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We propose a scheme to investigate the nonequilibrium work distribution of a quantum particle under
well controlled transformations of the external potential, exploiting the versatility of a single ion in a
segmented linear Paul trap. We describe in detail how the motional quantum state of a single ion can be
prepared, manipulated, and finally readout to fully determine the free energy difference in both harmonic
and anharmonic potentials. Uniquely to our system, we show how an ion may be immersed in an
engineered laser-field reservoir. Trapped ions therefore represent an ideal tool for investigating the
Jarzynski equality in open and closed quantum systems.
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Nonequilibrium phenomena at the nanoscale are domi-
nated by fluctuations and by quantum effects. The interplay
of nonequilibrium thermodynamics and quantum theory is
hence of fundamental interest. Only a decade ago Jarzynski
published a major discovery in classical nonequilibrium
physics [1], relating the free energy difference �F after a
given transformation to the probability distribution of the
total work W done on the system:

 �F � �kT lnhe�W=kTi; (1)

where he�W=kTi �
R
dWe�W=kTP�W� is the average expo-

nentiated work and k denotes the Boltzmann constant. This
remarkable equality highlights the role of work fluctua-
tions and provides a generic way of computing the free
energy difference for any transformations, quasistatic or
not, once the work distribution P�W� is known. Most
importantly, the Jarzynski relation allows us to determine
�F even in the case of arbitrarily fast transformations,
when irreversible thermodynamics is not applicable.
Prior to the discovery of Eq. (1), the determination of the
free energy difference in such far from equilibrium con-
ditions was not believed to be possible [2]. Recently, the
classical Jarzynski equality and its generalization by
Crooks [3] have been successfully tested in single-
molecule stretching experiments [4,5]. Later, the work
distribution was recovered from repeated measurements
of the mechanical work done on a colloidal particle [6].

The situation is much different at the quantum level. So
far only studied theoretically, the Jarzynski equation holds
in its classical form for closed quantum systems [7], while
quantum corrections appear in the case of open systems
due to the coupling to an external reservoir [8]. Further
difficulties arise when considering the quantum-
mechanical nature of work [9] and the question of how to
measure it experimentally. It is evident that the classical
definition of work as force times displacement cannot
simply be taken over unmodified. It has recently been

established that work is actually not an observable in the
usual sense, as it is not given by an expectation value of
some Hermitian work operator, but rather by a time-
ordered correlation function [10]. On the other hand, the
problem of how to determine quantum work still remains
unsolved, explaining the absence of an experimental veri-
fication of the Jarzynski equality in the quantum domain.

We show in this Letter how to experimentally measure
nonequilibrium work using a single ion in a segmented
linear Paul trap. A unique property of ion traps is the
possibility to study the quantum Jarzynski equality, as
well as the quantum Crooks relation [11], for systems
that are either isolated or coupled to tailored quantum
environments using reservoir engineering [12,13]. Single
ions trapped in radio frequency Paul traps are quantum
nanosystems with remarkable properties. They can be laser
cooled to very low temperatures, reaching to the motional
ground state in the potential. Arbitrary quantum states can
be prepared, manipulated, and measured with high fidelity
[14,15]. Using the so-called electron shelving method, the
quantum state is revealed with close to unity detection
efficiency. The use of a segmented trap further allows for
engineering a vast variety of time-dependent trapping po-
tentials and hence the implementation of different model
Hamiltonians. In the following, we generalize the detection
methods for the motional state [16,17] in order to realize an
efficient filter for vibrational number states. We show that
trapped ions are not only good candidates for quantum
computing, but may also allow us to experimentally ap-
proach the emergent field of quantum thermodynamics.

