanically we describe the system with a Hamiltonian operator pertaining to a time-dependent
harmonic oscillator with an anharmonic perturbation:

H0(t) =
p̂2

2m
+

m ω(t)2

2
(x̂ − x0(t))2 + κ(t)(x̂ − x0)4. (14)

Without temporal variation of ω and the anharmonic part4 of the potential, the solution of the time-dependent
Schrödinger equation is simply given by a coherent state |α(t)〉, where the displacement parameter α(t)
can be inferred from the classical trajectory. Anharmonic dispersion of a wavepacket occurs at a timescale
given by Trev/(∆n)2 [44], with the revival time

Trev = 2h

(
d2En

dn2

)−1

(15)

and the spread over the vibrational levels ∆n = α(t). The shift of the energy levels En induced by
the anharmonic contribution causes a finite dispersion time and can be calculated in first order stationary

4 In contrast to d4, κ(t) is given by expanding the potential around the instantaneous potential minimum.
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Fig. 9 (online colour at: www.fp-journal.org)
Phase space trajectories in the frame co-moving
with the potential minimum. The figure shows the
trajectories pertaining to iterations 0, 10 , ..., 100.
At iteration 100, the ion arrives close to the origin.
Note that the trajectory tends to be symmetrized
by the optimization algorithm.

perturbation theory:

∆En(t) =
5
4

�
2κ(t)

m2ω(t)2
n2. (16)

We now define a generalized dispersion parameter

∫ tf

t0

dt
∆n2

Trev
=

5 �

4π m2

∫ tf

t0

dt
κ(t)|α(t)|2

ω(t)2
. (17)

If this parameter is sufficiently small, anharmonic dispersion will not contribute to heating.

3.6 Quantum mechanical estimate of non-adiabatic parametric heating

We now check if the width of the wavepacket adiabatically follows the harmonic frequency ω(t). The
adiabatic theorem states that if

�〈φm(t)|φ̇n(t)〉 � |En(t) − Em(t)| (18)

is fulfilled, transitions between eigenstates can be neglected. The parametric time dependence of the eigen-
states states in Eq. (18) is the implicit time dependence via ω(t). We find the following nonvanishing matrix
elements:

〈φn+1|φn〉 =
ω̇√

2π3ω
n
√

n + 1

〈φn+2|φn〉 =
ω̇

4ω

√
(n + 1)(n + 2) (19)

and similar expressions for m = n − 1, n − 2. Thus, parametric heating can be neglected if

n3/2 ω̇

ω2 � 1. (20)

Numerical evaluation of the matrix elements yields the result that the adiabatic following condition is
fulfilled for n = 0, but is clearly violated for the high n occurring for large excursion of the wavepacket,
for example n̄ ≈ 2000 for ∆x = 1 µm at a transport time of 10 µs, see Fig. 10.
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b)
a)

c)

Optimization

Fig. 10 Non-optimized transport, heating effects, and optimization result: Indicated is the excess energy
as a function to transport time, if the initial guess function is used for the transport. The curve (a) describes
the energy at the final time in vibrational quanta. The approximate zeros occur when the deceleration of
the potential minimum coincides with the ion oscillation. Curve (b) displays the maximum non-adiabaticity
parameter Eq. (20) for parametric heating and the (c) the anharmonic dispersion loss parameter from Eq. (17).
The grey dashed horizontal line indicates a heating of one phonon and the borderline to non-adiabatic
behavior in curve (b). The optimization algorithm decreases the excess displacement by more than 6 orders
of magnitude. The circles indicate the squared phase space displacement for the guess function and the final
optimized control voltages.

