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We consider the system of two interacting atoms confined in axially symmetric harmonic trap. Within the
pseudopotential approximation, we solve the Schrödinger equation exactly, discussing the limits of quasi-one-
and quasi-two-dimensional geometries. Finally, we discuss the application of an energy-dependent pseudopo-
tential, which allows us to extend the validity of our results to the case of tight traps and large scattering
lengths.
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Atomic interactions at ultralow temperatures are of cen-
tral importance for recent research on quantum degenerate
gasesf1g. A typical feature of experiments on ultracold mat-
ter is the presence of a weak trapping potential, which modi-
fies the properties of the cloud of atoms, while it does not
affect the collisions of individual particles. Development of
optical lattice technology, however, has created systems
where the atoms are tightly confined in the wells of optical
potential f2g. In addition, the experimental achievement of
the Mott insulator phasef3g has allowed for a precise control
over a number of atoms stored in a single well. This has
opened a way for experimental studies of interactions of in-
dividual atoms in the presence of trapping potential and, to-
gether with other approaches to micromanipulation of neutral
atoms such as atom chipsf4,5g or tight dipole trapsf6g, it
represents a major candidate for the implementation of quan-
tum information processing. A theoretical understanding of
the dynamics of few atoms in deformed tight-confining ge-
ometries would be of great help in all these contexts.

From the theoretical side, the analytical solution for two
atoms interacting in a harmonic trap is known only for the
spherically symmetric casef7,8g. The corresponding problem
for axially symmetric trap was studied numerically inf9g.
However, there the authors considered only the limiting re-
gimes of quasi-one- and quasi-two-dimensional traps. In this
paper we present the exact solution for the axially symmetric
harmonic trap of arbitrary geometry. In particular, when the
ratio of axial to radial trapping frequency is an integer, or the
inverse of an integer, we give the explicit analytic form of
the exact solution. In the other cases, we derive an efficient
recurrence relation that allows for evaluating it. Furthermore,
we study the asymptotic behavior of eigenenergies and
eigenfunctions in the limit of quasi-one- and quasi-two-
dimensional traps.

A standard treatment of ultracold atom interactions is
based on the replacement of a real physical potential by a
s-wave delta-function pseudopotential. To extend the validity
of this model interaction to the case of tight traps and large
scattering lengths, one can utilize the concept of an effective,
energy-dependent scattering lengthf10g. We discuss this idea
and show how our results can be generalized to the case of
magnetically tunable Feshbach resonances.

We consider two interacting atoms of massm confined in
an axially symmetric harmonic trap with frequenciesv' and
vz. In the following we use dimensionless variables, in
which all lengths are expressed in units of harmonic oscilla-
tor length az=Î" /mvz, and all energies are expressed in
units of "vz. In these units the trapping potential isVTsr d
= 1

2sh2r2+z2d, whereh=v' /vz and r2=x2+y2. We assume
that the range of the interatomic potential is much smaller
than the oscillator lengthsaz and a'=Î" /mv', which
guarentees that the interatomic potential is not distorted
by the harmonic trap. For sufficiently low energies, the
scattering is purely ofs-wave type and we model the
atom-atom interaction by a Fermi pseudopotentialVsr d
=4padsr ds] /]rdr with s-wave scattering lengtha f11g. For
the harmonic confining potential, the total Hamiltonian

Ĥ = −
1

2
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2 −
1

2
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2 + VTsr 1d + VTsr 2d + Vsr 1 − r 2d, s1d

can be split into a center of mass part:ĤCM=−1
2¹R

2 +VTsRd,
and the relative motion part:Ĥrel=−1

2¹r
2+VTsr d+VsÎ2r d,

where r =sr 1−r 2d /Î2 and R=sr 1+r 2d /Î2. To solve the
Schrödinger equation for the relative motion, we decompose
the wave function in the basis of eigenstates of the noninter-
acting problem, substitute this decomposition into the
Schrödinger equation, and then extract the expansion coeffi-
cients by projecting onto noninteracting statesf7g. This
yields the wave function ofmz=0 states, with vanishing an-
gular momentum along thez axis
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The harmonic oscillator states withmzÞ0 vanish atr =0,
and they are not influenced by the pseudopotential. Equation
s2d represents the wave function that is not normalized, and
is related with the single particle Green function of the an-
isotropic harmonic oscillator byCsr d=−2Gsr ,0d. We note
that the integral representations2d is valid for energies
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smaller than the ground-state energy of the harmonic oscil-
lator: E0=1/2+h. The validity of Eq.s2d, however, can be
extended forEùE0 by means of the analytic continuation.

