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In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently
introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco,
and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique
in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent
to those obtained via different optimal control methods while using less resources. We propose the CRAB
optimization as a general and versatile optimal control technique.
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Realizing artificial, controllable quantum systems has
represented one of the most promising challenges in physics
for the past 30 years [1]. On one side, such systems could unveil
unexplored features of nature, when employed as universal
quantum simulators [2]; on the other side, this technology
could be exploited to realize a new generation of extremely
powerful devices, like quantum computers [3]. Along with
the impressive progress marked recently in the construction
of tunable quantum systems [4,5], there is a renewed and
increasing interest in quantum optimal control (OC) theory, the
study of the optimization techniques aimed at improving the
outcome of a quantum process [1]. Indeed, OC can prove to be
crucial under several respects for the development of quantum
devices: first, it can be generally employed to speed up a
quantum process to make it less prone to decoherence or noise
effects induced by the unavoidable interaction with the external
environment. Second, considering a realistic experimental
setup in which just few parameters are tunable or, in the most
difficult situations, only partially tunable, OC can provide an
answer about the optimal use of the available resources.

Traditionally, OC has been exploited in atomic and molec-
ular physics [6–8]. More recently, with the advent of quantum
information, the requirement of accurate control of quantum
systems has become unavoidable to build quantum informa-
tion processors [9,10,12–16]. However, the above-mentioned
methods often result in optimal driving fields that require
a level of tunability incompatible with current experimental
capabilities and, in general, the calculation of the optimal fields
requires an exact description of the system (either analytical
or numerical). The field of application of these methods is
severely limited also by the need to have access to huge amount
of information about the system, e.g., computing gradients
of the control fields, expectation values of observables as a
function of time. Moreover, standard OC algorithms define
a set of Euler-Lagrange equations that have to be solved to
find the optimal control pulse [1], where the equation for
the correction to the driving field is highly dependent on the
constraints imposed on the system and on the figures of merit
considered. This implies that considering different figures of
merit and/or constraints on the system needs a redefinition
of the corresponding Euler-Lagrange equations, hindering a
straightforward adaptation of the optimization procedure to
different situations.

In this work, we discuss in detail the chopped random
basis (CRAB) technique, an optimization method directed

to overcome these difficulties and already introduced in
Ref. [11]. The CRAB optimization is based on the definition of
a truncated randomized basis of functions for the control fields
that recast the problem from a functional minimization to a
multivariable function minimization that can be performed, for
example, via a direct-search method. As shown in the follow-
ing, the CRAB optimization flexibility allows to construct OC
pulses just exploiting the available resources. Indeed, different
figures of merit and constraints can be easily considered
without any complications. Another appealing characteristic of
CRAB is its compatibility with time-dependent density matrix
renormalization group (t-DMRG) techniques: this feature
indeed significantly enlarges the class of controllable systems
[11], from few-body or exactly solvable to general many-body
quantum systems with “moderate” degree of entanglement
generated during the dynamics [17]. This is, to the best of our
knowledge, the unique OC algorithm that can be applied in
such vast setting. Finally, it can be straightforward applied
also in a closed-loop optimization experiment, where the
simulation of the system under study is replaced with the
experiments itself.

Here, we analyze the CRAB optimization as a possible
general OC algorithm to be used also in a standard context
(solvable and/or few body systems) as a valid alternative
tool with respect to standard OC methods to find optimal
control fields. Indeed, recently, optimization methods based
on the expansion over a particular function basis have shown
to be effective [18–21]. In particular, a similar approach has
been proved to be mathematically convergent and consistent
[22,23]. On top of that, some theoretical analysis over control
landscapes suggests that, at least in the absence of constraints,
the figure of merit landscape might be smooth enough to allow
for simple optimization procedures to work [24,25]. Here, we
show that a convenient choice of the function basis driven
by physical or geometrical arguments is enough to obtain
optimal driving fields. However, in the cases where no physical
intuition drives the choice of the function basis, the CRAB
algorithm allows us to find the optimal driving fields where
a simple ansatz would fail. Moreover, a comparison between
the results of CRAB with and without a physically driven
choice of the basis, as well as previous results obtained using
different optimal control algorithms (Krotov’s algorithm),
show comparable performances [26].

The structure of the paper is the following: in Sec. I, the
CRAB optimization is described; in Sec. II, it is applied to a
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paradigmatic quantum control problem, the state transforma-
tion of two coupled qubits, to show its potential. Then, we
compare the results obtained via CRAB optimization in more
complex cases already present in literature [26,27]: in Sec. III,
the method is employed to control the quantum phase transition
evolution of the Lipkin-Meshkov-Glick (LMG) model; and in
Sec. IV, we optimize the transfer of a state along a spin chain.
Finally, in Sec. V, the optimization is exploited to maximize
the final entanglement entropy of the final state in the LMG
model; and in Sec. VI, a comparison between adiabatic and
optimized processes is proposed.