Quantum Jarzynski equality.—We begin by considering
an isolated quantum system whose time-dependent
Hamiltonian is varied from an initial value H�0� to a final
value H���. We denote by �t

n and Etn the respective eigen-
functions and eigenvalues of the Hamiltonian H�t� at any
given time t. We further assume that the system is initially
thermalized at temperature T. The free energy difference
�F between final and initial state is then given by the
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Jarzynski equality, Eq. (1). The probability distribution of
the random work W is given by [10]

 P�W� �
X
m;n

��W � �E�m � E0
n��P�m;nP0

n; (2)

where P0
n � �1=Z0� exp��E0

n=kT� is the initial (thermal)
occupation probability and P�m;n are the transition proba-
bilities between initial and final states n and m,

 P�m;n �
��������
Z
dx0

Z
dx���

m �x�U�x; x0; ���0
n�x0�

��������
2
: (3)

Here U�x; x0; �� is the propagator of the quantum system.
The physical meaning of Eq. (2) is clear: the total work
done during a given transformation of the Hamiltonian is
obtained from the energy difference between final and
initial eigenstates, E�m � E0

n, averaged over all possible
initial and final states. Equation (2) shows in addition
that the randomness of the work stems from the initial
thermal distribution P0

n, and from the quantum nature of
transitions between states, as described by P�m;n. The origin
of work fluctuations is therefore of both thermodynamical
and quantum-mechanical nature. The free energy differ-
ence can be evaluated for an arbitrary transformation of the
Hamiltonian with the help of the Jarzynski relation, once
the work probability density P�W� has been determined.
We next describe a method to realize a quantum nonequi-
librium situation for a single ion in a linear Paul trap and
how to measure its corresponding work distribution.

Harmonic ion trap.—Linear Paul traps are characterized
by a strong dynamical confinement in the radial direction
(yz plane) and electrostatically bound in the axial direction
(x axis). With a radial confinement much stronger than the
axial, we will restrict ourselves to the axial external degree
of freedom. Near the center of the axial potential, the
confinement is harmonic and the axial frequency ! can
be varied in time by changing the control voltages [18].
The quantum state of motion along the axial direction can
be described by the Hamiltonian

 H�t� �
p2

2M
�
M
2
!2�t�x2; (4)

where M is the mass of the ion. For this simple potential,
the nonequilibrium work distribution (2) can be studied
analytically [19]. Besides the external, motional degree of
freedom, the ion provides an internal, electronic level
scheme. In our case, we consider a � system comprising
the ground state S1=2 and two excited states P1=2 and D5=2.
The P1=2 state rapidly decays into the S1=2, thus providing a
high spontaneous photon scatter rate used for fluorescence
detection. Laser-induced transitions from the ground to the
metastable D5=2 state are induced on the narrow quadru-
pole transition [linewidth �D 	 !�t�], if the spectral band-
width of the S1=2 �D5=2 exciting light field is small
compared to the sideband structure. Coherent laser pulses
on this narrow band optical transition allow us to exploit

and to store the motional quantum state information in the
internal quantum states.

The experimental measurement protocol of the work
distribution consists of four consecutive steps.

(I) The ion is first prepared in a thermal state with mean
phonon number, �n � �exp�@!0=kT� � 1��1, in the elec-
tronic ground state S level by laser cooling and optical
pumping. We prepare this state deterministically by
resolved-sideband laser cooling [20] into the vibrational
ground state jn � 0i and subsequently allowing the ion to
heat up for a certain time without laser cooling. As the
heating rate of the ion within the trap can be precisely
measured, this procedure is favorable for very low values
of �n. An alternative method, suited for higher values of �n, is
Doppler cooling on the S1=2 to P1=2 transition. Varying the
detuning of the cooling laser from the atomic resonance
results in different thermal states with mean phonon num-
bers down to the Doppler limit.

(II) In the second step, we measure the initial phonon
number n using the filtering scheme described in detail
below. In this way, we determine the initial energy eigen-
state E0

n (from spectroscopy measurements).
(III) In the third step, we transform the trap potential

from an initial value !�0� to a final value !���. This
changing potential will in general modify the ion’s mo-
tional state into a nonequilibrium state, while its internal
state remains unaffected. For simplicity, we consider a
linear variation of the axial potential !2�t� from !2�0� to
!2���. Figures 1 and 2 show a numerical evaluation, based
on the results of Ref. [19], of the transition probabilities (3)
and the work distribution (2) for realistic experimental
parameters and different transformation times �.