The presence of the trapping potential implies the discrete
character of the energy spectrum. The allowed values of en-
ergy E have to be determined from the equation:
−1/sÎ2pad=fs] /]rdrCsr dgr=0, which results from derivation
of Eq. s2d, and expresses a boundary condition imposed by
zero-range interaction. Investigation of the integral in Eq.s2d
for small values ofr , shows thatCsr d behaves like 1/s2prd
as r →0. This divergence is removed by the regularization
operators] /]rdr in the Fermi pseudopotential. Subtracting
from the integrals2d, the part that gives rise to the 1/r sin-
gularity, the condition for the eigenenergies can be rewritten
as

− Î2p/a = F„− sE − E0d/2,h…, s3d

where

Fsx,hd ; E
0

`

dtF he−xt

Î1 − e−ts1 − e−htd
−

1

t3/2G . s4d

For particular values of the anisotropy parameterh, the func-
tion Fsx,hd can be calculated analytically. In the case of
cigar-shaped traps withh=n, wheren is a positive integer,
we obtain

Fsx,nd =

ÎpGsxdo
m=1

n−1

Fs1,x;x + 1
2 ;eis2pm/ndd

Gsx + 1
2d −

2ÎpGsxd
Gsx − 1

2d ,

s5d

whereFsa,b;c;xd denotes the hypergeometric function and
Gsxd is the Euler gamma function. It can be easily verified
that the sum in Eq.s5d involving complex roots of unity is a
real number forxPR. On the other hand, for pancake-
shaped traps with anisotropy parameterh=1/n, the follow-
ing result holds:

Fsx,1/nd = −
2Îp

n
o
m=0

n−1
Gsx + m/nd

Gsx − 1/2 +m/nd
. s6d

For n=1, we recover obviously the well-known result for the
spherically symmetric trap:Fsx,1d=−2ÎpGsxd /Gsx−1/2d
f7g. We note that Eqs.s5d and s6d are derived from the inte-
gral representations4d applicable forx.0; however, their
validity for x,0 is extended by virtue of the analytic con-
tinuation.

In the general case, whenh does not meet the conditions
of Eqs. s5d and s6d, the energy spectrum can be determined
numerically. ForE,E0 the functionFsx,hd is given by Eq.
s4d, while for E.E0, one can utilize the following recur-
rence relation:

Fsx,hd − Fsx + h,hd = hÎpGsxd/Gsx + 1/2d, s7d

which can be easily derived from the definition ofFsx,hd.
From the practical point of view, the use of the exact

results of Eqs.s5d ands6d is efficient as long asn is not too

large. To determine the energy levels in the limit of quasi-
one- and quasi-two-dimensional traps, we derive the
asymptotic form ofFsx,hd for h@1 andh!1.

Let us first focus on the case ofh@1. Performing an
expansion in the integrals4d for large h and making use of
the recurrence formulas7d we arrive at

Fsx,hd <
h@1

Îphfzs 1
2,1 +x/hd + ÎhGsxd/Gsx + 1

2dg , s8d

where zss,ad denotes the Hurwitz zeta function. This
asymptotic formula is valid forx.−h, which corresponds to
the range of energiesE,E0+2h. For the lowest excited
states 0,E−E0!2h we approximatezs1/2,1+x/hd by
zs1/2,1d in Eq. s8d, and match the resulting energy spectrum
with the energy spectrum of two atoms in a one-dimensional
s1Dd trap. The latter is determined byÎ2a1D=G(sE0

−Ed /2) /G(sE0+1−E) /2d f7g. The two spectra are identical,
provided that the one-dimensional scattering length isa1D
=−1/ha−zs1/2,1d /Î2h, which agrees with the value of the
renormalized scattering length derived for a quasi-one-
dimensional waveguidef12g. On the other hand, for energies
E,E0, we can useFsx,hd<Îphzs1/2,x/hd, which follows
from Eqs.s7d and s8d. This approximation, substituted into
s3d, leads to the condition determining the energy of a bound
state

Î2/a + Îhz„1/2,sE0 − Ed/s2hd… = 0, s9d

which is identical to the known result derived for the quasi-
one-dimensional waveguidef12,13g.

