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Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum simulation and
information processing. Focusing on laser-cooled ions forming Wigner crystals in Penning traps, we find a
robust and simple approach to engineering nontrivial two-body interactions sufficient for universal quantum
computation. We then consider extensions of our approach to the fast generation of large cluster states and a
nonlocal architecture using an asymmetric entanglement generation procedure between a Penning trap system
and well-established linear Paul trap designs.
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I. INTRODUCTION

Quantum information processing using trapped ions has
been the focus of theoretical �1� and experimental �2–6� ef-
forts over the past decade. The coherence times of ions can
exceed seconds, while manipulation and entanglement time
scales can be as fast as tens of microseconds. So far, ap-
proaches to scaling these systems to many ions have met
with significant issues, both in linear Paul trap systems,
where increasing numbers of ions leads to control difficul-
ties, and in proposed more complex trap arrays, where “shut-
tling” of quantum information using gate electrodes would
allow for a scalable architecture �7�. A system-level solution
is to separate the processing elements �processor qubits�
from the memory �8�.

One natural system to consider as a quantum memory is a
Wigner crystal of ions in a Penning trap �9�. Such crystals
can be robustly formed �10� and are dynamically stable, with
tens of thousands of ions in a given trap. In addition, the
strength of the Coulomb interaction leads to large separations
between individual ions, making individual addressing of
ions in such lattices a distinct possibility, in contrast to
present control in neutral atom and polar molecule lattices
�11,12�.

In this article we develop an approach to quantum
memory and entanglement generation that takes full advan-
tage of the advances in ion trap technology for building large
Wigner crystals of ions in Penning traps. Such higher-
dimensional crystals have advantages, both in ion number
and in construction simplicity, when compared to multizone
Paul traps, at the cost of substantial difficulties with many
phonon modes. However, by using a modulated-carrier
“push” gate that is a variation on existing linear ion trap
quantum computing schemes �13–16�, we find a fast but
adiabatic method for building small clusters of entanglement
which is insensitive to thermal phonons in two-dimensional
�2D� and 3D Wigner crystals. We take advantage of some of
the unique features of Penning traps, such as rotation of the
crystal, to provide simplifications in the necessary hardware
to implement these ideas in 2D Wigner crystals. A 3D gen-
eralization of our scheme could as well be applied to ion

crystals in Paul traps. We further show that such a quantum
memory device can also be used directly for cluster-state
quantum computation. Our approach follows recent work
�17� on performing quantum gates in 2D Wigner crystals.
Finally, nondeterministic entanglement generation between
distant ions suggests a processor �linear Paul trap� and
memory �2D Wigner crystal� architecture based upon a quan-
tum register approach �8,18�, where the low photon collec-
tion efficiency from ions in the memory is offset by an asym-
metric entanglement generation scheme using a weak cavity
coupled to ions in the processor �3,19,20�.

We start by considering a Wigner crystal of ions, rotating
in a Penning trap �9� with harmonic confinement with fre-
quencies �xy �in the lateral directions� and �z �in the vertical
direction�. With characteristic ion spacings d�10 �m,
tightly focused lasers allow for individual addressing of ions
�see Fig. 1�. Laser cooling can reduce the temperature
�1 mK, yielding on the order of 102–103 phonons in the
softest �lateral� modes. By using long-lived, metastable states
of the ions as a quantum memory, we may neglect memory
errors in our discussion. A tightly focused laser allows for
nearest-neighbor phase gates and for single-ion operations.
Large-scale computation may be considered using either
nearest-neighbor couplings or via a variety of quantum com-
munication techniques developed for quantum repeater pro-
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FIG. 1. �Color online� Two-qubit gate via intensity modulation
of a laser addressing a pair of ions in a crystal rotating at frequency
�r.
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tocols. When used in conjunction with the deterministic
phase gate developed below and local single-ion operations
�implemented, e.g., via Raman transitions�, this will suffice
for performing large-scale quantum algorithms �18� by using
the remote controlled-NOT �CNOT� gate �21�.

