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Speeding up critical system dynamics through optimized evolution
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The number of defects which are generated upon crossing a quantum phase transition can be minimized by
choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of
this optimization. We discuss under which conditions the production of defects across the phase transition is
vanishing small. Furthermore we show that the minimum time required to enter this regime is T ∼ π/�, where
� is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and
the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is nonadiabatic; this result
can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the
possible dynamical regimes in terms of the action s = T �.
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I. INTRODUCTION

The rapid progress in the experimental realization and
manipulation of quantum systems [1] is opening the rich and
intriguing perspective of the exploitation of quantum physics
to realize quantum technologies like quantum simulators [2]
and quantum computers [3,4]. These achievements pave the
way to the simulation of condensed matter systems giving the
possibility of studying different states of matter in controlled
experiments [5]. Despite the impressive results obtained so far,
this is a formidable technological and theoretical challenge
due to the complexity of the systems in analysis and the
experimental requirements. Indeed, the level of control needed
over the quantum system is unprecedented: one should be able
to prepare a system in a desired initial state, perform the desired
evolution, and finally measure the state in a very precise way.
Moreover, the whole experiment should be performed faster
than the system decoherence time that eventually will destroy
any quantum information capability.

Quantum optimal control (OC) theory, the study of op-
timization strategies to improve the outcome of a quantum
process, can be an extremely powerful tool to cope with
these issues [6–10]. It allows one not only to optimize
the desired experiment outcome but also to speed up the
process itself. Traditionally employed in atomic and molecular
physics [11,12], OC has been recently applied with success
to the optimization of the dynamics of many-body systems
[13–15], allowing one to achieve the ultimate bound imposed
by quantum mechanics, the so-called quantum speed limit
(QSL) [16]. Indeed as intuitively suggested by the time-energy
uncertainty principle, the time required by a state to reach
another distinguishable state has to be longer than the inverse
of its energy fluctuations [17]. This implies that a quantum
system cannot evolve at an arbitrary speed in its Hilbert space,
but a minimum time is required to perform a transformation
between orthogonal states [18–22]. For time-independent
Hamiltonians this bound has been exactly determined [16];

the QSL has been formally generalized also to time-dependent
Hamiltonians, but so far has been computed only in a few
simple cases [13,23–26].

A still unexplored, although relevant, question is how the
dynamical crossing of a quantum phase transition (QPT)
affects this fundamental bound. QPTs indeed represent a
dramatic change in the low-energy sector of a quantum system
and their presence strongly influence its dynamics. The study
of the dynamical crossing of phase transitions was initially
considered in cosmology to investigate the formation of the
universe [27]. More recently with the development of the
quantum annealing [28] and adiabatic quantum computation
[4], a renewed interest has been devoted to the subject in
condensed matter and quantum information [29–32]. Here we
investigate for the first time the QSL of the dynamics of a
first-order QPT in the adiabatic version of Grover’s search
algorithm (GSA) [33,34] and of a second-order QPT [35]
in the Lipkin-Meshkov-Glick (LMG) model. Specifically we
consider the problem of converting the ground state on one side
of the critical point into the ground state on the opposite side
in the fastest and most accurate way by selecting an optimal
time-dependence of the control field. We emphasize here that
the evolution induced by the optimized field is nonadiabatic,
as shown in Fig. 1, where the scenario is reproduced for the
LMG model and an adiabatic and an optimal evolution are
compared: an adiabatic strategy (orange continuous line along
bottom axis) turns out to be effective only for a very large
total evolution time T (namely, T � h̄�−1, with � being the
minimum spectral gap, as required by the adiabatic theorem
[36]). When the total time is reduced, as realistically required
in experiments in order to preserve the phase coherence,
adiabaticity fails, leading to an excited state far from the
target (red dot-dashed line). However, relaxing the constraint
of adiabaticity and allowing a more general nonadiabatic
evolution, with OC it is possible to reach the desired goal with a
fast dynamics (green dashed line). Quite surprisingly our study
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FIG. 1. (Color online) Instantaneous excitation energy in the
LMG model for an optimized (green dashed line, total time T ∼
TQSL), a non optimized (red dot-dashed line, T ∼ TQSL) and a linear
adiabatic process (orange continuous line, T � TQSL). Continuous
(blue) lines represents the lowest energy levels as a function of the
driving field � = −t/T .