3.7 Improved initial guess function and ultra-fast transport

We therefore have to refine our optimization strategy: As can be seen in Fig. 8, the control voltages changes
are symmetric, which indicates that one control degree of freedom can be sacrificed in order to keep ω(t)
constant. This is achieved as follows: The initial guess voltages Eq. (13) are normalized to a constant ω
before the optimization. The optimization process then leads to variations in ω(t) that are negligibly small
- typically leading to maximum values of ω̇/ω2 on the order of 10−5 such that according to Eq.(20) the
adiabatic theorem is fulfilled even after the optimization algorithm has cured the classical phase space
displacement heating. This is in strong contrast to the unconstrained, previous guess function, where we
obtain ω̇/ω2 � 10−2. It should be noted that parametric heating can be completely suppressed as well for
optimized control voltages. This can be achieved by changing the set of control parameters to ũ1 = u1 +u2
and ũ2 = u1/ũ1. The new parameter ũ2 is now directly related to the instantaneous potential minimum x0.
If only ũ2 is incorporated in the optimization process, ũ1 can be readjusted at each step to keep ω constant.

The optimization results for the improved initial guess voltages are shown in Fig. 12. The transport time
could now be reduced to 5 µs which corresponds to roughly two oscillation periods. For the improved guess
function the wave package dispersion appears now as the dominant heating source. This process could be
suppressed either by further geometric optimization of the trap segments or by including a corresponding
additional term into the cost function of the optimization routine.

3.8 Discussion of the open-loop result

Our optimization results indicate that unwanted heating during ion transport can be suppressed by many
orders of magnitude by the application of appropriate time-dependent control voltages. Technically, one
would achieve this using a fast high-resolution digital-to-analog converter (DAC) with subsequent scaling
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Fig. 11 Initial guess voltages normalized to
keep trap frequency constant. The old initial
guess voltages are indicated as dashed curves.
Note that the dynamics of the potential minimum
is unaffected by the normalization.

a)

b)

Fig. 12 Nonadiabatic effects versus transport
time for the improved initial guess voltages. Here,
only the (a) excess displacement and the (b) dis-
persion parameter are shown, parametric heating
is not relevant anymore. The values for the old
initial guess voltages are indicated in grey. The
improved initial guess allows for successfull op-
timization at a transport time of 5 µs and an op-
timization of about eight orders of magnitude in
classical phase space displacement. Now, with a
few µs transport, anharmonic dispersion becomes
the predominant heating source.

Fig. 13 (online colour at: www.fp-
journal.org) Phase space trajectories in the
frame co-moving with the potential minimum
for the improved initial guess voltages. The opti-
mization is now carried out for transport time of
only 5 µs corresponding to about two oscillation
periods in the harmonic trap potential. The thin
lines indicate the optimization progress and the
fat line shows the final result after 100 iterations.
Again, the optimization routine symmetrized the
trajectory.
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Fig. 14 a) Numeric result obtained by FEMLAB substracted from the result of BEM [55], b) FEMLAB – CPO, c)
CPO – BEM [55]. The left graph shows a 2D potential surface plot in the y-z plane. The right graph shows a line plot
in the same plane in the direction of the two diagonal directions.

to the required voltage range. The small correction voltages obtained from the optimization algorithm
might represent a problem, however a 16 bit DAC with an appropriate scaling circuit would allow for a
discretization step of roughly 1.5 µV for a maximum voltage change of 0.1V. We have also checked the
robustness of the control field solutions against noise by calculating the trajectories with white noise of
variable level added on the voltages. We found a quadratic dependence of the excess displacement on the
noise level. The deviation of the final displacement from the noise-free case was negligibly small at a noise
level of 20 µV. Experimental values for non-adiabatic heating effects in ion transport are given in [16]. The
comparison with our theoretical values is hampered by the fact that these measurements have carried out
at higher axial trap frequency and the lighter ion species 9Be+, but over a much longer transport distance
of 1.2 mm. However, low heating rates were obtained in those experiments only if the transport duration
corresponds to a relatively large number of about � 100 of trap periods, whereas in our case, a transport
within only two trap periods was simulated.