(IV) In the last step, we measure the new phonon number
m using the filtering scheme and determine the final energy
eigenstate E�m. The distribution of the nonequilibrium
work, W � E�m � E0

n, Eq. (2), is then reconstructed by
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FIG. 1 (color). Transition probabilities P�m;n for quantum num-
bers n � 2, m � 0–8 as a function of the inverse switching time
��1 for a linear transformation of !2�t� with !�0� � 0:1 MHz
and !��� � 3:0 MHz. The inset shows the transition probabil-
ities P�m;2 for a transformation time of � � 1 �s.

PRL 101, 070403 (2008) P H Y S I C A L R E V I E W L E T T E R S
week ending

15 AUGUST 2008

070403-2



repeating the measurement sequence. By evaluating
Eq. (1) for adiabatic and nonadiabatic processes, we can
verify the Jarzynski equality.

Filtering scheme.—A sequence of laser pulses on the
narrow S to D transition is applied to the ion, coherently
processing its internal and external degrees of freedom
[21]. We tailor this pulse sequence such that the ion will
end in the metastable D5=2 state with certainty if the vibra-
tional quantum state was jmtesti. Subsequently, the ion is
illuminated with light resonant to the S1=2 to P1=2 transi-
tion. If we observe no fluorescence, the ion is measured in
the D state. However, for vibrational states different from
jmtesti, the laser pulse sequence leads to a superposition
state, �jSi � �jDi, such that there remains a nonvanishing
probability j�j2 of projecting the superposition into jDi,
and thus observing no fluorescence. We therefore repeat
the procedure a few times such that a high quality of the
filtering procedure is ensured. Considering the evolution of
the quantum state itself, the influence of the above se-
quence reminds one of the operating principle of a filter:
its projective ‘‘transmission’’ is unity for a certain input
state jmtesti and zero otherwise. We adapt the laser pulse
sequence timing to reach all relevant eigenstates jni and
jmi with the filter.

The crucial requirement for a well-suited filter proce-
dure is to ensure the nonzero fluorescence outcome for all
states but jmtesti. It is sufficient to design the number state
filter to have high suppression factors in a vicinity of
jmtesti, since P�m;n is rapidly vanishing for high values of
jm� nj. Varying the duration of the pulses, we use the
following procedure; see Fig. 3. Starting from state
jS;mtesti, we apply a � pulse on the first red sideband