I. CRAB OPTIMIZATION

The optimization problem we are dealing with is defined
as follows: given a Hamiltonian H acting on a Hilbert space
H = CN , depending on a set of time-dependent driving fields
��(t), we search for the optimal transformation to drive, in
time T , an initial state |ψ0〉 ∈ H into a different one (target
state) |ψG〉 ∈ H with some desired properties expressed by
a cost function f (|ψG〉) we want to minimize.1 In addition,
constraints might be present on the driving fields, e.g., to match
experimental conditions: they can be expressed usually as a
function of the driving fields Ci[��(t)]. Typical scenarios and
corresponding cost functions and constraints are:

(1) The goal is the preparation of a well-defined quantum
state |ψG〉 with high accuracy for which a convenient cost
function is the infidelity,

f1[|ψ(T )〉] ≡ I(T ) = 1 − |〈ψ(T )|ψG〉|2. (1)

(2) The target state is the unknown ground state of a
Hamiltonian Hp. The cost function is then given by the final
system energy,

f2[|ψ(T )〉] ≡ Ef (T ) = 〈ψ(T )|Hp|ψ(T )〉. (2)

(3) The target is some property or condition that many states
can satisfy, like, for example, in the production of highly
entangled states. In this case, the cost function is simply
defined as

f3[|ψ(T )〉] ≡ −S[|ψ(T )〉], (3)

where S[|ψ〉] is a convenient measure of the entanglement of
the state |ψ〉.

(4) A constraint is present on the power of the driving fields,
that is, the solution should minimize also the fluences

Ci =
∫

|�i(t)|2dt. (4)

(5) A limited bandwidth is allowed for the driving fields:
below we show how this is already embedded in the algorithm
and is not necessary to consider it as an additional explicit
constraint.

(6) The initial state or the driving fields are known within
a given uncertainty ε. In this case, the cost function can be

1The generalization of the problem to the optimization of an
overall unitary transformation is straightforward, averaging over the
contributions of a complete set of basis of the Hilbert space H.

defined as an average of all other possible outcomes compatible
with that uncertainty, as for example,

f4 =
∫

f [|ψ(T ,ε)〉]dε. (5)

All of the aforementioned optimization problems are then
recast in the problem of solving the Schödinger equation (from
now on we assume h̄ = 1),

i
d

dt
|ψ(t)〉 = H [��(t)]|ψ(t)〉, (6)

with boundary condition |ψi〉 = |ψ(0)〉, while minimizing the
cost function

F = αf +
∑

i

βiCi[�(t)], (7)

where the coefficients α and βi allow for a proper weighting
of the different contributions (the βs play the role of Lagrange
multipliers) and f is the chosen cost function.

To perform such an optimization, the CRAB algorithm
starts from an initial pulse guess �0

j (t) and then looks for
the best correction of the form

�CRAB
j (t) = �0

j (t)gj (t). (8)

The functions gj (t) are expanded in a simple form in some
function basis characterized by some parameters ��j (Fourier
space, Lagrange polynomials, etc.): gj = ∑

k ck
j ĝk

j (�k
j ). The

two key ingredients of the CRAB optimization are that
the function space is truncated to some finite number of
components Nc (k = 1, . . . ,Nc) and that the corresponding
basis functions are “randomized” to enhance the algorithm
convergence, i.e., ĝk

j → ĝk
j [�k

j (1 + rk
j )], where rk

j is a random
number. Indeed, this last choice breaks the orthonormalization
of the functions gk

j ; however, as we show in the following,
it allows for an improved convergence of the algorithm as it
enlarge the subspace of functions explored by the algorithm
while keeping constant the number of optimization parameters.

The optimization problem is then reformulated as the
extremization of the multivariable cost function F(T ,�cj ),
which can be numerically approached with a suitable method,
e.g., steepest descent, conjugate gradient, or direct search
methods [28]. Hereafter, we use the last option, which is
the simplest one and easily compatible with any technique
employed to solve the dynamics induced by H [�(t)] (either
exact solution of the Eq. (6) or approximate solution with
time dependent DMRG [17]). This choice also gives another
advantage with respect to other OC methods where gradients
and functional derivatives have to be computed, increasing the
complexity of the optimization procedure.