In the case of quasi-two-dimensional trapsh!1, we ob-
tain the following approximate formula forFsx,hd:

Fsx,hd <
h!1

− Fsxd − lnshd − csx/hd, s10d

where

Fsxd = 2 − lns1 + xd + 2o
k=1

`
s2kd!

s2kk ! d2

3FSk +
1

2
Dln

x + k

x + k + 1
+ 1G , s11d

andcszd=sd/dzdln Gszd denotes the digamma function. This
result is valid forx.−1, which corresponds to energiesE
,E0+2. For the lowest excited states: 0,E−E0!2, we ap-
proximateFsxd by Fs0d in Eq. s10d, and compare the result-
ing energy spectrum to that of the two-dimensionals2Dd sys-
tem. In the two-dimensional trap, the eigenenergies of two
interacting atoms are given by −lns2a2D

2 hd=c(sE0

−Ed / s2hd) f14g. In this way we find the value of the two-
dimensional scattering lengtha2D for which both spectra are
the same:a2D=expf 1

2sD−Î2p /a3Ddg /Î2, where D=Fs0d
.1.938. This result agrees with the value ofa2D derived for
a quasi-two-dimensional system without confinement in the
radial directionf15g. In the range of energies corresponding
to a bound state, we use an asymptotic expansion ofcsx/hd
for x/h@1 in Eq. s10d, which yieldsFsx,hd<−Fsxd−ln x.
Substituting this approximation intos3d, we obtain the equa-
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tion that determines the energy of a bound state in quasi-two-
dimensional traps

Î2p/a = F„sE0 − Ed/2… + ln†sE0 − Ed/2‡. s12d

For a shallow bound statesE0−E!1d one can approximate
F(sE0−Ed /2) by Fs0d and in this regime the binding energy
is given byE0−E=0.288 expsÎ2p /ad f15g.

Figure 1 shows the energy spectrum of two interacting
atoms calculated forsad h=100 andsbd h=0.01. Figure 1sad
compares the exact energy levels given by Eqs.s3d and s5d,
with the energy spectrum of the one-dimensional system
with renormalized scattering lengtha1D, and with bound-
state energies calculated from Eq.s9d. Figure 1sbd presents
the exact result of Eqs.s3d and s6d, the energy spectrum of
the two-dimensional system with renormalized scattering
lengtha2D, and bound-state energy calculated from Eq.s12d.
We have not included the energy levels calculated from ap-
proximationss8d ands10d, which for h=100 andh=0.01 are
indistinguishable from the exact result. We observe that for
E.E0 the one- and the two-dimensional spectra fit very well
the exact eigenenergies, whereas they are incorrect with re-
spect to the bound-state energies. The latter, however, are
well described by Eqs.s9d and s12d.

We now turn to the calculation of wave functions. While
for E,E0 they can be evaluated from the integral represen-
tation s2d, in the general case, they can be determined from
the following expansions

Csr d =
h e−hr2/2

2p3/22E/2 o
m=0

` F2hmGS2hm− E
2

DLmshr2d

3 DE−2hmsuzuÎ2dG , s13d

Csr d =
e−shr2+z2d/2

2p3/2 o
k=0

` F s− 1dk

22kk!
H2kszdGS k

h
−

E
2h

D
3 US k

h
−

E
2h

,1,hr2DG . s14d

Here E=E−E0, Lmsxd, and Hkszd are, respectively, the La-
guerre and Hermite polynomials,Dnsxd is the parabolic cyl-
inder function andUsa,b,zd denotes the confluent hypergeo-
metric function. As it can be easily observed, the first
expansion involves the harmonic oscillator wave functions in
the radial direction and the one-dimensional solution for two
interacting atoms in the axial direction. We have verified that
for elongated trapssh@1d, the first term of this series pro-
vides already a quite good approximation for the wave func-
tion of the lowest excited states. A similar feature is observed
for the second series in Eq.s14d in the traps withh!1.
Conversely, for energiesE,E0 the two series involve gen-
erally several terms. In this regime, we can analyze the be-
havior of the wave functions on the basis of the integral
representations2d. Due to the complicated form of the latter
integral, we focus here only on the limiting case of quasi-
one- or quasi-two-dimensional traps, and investigate only the
behavior of the axialsr=0d and the radialsz=0d profiles of
the wave functions.