II. MODULATED-CARRIER GATE

A spatially inhomogeneous laser detuned from the appro-
priate transitions between internal �qubit� states of an ion �a
two-level system with Pauli matrices �i

x,y,z� produces a pon-

deromotive force f�i due to the gradient in its intensity. Using
an appropriate combination of polarizations and frequencies,
in analogy with alkali-metal atoms �22�, the sign of the force
becomes dependent upon the internal state of the ion, with
the associated perturbation to the system:

V = �
i

�x�i · f�i�t���i
z, �1�

where x�i is the displacement of ion i away from its equilib-
rium position. The latter can take place either along the sepa-
ration between two individual ion microtraps �14� or perpen-
dicularly to the plane of an ion Wigner crystal in a Penning
trap �17�. In both schemes, as the ion displacements are
coupled �via phonons�, such a push leads to an effective �i

z� j
z

interaction. Adiabaticity is required for vibrational excita-
tions to be absent after the gate. This bounds the clock speed
to be lower than the frequency of trapping in the push direc-
tion: tight traps are needed for fast, temperature-insensitive
operation.

Carrier push derivation

We now introduce a simple variant of the fast-kick “push”
gate which allows us to use even the soft �lateral� modes
when their temperature is extremely high. Our variant uses
slow modulation of a fast, oscillating state-dependent force,
and thus it can be regarded as a hybrid between fast-kick
“bang-bang” decoherence control and continuous pulse shap-
ing schemes. The oscillation averages any ion motion to zero
over the course of the gate, while the in-phase oscillation of
nearby ions leads to a nontrivial phase evolution and the
desired quantum gate between ions in the crystal. In addition,
as our gate allows for nontrivial oscillation of ion positions
in all three spatial dimensions �versus only in the tightly
confined direction for the vertical push gate�, it can work
using a single laser beam and in three-dimensional crystals.

It is instructive to recall the general description of “push”
phase gates when in a complex crystal �15,17�. We start by
rewriting the Hamiltonian of N interacting ions to second
order in displacement from the equilibrium positions, H
=�K��KâK

† âK, using normal-mode coordinates indexed
by K= �k� ,�	 �the wave vector and polarization�, x�i

=�KMiKe�K��K /
2��âK+ âK
† �. The �K=
� /m�K are the oscil-

lator ground-state lengths; the matrix M is orthogonal
�MtM =MMt=1�. The perturbation V can now be written as

V = �
K

�KfK�t��âK
† + âK�/
2, �2�

where fK�t�=�iMik�e�K · f�i�t�� is the state-dependent force on
normal mode K defined via the transformation M and Eq.
�1�.

The problem factorizes into 3N independent, driven oscil-
lators. For scenarios with limt→�	f�t�=0, the oscillator evo-
lution is given by the unitary transform UK�t�
=e−i
K�t� exp��KâK

† −�
K
*â�, where 
K and �K satisfy the dif-

ferential equations �15�

�̇K = − i�K�K + i
�K

�
2
fK�t�, 
̇K =

�K

�
2
fK�t�Re��k�t��

�3�

which are exact to second order.
We now seek an approach which still maintains no net

change in displacement and no dependence of the overall
phase on phonon state, but can operate on faster time
scales—on the order of �K. To this end, we add a sinusoidal
variation to the force �f�t�→cos��t�f�t��, with ��K for
modes K that are coupled to the force. For example, a lateral
push �used in what follows� only couples to the lateral pho-
non modes near the frequency �xy and is insensitive to the
vertical phonon modes near frequency �z. Qualitatively, this
averages out any net displacement: while many more ions
are excited during the process than just the two involved in
gate operation, at the end no entanglement remains between
the latter and the surrounding crystal. We also checked that
such a carrier modulation makes single-qubit phases vanish.
The force sign change can be obtained by a single laser beam
with time-varying polarization, thereby avoiding dissipation
by low-detuning-enhanced spontaneous emission and single-
qubit phase errors due to amplitude fluctuations. If � denotes
the time scale associated with the modulation f�t�, assuming
��−1, we can perform adiabatic elimination and get a gate
with the same desirable properties that can also operate non-
trivially on arbitrarily “soft” phonon modes at very high tem-
peratures. To this aim, we choose the ansatz �=�+ei�t

+�−e−i�t �subscripts omitted for clarity�. Adiabatic elimina-

tion by setting �̇=0 yields ��=�f�t� / �2
2�������. We
find that the displacement of a normal mode induced by the
gate is proportional to the force applied and can be made
zero independent of the initial phonon state by starting and
ending with zero force. This eliminates any potential error
due to entanglement between phonons and the internal states
of the ions.