shows that the outcome of the dynamical process optimization
for the many-body systems analyzed is independent from the
specific model and analogous to that of a two-level system, as
sketched through the good rescaling of the data in Fig. 2. We
interpret this result as the natural manifestation of the intrinsic
metric of the Hilbert space for pure states [23,37], as discussed
in Sec. III A. Furthermore, studying the QSL as a function of
the system size, we show that the speedup obtained by the
adiabatic GSA [33,38] can be reproduced and extended to
other models with optimized, nonadiabatic evolutions. Finally,
we introduce the action s = T � as a parameter to characterize
the evolution of a quantum system and we find that the QSL
identifies a new dynamical regime, as discussed in Sec. III B
and summarized in Fig. 5.

II. MODELS AND OPTIMIZATION

We study two paradigmatic critical systems, the adiabatic
GSA [33] and the LMG model [39] and we compare them with
the Landau-Zener (LZ) model to better understand the physics
of the process.
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FIG. 2. (Color online) Infidelity I as a function of the adimen-
sional scaling variable T/T ∗ for the LMG model (red squares), the
Grover model (blue circles), and the LZ model (green triangles). Data
correspond to half of the maximum size analyzed (N = 64).

The GSA Hamiltonian is given by

H GSA = [1 − �(t)](I − |ψi〉〈|ψi |)
+�(t)(I − |ψG〉〈|ψG|), (1)

where the initial state is an equal superposition of all N

basis states |i〉, i.e., |ψi〉 = (
∑N

i |i〉)/√N and the final target
is the specific marked state we want to extract from the
database (in our simulations |ψG〉 = |10, . . . , 0〉 without loss
of generality). The system undergoes a first-order QPT at a
critical value of the transverse field �c = 0.5 (from now on we
set h̄ = 1). The gap between the ground state and first excited
state closes polynomially with the size at the critical point:
�GSA ∼ N−1/2.

The LMG Hamiltonian instead is written as

H LMG = −
N∑

i<j

Jij σ
x
i σ x

j − �(t)
N∑

i

σ z
i , (2)

where N is the number of spins, σα
i ’s (α = x, y, z) are the

Pauli matrices on the ith site, and Jij = 1/N (infinite range
interaction). The system undergoes a second-order QPT from
a quantum paramagnet to a quantum ferromagnet at a critical
value of the transverse field |�c| = 1. The gap between the
ground state and first excited state closes polynomially with
the size at the critical point: �LMG ∼ N−1/3. We chose as the
initial state the ground state (GS) at �i � 1, i.e., the state
in which all the spins are polarized along the positive z axis
(paramagnetic phase). As the target state we chose the GS at
� = 0.

Finally the LZ Hamiltonian that we use as a reference model
is

H LZ = �(t)σz + ωσx, (3)

where the off-diagonal terms give the amplitude of the
minimum gap �LZ = 2ω at the anticrossing point � = 0, here
assumed to be at t = 0 [29,40]. In this case the initial state
is the GS for �(−T/2) = −�0 and the target is the GS for
�(T/2) = �0, that is—in this effective model—to transform
the initial GS into the initial excited state in the optimal and
fastest way. The systems analyzed are summarized in the left
side of Table I.