leaving the ion in jD;mtest � 1i. As the Rabi frequency
�n;n0 between vibrational states n and n0 depends on both
initial n and final n0, the laser pulse does not completely
transfer other vibrational states to the D state. When we
expose the ion to resonant light on the S to P transition,
zero fluorescence is observed if the ion was in jmtesti, but
for other vibrational states there is a certain probability to
observe fluorescence. To sharpen the discrimination, we
apply 2� pulses on the red and blue sideband, respectively,
interleaved by a fluorescence detection trial after each
pulse. Again, the 2� pulses and detections leave the ion
in the dark state jD;mtest � 1i, but yield a nonzero fluo-
rescence signal for all other states. This resembles so-
called trapping states which have been investigated in
cavity QED experiments [22]. This probability for zero
fluorescence detection decreases exponentially with the
number N of pulse or detection runs, as shown in Fig. 4,
for a wide range of states mtest 
 3. After N � 10 runs, all
probabilities but for jmtesti drop below 5%. As no coher-
ence is remaining after each detection interval, the scheme
has modest requirements on the phase stability. The driving
laser needs preserving phase only for one single 2� pulse,
but not during the entire filter sequence. The two lowest
vibrational states are treated even simpler: For mtest � 0, a
� pulse on the carrier transition brings the ion into jD; 0i.
Successive red sideband � pulses do not affect this state,
but fluorescence is observed with nonzero probability for
all other states. This scheme has been proposed for sto-
chastic cooling [16,17]. For mtest � 1, the carrier pulse is
simply replaced by a red sideband � pulse jS; 1i ! jD; 0i.
Then the procedure continues as for mtest � 0. The length
of the pulses is specific for each choice ofmtest; varying the
pulse allows us to access measurements over a wide range
of vibrational levels.
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FIG. 3 (color online). Levels and transitions involved in the
filtering scheme. Shown are transitions driven by the initial �
pulse (i) and the successive 2� red sideband (ii) and 2� blue
sideband pulses (iii), respectively. For jmtesti, these pulses induce
perfect � and 2� transitions between the metastable D5=2 and
the ground state level S1=2 (left side). No fluorescence is ob-
served when the ion is exposed to resonant light on the S to P
transition. For any other jni, the transfer will be imperfect
(dashed lines, right side) and there will be population in the S.
Thus, the excitation to the P level is successful and we observe
the emission of fluorescence photons.
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FIG. 2. Work probability distribution, Eq. (2), for a linear
change of the harmonic potential !2�t� with !�0� � 1 MHz
and !��� � 3 MHz, for �n � 1. Shown are the adiabatic case
�! 1 (�) and two fast transformations with � � 0:1 �s (�)
and � � 0:05 �s (�). For the latter, deviations from the
adiabatic case are clearly visible. Even negative work processes
arise: the probability contribution at W � �@!0 mainly stems
from the transition n � 2! m � 0, which occurs with proba-
bility P�2;0 � 10% (for � � 0:05 �s). This contribution can be
readily tested by the number state filter.
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To estimate the time taken by one experimental cycle
from preparation to detection, we assume a few 10 �s for
sideband pulses and a few hundred �s fluorescence detec-
tion time; one cycle with multiple filtering iterations will
then take less than 10 ms, short compared to the lifetime of
the D state (1.2 s for 40Ca�). To also assure that unwanted
dissipative effects do not introduce errors, the trap’s heat-
ing rate needs to be smaller than 1 phonon within the cycle
time. Traps with much lower rates have been reported. The
statistical error of the values P�m;n is further reduced by
repeating the measurement sequence.

Designing the bath properties and the potential shape.—
As discussed before, single trapped ions are highly isolated
from external reservoirs. However, it has been shown
theoretically [12], and also in first experiments [13], that
it is possible to introduce a coupling between the ion and an
artificially laser-induced bath. The variation of laser fre-
quencies and intensities allows one to engineer the cou-
pling and select the master equation describing the motion
of the ion. Here, the interaction is mediated by sideband
transitions between the S1=2 and D5=2 level; see Fig. 3. For
example, a zero-temperature reservoir can be implemented
by a light field tuned to the (cooling) red sideband tran-
sition. A large variety of other tailored reservoirs, such as
squeezed baths, can be generated as well. Within the
framework of this proposal, it is therefore possible to
investigate nonequilibrium transformations of open sys-
tems with tailored couplings between system and reservoir.
In particular, the distribution of the heat exchanged with a
reservoir can be determined using the same measurement
protocol by keeping the trap frequency constant, that is,
performing no work.

Exploiting the flexibility provided by a segmented trap
design, it is moreover feasible to investigate anharmonic

trapping potentials. Especially in the situation of a non-
adiabatic transport along the segments of the trap [18], the
ion is shifted out of the harmonic center of the electric
potential and experiences nonharmonic potential contribu-
tions [20]. For future work, one might include forces by
laser light on the ion, which depend on its internal elec-
tronic state, investigating the influence of quantum ther-
modynamics on qubit gate operations [23].

In conclusion, we have shown how the quantum
Jarzynski equality can be experimentally investigated us-
ing a single ion in the time-varying electrical potential of a
Paul trap, for both open and closed quantum systems. Our
proposal is based on the state of the art in many laborato-
ries working with single trapped ions and uses realistic
parameters. Experiments with such a device would allow
us to shine more light on the amazing interplay of quantum
mechanics and thermodynamics.
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FIG. 4 (color). Probability for detection of zero fluorescence,
called filter transmission, after N � 1; 2; . . . ; 10 pulse or detec-
tion trial cycles. With increasing number of trials (from back to
front) the Fock state to be tested for, here mtest � 3, always
remains dark under excitation with resonant light on the S1=2 to
P1=2 transition. All other states show an exponential decrease of
zero fluorescence detection probability.
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