In this approach, the differential equation for phase now
reads


̇ =
�2

2�2 f2�t�
�

��2 − �2�
cos2��t� . �4�

Averaging the quickly varying component lets us replace
cos2��t� with 1 /2. Returning the mode index K, we find that
the overall phase accumulated, �K
K���, for a gate occurring
over a time 0 to � does not depend on the phonon initial
state. However, the internal states of the ions are affected by
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the unitary exp�−i�ij
ij�i
z� j

z� where the two-body phases are
given by


ij = �
�

Sij
��

0

�

�f�i�t� · e����f� j�t� · e���dt . �5�

The pulse-shape-independent form factor is

Sij
� = − �

k

�k,�
2 �k,�

4�2��2 − �k,�
2 �

Mik,�Mjk,� �6�

�the polarization vectors e�K only depend on ��.
Expanding in inverse powers of the large carrier fre-

quency �, we note that the first term O��−2� is proportional to
�kMik,�Mjk,�=0 �due to the orthogonality of the matrix M�.
The first nonzero term is O��−4�. This is similar to the result
for adiabatic gates, where the averaging of motion occurs
from an intrinsic trapping frequency �. Compared to adia-
batic gates �operating over a time scale much longer than
1 /��, this modulated-carrier push gate is inverted in sign and
differing in phase by a factor �� /��4 /2. For example, in
comparison to the vertical push gate, with �=�z, the modu-
lated carrier gate operating with lateral motion and with �z
��xy has much more phase accumulated for the same
laser parameters. On the other hand, in comparison to a lat-
eral push gate, with �=�xy, the modulated carrier gate accu-
mulates much less phase for the same laser parameters.

III. PERFORMANCE

To investigate the performance of our proposed gate with
a mesoscopic crystal, we performed numerical simulations of
the modulated-carrier gate for 2D and 3D Wigner crystals
�N=147 shown in Fig. 2�. We started by doing a Monte Carlo
minimization of the momentum-independent components of
the Hamiltonian in the rotating frame:

Vtot = �
i

m

2
��z

2zi
2 + �xy

2 ri
2� +

1

2�
i�j

e2

4��0�ri − rj�
. �7�

We remark that this minimization is equivalent to finding the
Gibbs distribution for the mesoscopic system at zero tem-
perature �9�. The 2D crystal is shown in Fig. 1 in isometric
projection. Expanding to second order in displacements from
this configuration, the normal-mode coordinates were found;
the phonon modes calculated from this configuration are
shown in Figs. 2�a� and 2�b�.

To compare to the equivalent adiabatic gate �using lateral
pushes� and the proposed vertical push gate of Ref. �17�, we
considered the purity of the final, entangled state as a func-
tion of temperature �Fig. 2�. To do so, we calculated the final
displacement of mode K, �K

even�odd�, exactly using Eq. �3� for
even �odd� parity spin states of the qubits, as the gate opera-
tion is the same for two qubit states of the same parity. We
determined the necessary lateral forces on qubits i and j, f i
= f j = P��xy cos��t�exp�−�t /��2� / �ri−rj�, to produce a �
phase between the two chosen qubits where P is a dimen-
sionless parameter set to achieve a � phase. We then calcu-
lated the overlap of the final state on the desired �entangled�
state, tracing out of the phonon modes. This fidelity was

minimized over initial qubit states and gives the final, mini-
mum fidelity

F = Min
g=even,odd


K

exp�− P2 ��K
g �2/4

1 − e−�K/kBT� . �8�

In these calculations the vector potential in the crystalline
�rotating� frame was neglected; its inclusion does not quali-
tatively change our results. We calculated the fidelity as a
function of temperature for adjacent pairs of ions at the cen-
ter of the crystal and two and four lattice sites from the
center. The infidelity �1−F� is shown in Fig. 2.

Fixing the time � for performing a gate, we find that the
ratio of forces �i.e., laser power� required for achieving a �
phase for the vertical push gate and for the modulated carrier
gate goes as ��z /��2. This is due to the �z

2 dependence of the
force for the vertical push gate, while our scheme has a �2

dependence. In essence, the lower frequency of the carrier
allows for larger displacements for the same laser power,
increasing the phase evolution. Thus, the modulated carrier
gate requires substantially less laser power for the same con-
ditions with negligible reduction in fidelity. Alternatively,
fixing laser power, the gate time could be reduced, enhancing
the overall performance of quantum information protocols.
For specificity, setting �xy =200 kHz, �z=10 MHz, and a
gate time �=5 �s, we find that �=2.2 MHz provides 1−F
�10−5 with negligible heating. Even smaller errors are found
in simulations of the 3D crystal under the same approxima-
tions.