For all the models considered our goal is to find the optimal
driving control field �(t) to transform the initial state in the
goal state in a given total time T . At the limit when the
gap closes (the thermodynamical limit for GSA and LMG)
adiabatic dynamics is forbidden in finite time due to the
adiabatic condition T � �−1 [36]: however, for finite-size
systems, an adiabatic strategy might be successful. Here we
relax the adiabaticity condition, exploring a different regime of
fast nonadiabatic transformations. Given the total evolution
time T , we use optimal control through the Krotov’s algorithm
to find the optimal control field �(t) to minimize the infidelity
I (T ) = 1 − |〈ψG|ψ(T )〉|2 at the end of the evolution, i.e.,
the discrepancy between the final and the goal state [6].
The determination of �opt(t) can be recast in a minimization
problem subject to constraints determined by looking for
the stationary points of a functional L[ψ, ψ̇, χ, �] in which
the auxiliary states |χ (T )〉 = |ψG〉〈ψG|ψ(T )〉 play the role
of a continuous set of Lagrange multipliers to impose the
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TABLE I. Hamiltonian models and predicted scalings in the LZ approximation for the linear and optimal quenches. They should be
compared with the results of Fig. 4. The functions fı(I ) diverge for the infidelity I → 0.

Model H |ψi〉 |ψG〉 � s∗
Lin s∗

Opt

GSA [1 − �(t)](1 − |ψi〉〈|ψi |) + �(t)(1 − |ψG〉〈|ψG|) ∑N

i |i〉/√N |10, . . . , 0〉 N−1/2 f1(I )N 1/2 N�1−→ π

LMG −(N−1)
∑N

i<j σ x
i σ x

j − �(t)
∑N

i σ z
i |↑ · · · ↑〉z |← · · · ←〉x, |→ · · · →〉x N−1/3 f2(I )N 1/3 π

LZ �(t)σ z + ωσx |↑〉z |↓〉z � [−4 ln(I )/π ]�−1 π

fulfillment of the Schrödinger equation at each time during the
dynamics, as described in detail in Refs. [6,9,12].

III. RESULTS

A. Hilbert space metric and optimization

Previous studies [13] have revealed that only when the total
evolution time exceeds a certain threshold, by iterating the
algorithm, it is possible to reduce arbitrarily the value of
the final infidelity I . In order to identify such a threshold,
we fix a target value of the infidelity I ∗ ∼ 10−3 and we
determine the minimum total evolution time T ∗ for which
it is possible to satisfy our goal. In Fig. 2 we show the
value of the infidelity for the optimized process as a function
of the rescaled time T/T ∗ for different models. The first
observation is the presence of a sharp threshold; thus, T ∗
can be considered a reliable estimate of the QSL for the
process considered. The second striking feature is the rescaling
of the data onto the function I = cos2(T/T ∗). We interpret
this general behavior as a manifestation of the Fubini-Study
metric [23,37] in the Hilbert space. The presence of such a
metric for pure states can be demonstrated following two
independent approaches: Wootters in Ref. [37] obtained it
just from statistical considerations; Anandan and Aharonov
instead in Ref. [23] derived it by generalizing the concept of the
geometrical Berry’s phase to generic nonadiabatic evolutions.
According to the Fubini-Study metric the distance separating
two arbitrary pure states is given by the angle between the
corresponding rays, θG/2 = arccos |〈ψi |ψG〉|. For orthogonal
states this distance is maximal and given by θG = π . The
shortest path connecting the states |ψi〉 and |ψG〉 is then
represented by a geodesic in the ray subspace. We can indicate

FIG. 3. (Color online) Schematic representation of the ray |ψθ 〉
evolving along the geodesic connecting the initial state |ψi〉 and the
target |ψG〉.

a ray evolving along such a geodesic with |ψθ 〉, where 0 < θ <

θG, so that |ψ0〉 = |ψi〉 and |ψθG
〉 = |ψG〉, as sketched in Fig. 3.

For such a ray it turns out |〈ψθ |ψG〉|2 = cos2[(θG − θ )/2] or,
for the infidelity, Iθ = sin2[(θG − θ )/2]. Numerically it can be
verified that for states on opposite sides of a QPT θG � π ;
substituting this value in the expression of the infidelity, we
obtain Iθ � cos2(θ/2). Making the identification θ = πT/T ∗
this last formula is in perfect agreement with the data of
Fig. 2 and with the results for a two-level system in Ref. [12].
An optimized evolution then can be interpreted as a uniform
motion along a geodesic with speed π/T ∗.