4 Outlook

The optimization of ion transport beyond the speed limits given by the anharmonic terms of the axial trapping
potentials and parametric heating would be most efficient and accurate if a full quantum mechanical equation
of motion was employed. Quantum mechanical optimal control methods are based on the same variational
principle as presented here for a classical problem, with the only difference that the terms in the penalty
functional are functionals on Hilbert space. Algorithms for quantum mechanical optimal control are well
developed and were applied to variety of different problems [41,45]. In our case however, the application
of quantum mechanical optimal control was not yet possible for simply a technical reason: The iterative
solution via repeated solution of Schrödinger equation over distances on the order of 200 µm and time
spans on the order of 20 µs takes too much computational effort, even with highly efficient methods like the
Fourier Grid Hamiltonian combined with the Chebyshev propagator technique [46]. On the other hand, we
have seen that for the typical electric potentials of segmented Paul traps, the possibility to exert quantum
control on the system is very restricted since the wavefunction of the ion mainly senses a harmonic potential.
The classical approach is therefore well suited to the problem.

In future work, we will investigate whether quantum control could be exerted during short time spans
when the ion is displaced from the potential minimum and therefore senses anharmonic contributions to the
potential. Extended Gaussian wave packet dynamics [47] could be used to take anharmonic terms efficiently
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into account. Thus, the application of quantum mechanical optimal control methods also opens new possi-
bilities, for example the control voltages could be used to devise new schemes for quantum computational
gates. In this case, the target wave function for the optimization routine could be the first excited motional
state or even a superposition of different motional Fock states. To fulfill this aim, anharmonic contributions
to the trapping potentials are crucial.

Open loop optimal control methods will also be applied to the splitting of two ions [33]. With this problem
the benefit of going beyond the adiabatic limit will be even more promising. In an adiabatic manner the
splitting is initiated by lowering the steepness of the potential in order to increase the separation of the two
ions due to their mutual repulsion. This decreases the trapping frequency and as a consequence the speed
of the procedure has to be decreased in order to stay adiabatic.

Open loop optimal control has proved to be successful for the optimization of short broadband RF pulses
in NMR experiments [48]. In a similar manner in ion trap based quantum computing tailored, light pulses
can speed up and improve manipulation of the ions [49,50]. In cases where analytical solution to the control
problem is not available open loop optimal control methods could be applied to get optimized light pulses
or electrostatic field configurations for multi ion gate operations and entangled state preparation.

Another promising strategy that could be employed to avoid heating during ion transport is the closed
loop control technique. Here, the experimental results are fed back into e.g. an evolutionary algorithm to
obtain improved values of the control parameters. The heating rate can be measured by comparing the
strengths of the red and blue motional sidebands after the transport process [51]. The key problem for
applying closed loop control to ion transport lies in finding an appropriate parametrization of the control
voltages in order to keep the parameter space small.

This technique may be applied equally well to the problem of separation of two ions from one common
potential into two independent sections of the linear trap.

This work has merely started to apply the optimal control theory for ion trap based quantum computing.
Not only the motion of ions between trap segments, but the entire process including shaped laser pulses [49]
and motional quantum state engineering might be improved with this technique.

Acknowledgements We acknowledge support by the European commission, the Deutsche Forschungsgemeinschaft
and by the Landesstiftung Baden-Württemberg within the frameworks "quantum highway A8" and "atomics". We thank
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A Comparison of our boundary-element-package
with commercial software

Accurate values of the electrostatic potentials are of paramount importance for the determination of the
harmonic and the anharmonic terms of the trapping potentials. An adequate choice of a numerical solving
method is the Boundary Element Method (BEM) [52,53]. BEM is a fast and more accurate method compared
to the Finite Element Method (FEM) or Finite Difference Method (FDM). This is due to the fact that BEM
only needs to solve for the surface charges on the electrode surfaces. With FEM/FDM the Laplace equation
has to be solved on a three dimensional mesh. Comparison of the speed and accuracy can be found in [54]. In
order to simplify the variation and optimization of the trap geometry we have implemented a free scriptable
object oriented BEM package for 3D and 2D [55]. We have verified the results for the geometry of Fig. 3
of our package against the results of the commercial BEM program CPO [56] (see Fig. 14 c) and against
the results of the commercial FEM program FEMLAB [57] (see Fig. 14 a). The higher values in the latter
case are due to the inaccuracy of the finite element method itself.
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