A practical limitation occurs due to the spontaneous emis-
sion induced by the off-resonant laser interactions. Tight fo-
cusing increases the force for the same laser power; thus,

5

4

units of units of

FIG. 2. �Color online� Phonon spectrum �top� for vertical and
lateral phonons for a trap with N=147 ions and �z /�xy =50. Bottom
left: Fidelity versus temperature for the vertical push gate of Ref.
�17� �red-dashed line� and for the modulated carrier gate with �
=11�xy between different ion pairs: at the center �upper solid line�,
as well as two �middle solid line� and four �lower solid line� lattice
sites away from the center. Bottom right: Modulated carrier gate’s
and vertical push gate’s forces on one of the two ions over the gate
time; both gates operate in a time ��1 /�xy. Anharmonic correc-
tions to the fidelity are not included here. For this choice of param-
eters, the vertical push gate �17� requires 20 times the force �and
laser power� of our modulated carrier gate to achieve the same final
� two-body phase.

WIGNER CRYSTALS OF IONS AS QUANTUM HARD DRIVES PHYSICAL REVIEW A 78, 062331 �2008�

062331-3



using a pair of adjacent, narrow-waist ��2 �m� laser beams
reduces spontaneous emission and power requirements. For
specificity, using a transition with spontaneous emission of
�=20 MHz and lasers with peak Rabi frequency of 100 GHz
detuned 100 THz from the atomic transition, a laser power of
�3 mW per beam is required for our gate, with an induced
error of �0.1% per gate.

IV. QUANTUM CLUSTER-STATE GENERATION

We now consider an approach that takes advantage of the
Coulomb interactions in the lattice to create and dynamically
extend a cluster state for universal measurement-based com-
putation. Specifically, the goal is to obtain a weighted-graph
state exp�i�ij�i

z� j
z�ij /2��+ , . . . , + �, where in the ideal case

�ij equals � between nearest neighbors on a square lattice
and zero otherwise. On a triangular lattice like the one avail-
able in many-ion Penning traps, this can be achieved if �ij is
made to vanish along one side of each lattice cell and to be �
on the other two. The idea is to obtain this via a global � /2
qubit rotation followed by a push gate acting on all three cell
vertices at the same time, possibly with a laser swept at
constant velocity through the cell itself, to take advantage of
the uniform circular motion of the lattice.

We start by considering a focused laser beam, modulated
at a frequency ��xy and of waist � �in units of the lattice
length d�, swept at constant velocity v through the Wigner
crystal, along a direction parallel to one of the lattice vectors
�Fig. 3�, at half the height of a triangular cell. The sweep rate
is set such that d /v��=5 �s—i.e., that as the laser goes by
it induces a modulated carrier gate between nearby ions. The
effect of this sweep is, apart from a global single-qubit rota-
tion, to generate a weighted-graph phase, where �ij takes
value ����� on the cell side that is parallel to the sweep
direction and ���� on the other two sides, with �

=e−3/�8�2��11−8�2� / ��2+8�, while

���� =
�0

4

�2�2

�4

d4

q2

��0v

e−1/�2�2�


8��
� 1

�2 +
1

8
� , �9�

where �=
� / �m��, �0 is the peak Rabi frequency corre-
sponding to the center of the laser beam, � is its detuning
from the ion’s internal transition, and q is the electron
charge. Using the fast carrier modulation described above,

the semiclassical calculation of Eq. �9� is no longer valid, but
the discussion of Eq. �6� shows that the resulting phase is
simply −���� /2. A cluster state is then obtained by making �
small via an appropriate choice of the laser waist �numeri-
cally, ��0.2�, while tuning ���� /2 to � by adjusting the
other experimental parameters such as laser power. A de-
tailed analysis in this sense, as well as concerning errors
from imperfect fulfilling of the adiabaticity condition, has
been presented in �23�. The primary error for sweep rates v
=d /5 �s �where the infidelity from finite temperature and
nonadiabatic effects, shown in Fig. 2, is less than 0.01%� is
given by the residual phase on the dashed lines of Fig. 3. The
resulting cluster-state fidelity per qubit can be calculated by
considering the expectation value of the stabilizer of the
cluster-state at site i: Si=Zi�ij�Xj. We find �Si�
= � 1+cos�2���

2 �2�1−2�2�2.
Care needs to be taken to ensure a sweep having a given

distance � from the trap center and velocity v in the rotating
crystal’s frame. To this end we apply to the laser, initially
focused at a distance R from the center, a displacement
�d��t�= ��x��t� ,�y��t�	 of the form

�x��t� = �R − �/cos��rt����� − ��rt�� , �10�

�y��t� = ���rt tan���/� − tan��rt����� − ��rt�� �11�

�see Fig. 3�, where ��arccos�� /R�. Cluster-state generation
as presented uses a single laser beam, resulting in substan-
tially higher-laser-power requirements than the two-qubit
gate with two beams as described above. In particular, to
achieve an error 2�2�2�0.1%, a detuning of 200 THz and
peak Rabi frequency of 4 THz �corresponding to 5 W of
laser power� would be required.