B. Dynamical regime classification

In order to establish a classification of dynamical regimes
and to understand the speedup that optimized evolutions
gain with respect to nonoptimized pulses, we introduce the
action s = T �, obtained through the product of the total
evolution time with the minimum spectral gap. Notice this
is a quite natural way to characterize a dynamical process:
s � 1 corresponds to a slow evolution, for which in principle
an adiabatic dynamics could be achieved; s � 1 instead
characterizes a fast evolution, for which adiabaticity is strictly
forbidden. In Fig. 4 the data for optimal driving fields (open
symbols) are compared with data obtained with a linear time
dependence (solid symbols) �(t) = t/T for the GSA, the
LMG, and the LZ models. We report the product s∗ = T ∗� as
a function of the size N , � being the minimum spectral gap and
T ∗ the minimal time required to reach an infidelity I ∗ ∼ 10−3.
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FIG. 4. (Color online) The action s∗ = T ∗� as a function of the
size N (for the LZ model we define an effective size N = �−1), where
� is the minimum spectral gap and T ∗ the time required to reach an
infidelity I ∗ ∼ 10−3 for the linear (solid symbols) and optimized
(open symbols) driving field for the LMG model (red squares), the
Grover model (blue circles), and the LZ model (green triangles).
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As can be clearly seen in Fig. 4, a linear time-dependent �(t)
results in an action s∗ increasing with the system size, implying
that T ∗ ∼ �−α with α > 1 (solid symbols). On the contrary,
the action s∗ remains below the value π after the optimization
(open symbols). Notice that the optimal action is reduced by 1
to 2 orders of magnitude in Fig. 4, but in general s∗

Opt ∼ π and
s∗

Lin → ∞ for I ∗ → 0. A simple interpretation of the scalings
reported in the picture can be understood as follows. For a
linear quench, in a first approximation, we can assume that
the main contribution to the infidelity comes only from the
first excited state [29], and the Landau-Zener formula [40] can
be used to give an estimate of the excitation probability, i.e.,
the infidelity, I = exp(−β�2T ), with β = const, so that by
fixing an arbitrary (but small) value for the infidelity I∗, we
have T ∗ ∼ �−2 or s∗ ∼ �−1. By inserting the gap dependence
on the size, the scalings reported in Table I are obtained
for the models considered in this work: they are in almost
perfect agreement with the numerical data reported in Fig. 4,
where s∗

Lin is increasing with the size. The only discrepancy
is the scaling of the linear LMG model due to the fact that
the simple linear LZ approximation fails. Indeed, here we
have that β = β(N ) ∼ N−1/3, resulting in T ∗ ∼ �−3, that is,
s∗

Lin = N2/3. For the optimized process instead, the optimal
value s∗

Opt = π corresponds to a Rabi oscillation between the
initial state and the target state at a frequency ωR = �/2,
as clearly shown in Fig. 2; or in other words, according
to our geometrical interpretation, the optimal evolution can
be seen as a motion along a geodesic connecting the initial
state and the target state at a constant speed proportional to
� [25]; an intuitive explanation is provided in the Appendix.
As shown in Fig. 4, the speedup we have obtained in our
analysis is analogous to the speedup reached through the
Grover’s quantum adiabatic algorithm [33], from a quadratic
to a linear dependence on gap of the evolution time T ∗. In
the case of the LMG model the gain is stronger, from a cubic
to a linear dependence, outlining the fact that the limit of the
optimization is set by a constant value of the action s∗ = T ∗�.
As a last remark, from the previous discussion it can be argued
that optimized evolutions achieve a substantial speedup only
when the minimum gap closes polynomially with the size; in
the case of an exponential closure, even an optimized process
leads to a total evolution time exponentially diverging with
N [41–45].

We summarize the possible regimes of a quantum evolution
in Fig. 5, where the final infidelity and the time scale as a
function of the action s are shown. An optimized process

FIG. 5. (Color online) The different dynamical regimes as a
function of the action s.

is characterized by I = cos2(s/2) for s � π and I = 0 for
s > π . For a linear nonoptimized pulse, s � π indicates
a fast evolution with high defect production [I ∼ O(1)]
accurately estimated by the Kibble-Zurek (KZ) theory [29]
or the Fermi golden rule (FGR) approximation [30]. On
the contrary, for s � π adiabaticity can be achieved and
the infidelity is asymptotically vanishing. The QSL then
clearly identifies the threshold between fast and adiabatic
evolutions.