Expanding the integral in Eq.s2d for h@1, we obtain the
axial (Czszd;Cszẑd) and radial(C'srd;Csrr̂d) profiles of
the wave function, applicable forE,E0

Czszd <
h@1 h

2p
o
m=0

`
exps− 2uzuÎmh − E/2d

Îmh − E/2
, s15d

C'srd <
h@1

e−hr2/2Fr−1 + ÎhzS1/2,−
E

2h
DGYs2pd. s16d

For uzuÎ−E@1, the main contribution to the sum in Eq.s15d
comes from the first term. In this case the wave function
exhibits the exponential decay, which is similar to the behav-
ior of a one-dimensional bound-state in a free space:Cszd
,exps−Î−2Euzud. On the other hand, the wave function in
the radial direction has a Gaussian profile, characteristic for
the ground state of the harmonic oscillator, whereas the di-
vergent term 1/s2prd arises due to the interaction potential.

In quasi-two-dimensional traps, for energiesE,E0, we
found the following radial and axial profiles of the wave
functions

C'srd <
h!1

p−3/2o
m=0

`
s2md!

s2mm ! d2K0s2rÎm− E/2d, s17d

Czszd <
h!1e−z2/2

2p
F 1

uzu
−

Fs− E/2d + lns− E/2d
Îp

G , s18d

whereK0sxd is a modified Bessel function. The asymptotic
behavior of K0sxd for x@1 is governed by K0sxd
,Îp /2xe−x. Hence, forrÎ−E@1, the sum ins17d is domi-
nated by the first term, and the asymptotic decay of the wave
function in the radial direction is similar to the one observed

FIG. 1. Energy spectrum of two atoms interacting via regular-
ized delta potential in a three-dimensional trap withsad h=v' /vz

=100 andsbd h=0.01sbd. Panelsad: The exact energy levelsssolid
linesd are compared with the energy spectrum of the one-
dimensional system with renormalized scattering lengthsdashed
linesd, and with the energies of a bound state calculated from Eq.
s9d. sThe dotted lines are almost indistinguishable from the solid
ones.d Panelsbd: The exact energy levelsssolid linesd are compared
with the energy spectrum of the two-dimensional system with
renormalized scattering lengthsdashed linesd, and with the energies
of a bound state calculated from Eq.s12d sdotted linesd. The scat-
tering lengtha is scaled in h.o. unitsaz=Î" /mvz.
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for a bound state in two dimensions:Csrd,K0sÎ−2Erd.
Along the tightly confined, axial direction, the wave function
has a Gaussian profile, which is modified at short distances
by the interaction potential.

The behavior of the ground-state wave function in the
unitarity limit sa= ±`d in the quasi-one-dimensionalsh
=100d and quasi-two-dimensional trapssh=0.01d is pre-
sented in Fig. 2. The figure compares the exact profiles
evaluated from Eqs.s13d and s14d with the approximate re-
sults of Eqs.s15d–s17d. We observe that all approximate
curves fit quite well the exact functions.

Finally we would like to stress that our derivation can be
easily supplemented to include an energy-dependent scatter-
ing length f10,16,17g. This extends the validity of the
pseudopotential approximation to scattering lengths much
larger than the trap size, and allows us to properly describe
the entire molecular spectrum. The energy-dependent effec-
tive scattering length is defined through thes-wave phase
shift d0: aeffsEd=−tand0skd /k, where"k is the relative mo-
mentumf18g. The application of this model interaction in our
derivations leads to substitution ofa by aeffsEd in Eq. s3d
determining the eigenenergies, and requires a self-consistent
solving for the value ofE. For magnetically tunable Fesh-

bach resonances, thes-wave phase shift is known analyti-
cally f19g, and in this case one can derive an explicit formula
for aeffsEd f10g.

In summary, we solved analytically the problem of two
atoms interacting in an axially symmetric harmonic trap with
arbitrary trap anisotropy. For integer ratios of the trapping
frequencies we gave closed formulas for the solutions. Fur-
thermore, by introducing an effective energy dependence in
the scattering lengthf10,16g, we can find the solutions for
any value of the latter. Therefore our result allows for a
direct exact evaluation of the dynamics of a pair of interact-
ing neutral atoms in very tight traps, possibly in reduced
dimensionality and under an arbitrary external magnetic
field, even in the presence of Feshbach resonances. Applica-
tions include a significant range of situations involving quan-
tum control at the atomic level, from single-atom interferom-
etry to quantum information processing.
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FIG. 2. The axialsr=0d and the radialsz
=0d profiles of the ground-state wave function for
two atoms interacting via a regularized delta po-
tential with a= ±`. The atoms are confined in a
harmonic trap withsad h=v' /vz=100 andsbd
h=0.01. The exact profilesssolid linesd are com-
pared with the approximate results of Eqs.
s15d–s17d sdashed linesd. All lengths are scaled to
az=Î" /mvz.
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