V. ASYMMETRIC ENTANGLEMENT GENERATION

We conclude with a brief discussion on the implementa-
tion of circuit-based computation. In principle, the modu-
lated carrier gate allows for long-distance operations. How-
ever, only low-frequency phonon modes are excited,
requiring long gate times and leading to higher errors for
fixed temperature. Thus an alternative approach may be nec-
essary. We consider using entanglement generation like first
proposed in �24,25� and remote CNOT gates to overcome this

0.2 0.4 0.6 0.8

x

y

0.4

0

-0.4

/R

/R

(a) (b)

FIG. 3. �Color online� �a� A laser is swept adiabatically from left to right, leading to a weighted graph state with different phases for solid
and dashed lines. �b� Laser displacements in the crystal plane needed to obtain a constant sweep velocity at given distances � /R
=0.2,0.4,0.6,0.8 �from innermost to outermost� from the center, in the rotating crystal’s frame.
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problem. While we could directly generate entanglement be-
tween two ions in the same �or different� Penning traps via
state-dependent fluorescence, we anticipate that low photon
collection efficiency will limit the utility of the direct ap-
proach.

Instead, we use a quantum processor unit �such as a linear
Paul trap� separated from the quantum memory unit �our
Wigner-crystal-based quantum hard drive—see Fig. 4�, char-
acterized by photon collection efficiencies �� and �, respec-
tively. Without loss of generality, we will assume ����, as
can be achieved via coupling with high-finesse cavities
�3,19�. For this asymmetric scenario, we use a “double-
heralded” approach, first introduced in Ref. �20�. Indeed, the
asymmetry between memory and processor present in our
scenario requires a symmetrization procedure involving two
subsequent photon detections, or “clicks,” as opposed to ex-
isting “single-click” entanglement generation schemes �26�.
On the other hand, here we take advantage of the higher-
efficiency processor-side photodetection to enhance the over-
all entanglement-generation rate. Our two-click asymmetric
entanglement-generation procedure starts with an equally
weighted superposition �+ �= �0�+ �1�. An optical � pulse
leads to spontaneous emission of a single photon at a rate �
from the �1�↔ �E� transition. Then the photons are interfered

with on a beam splitter. Without assuming photon-number-
resolving detectors, the state after one click becomes

���������� + O�����11��11� , �12�

with ������
� /���01�� �10��. To symmetrize the entangled
state and simultaneously remove the �11� component, a �
pulse between the metastable states ��1�↔ �0�� followed by
repetition of the above protocol results in a pure state � +�
= ��01�� �10�� /
2. The overall procedure succeeds with
probability ���, indicating that the time required is
������−1. A standard one-click scheme with excitation prob-
ability p �26�—i.e., starting from a state 
1− p�0�+
p�1�
�where p!1 determines the final infidelity of the entangled
state� rather than ��� as above—takes a time ���p�−1 and
succeeds with probability �p, which is generally !���, as-
suming that the processor-side photodetection efficiency ��
exceeds the infidelity p one is willing to tolerate. In other
words, the higher fidelity a pair one wishes to generate, the
longer it takes. By contrast, in our scheme the fidelity can be
high without a further increase in generation time, because
we take advantage of the efficient coupling between the pro-
cessor ion and the cavity.

Thus, for large-scale computation, a central processor unit
with high collection efficiency allows for high-fidelity gates
between elements of the “hard drive” memory on a time
scale 2 /���� �see Ref. �18� for further improvements�. For
concreteness, we take a radiative decay rate of �= �2��
"10 MHz, �=10−3 �confocal approach with low-numerical-
aperture lens�, and desired infidelity 1−F�10−4. Entangle-
ment generation between two such ions would take a time
�10 ms or longer; in contrast, for ���0.1, using the inter-
mediate quantum processor leads to entanglement generation
between processor and both ions in a time of order 100 �s,
comparable to the phase gate operation times already dis-
cussed.

This complements the quantum hard drive architecture
described above, providing a comprehensive toolbox for uni-
versal quantum computation with ion crystals in Penning
traps that relies on existing technologies under available ex-
perimental conditions.
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