IV. CONCLUSION

In conclusion, we estimated the time required by an
optimized, nonadiabatic process to drive the ground state
of a many-body system across a quantum phase transition.
The behavior of the systems analyzed was revealed to be
surprisingly similar to that of a simple two-level system;
we explained the phenomenon through the connection with
the intrinsic geometry of the Hilbert space for pure state,
interpreting the optimized process as a uniform motion along
the geodesic connecting the initial and target states, as
summarized in Fig. 2. This result is of particular relevance
because it establishes a direct link between the QSL and
Fisher information [22] in the general setup of an evolution
driven by a time-dependent Hamiltonian. We demonstrated
that the QSL for the dynamical processes analyzed scales
as the inverse of the critical gap, significantly improving
the result obtained with a nonoptimized evolution. Such a
speedup is a general feature and can be interpreted as the
extension of the Grover’s algorithm speedup to the models
considered. Finally, introducing the action s, we provided
a classification of the possible QPT dynamics. We mention
that the understanding of these optimal processes and of the
fundamental time scales might be used to develop new and
more efficient optimization strategies also in quantum state
preparation.
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APPENDIX

In this appendix we provide an intuitive explanation for the
scaling obtained in Sec. III B. The numerical results suggest
that the optimized process is equivalent to perform a rotation
of the initial state into the target at a constant angular speed
ω = �/2, where � = f (N ) is the critical gap of the finite-size
many-body system in analysis. In a first approximation we can
recast the full many-body problem into a two-level effective
model, described with a LZ-like Hamiltonian H LZ[�(t)],
where the spin-up and spin-down states play, respectively, the
role of the full many-body initial and target states and the
tunability of the diagonal element �(t) mimics the possibility
of selecting the instantaneous rotational axis. Considering
Fig. 6, intuitively one can expect that the initial state does
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FIG. 6. (Color online) Instantaneous eigenvalues (blue dashed
lines) and uncoupled energies of the spin-up, spin-down configura-
tions (red continuous lines) of the LZ model for a linear quench,
� ∼ t/T . The time t̃ represents the boundary between Region I with
high transformation rate (|t | � t̃) and Region II where the system is
in the instantaneous ground state (|t | � t̃).

not change significantly while its energy is much larger than
the off-diagonal matrix elements, while vice versa, an efficient

population transfer occurs when �(t) � ω. Therefore the total
evolution can be approximated in two distinct regimes: a first
one for |�(t)| � ω in which H LZ ∼ �(t)σz and the initial state
corresponds to the instantaneous GS, and a second regime
for |�(t)| � ω where the two levels are highly coupled and
H LZ ∼ ωσx . The time t̃ marking the boundary between the
two regimes is implicitly determined by the condition

�(t̃) ∼ ω, (A1)

as shown in Fig. 6. Under this approximation, the optimization
problem is now easily solved. It is indeed known that the
fastest possible transition between two orthogonal states with
a fixed overlap ω is obtained through a Rabi oscillation, i.e., by
applying H = ωσx for a time Tc = π/2ω [3,23]. The complete
rotation is then possible if the condition Tc ∼ t̃ holds, where
t̃ is obtained solving Eq. (A1). A linear time dependence of
the field, �(t) = t/T , gives t̃ ∼ ωT , that is, T ∼ ω−2 ∼ �−2,
implying s∗

Lin ∼ �−1. The optimization of the time dependence
of �(t) corresponds to the extension of the region of high
transition rate, i.e., to the increase of t̃ ; the best possible result
is clearly t̃ ∼ T , that is, the transformation is effective during
the whole evolution. Finally setting this condition, we obtain
T ∼ π/2ω ∼ π�−1 and s∗

Opt ∼ π .
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