As an example, in the following problems, we focus on the
case of a single control parameter �(t) and we choose to work
in the Fourier basis. The optimal pulse can then be written as

g(t) = 1 +
[∑Nc

n=1 An sin(ωnt) + Bn cos(ωnt)
]

λ(t)
, (9)

where λ(t) is a time dependent function enforcing the boundary
conditions [i.e., λ(t) → ∞ for t → 0 and for t → T ]. The
function �CRAB(t) is fixed by selecting the optimization
parameters �A, �B, and �ω, with Nc the dimension of each vector.
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In conclusion, given a fixed total evolution time T , the cost
function is clearly just a function of the control parameters,

F = FCRAB( �A, �B, �ω). (10)

The optimization problem is reduced to the minimization
of FCRAB( �A, �B, �ω) as a function of 3 × Nc variables. As
mentioned before, however, the space of the variables can
be reduced even more: although in principle the frequencies
�ω can be considered free variables, it is often convenient to
keep them fixed and to perform the minimization just with
respect to �A and �B. Indeed, as shown in our analysis, this
is sufficient to obtain good results. In this approach we need
then a criterion to select the �ω’s. When we have no available
information about the typical energy scales of the system under
consideration, the frequencies are picked randomly around
principal harmonics: ωk = 2πk(1 + rk)/T , with rk random
numbers with flat distribution in the interval [−0.5,0.5] and
k = 1,...,Nc. Vice versa when the physical details of the model
are known, clearly one can exploit this information to select
the relevant frequencies, as shown in the following sections.

II. TWO-QUBIT OPTIMIZATION

In this section, we apply the CRAB optimization to a
paradigmatic problem in quantum information theory and
control: we search for the optimal way to perform a state
transformation of a two-qubit system; in particular, we
consider two capacitively coupled Josephson charge qubits,
even though the following analysis can be easily adapted to
different qubit implementations. The Hamiltonian of the i-th
qubit is defined as [29,30]

Hi = ECσ i
z + EJ σ i

x,

where the σ s are Pauli matrices, EC is the charging energy, EJ

is the Josephson energy, and i = 1,2. For capacitive coupled
qubits, the interaction Hamiltonian reads

HI = Eccσ
1
z σ 2

z ,

where Ecc is the charging energy associated to the Coulomb
interaction between the qubits. Hereafter we set EJ /EC = −1,
while the coupling will be the driving field Ecc(t)/EC = �(t)
we use to optimize the transformation. We will consider as
initial state the state with no excess Cooper pairs |ψ0〉 =
|00〉, and our goal states will be three different states with
different properties: the reversed separable state |ψ1

G〉 = |11〉,
the homogeneous superposition state |ψ2

G〉 = 1
2

∑
i,j |i,j 〉, and

the maximally entangled Bell state |ψ3
G〉 = 1√

2
(|00〉 + |11〉).

Note that due to the fact that only the coupling is controlled,
all three states are not trivial to achieve. We set the total time
of the transformation to the somehow arbitrary time scale
T = π/EJ and we perform a CRAB optimization using the
truncated expansion of the function g(t) given in Eq. (9), with
a constant initial guess for the driving field �0(t) = �(0) = 1.
We considered an additional constraint on the fluence of the
control field, thus the resulting cost function is defined as

F = f1 + 0.1 C1[�(t)], (11)

where f1 and C1 are given by Eqs. (1) and (4), respectively.
Here we are interested in studying the effect of the randomness
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FIG. 1. (Color online) Infidelity f1 of the final state as a function
of number of calls to the optimization algorithm Nf for two
capacitively Josephson charge qubits with principal harmonics [dark
grey (blue) line] and randomized frequencies [light grey (green) line],
for the goal state |ψ1

G〉 and Nc = 2 for 30 different random instances.

introduced in the frequencies of the expansion Eq. (9), thus
we optimize both in the case of random rk and with rk = 0.
To perform a fair comparison, we ran the optimization in both
cases with the same maximum number of calls Nf ∼ 30.000 to
the function F , which fixes the simulation complexity. Indeed,
in the first case we repeated the optimization for 30 different rk

random configurations (with a single Ak,Bk random starting
point), while in the second case the optimization was repeated
over 30 initial random Ak,Bk configurations. A typical result
is shown in Fig. 1 for Nc = 2 and |ψ1

G〉: it clearly shows
that for the case of randomized ωk the optimization is highly
improved (notice the logarithmic scale). A more systematic
comparison is shown in Fig. 2, where the best results are
plotted against the number of optimization parameters Nc for
the three target states |ψi

G〉: in all cases the randomization of
the frequencies improves the convergences to higher fidelities
up to the simulation error. In particular, in one case, the final
result without randomization is very far from being satisfactory
as the final fidelity is of the order of ten percent, resulting
in a very poor state transformation. On the contrary, using
the randomized frequencies we were able to find optimal
pulses to obtain fidelities below one percent—values that are
comparable, in most cases, with experimental errors.

III. LIPKIN-MESHKOV-GLICK MODEL

The Lipkin-Meshkov-Glick (LMG) model is the paradigm
of a system with long-range interaction (infinite in the thermo-
dynamical limit). The Hamiltonian is written as [31,32]:

H = − J

N

∑
i<j

(
σx

i σ x
j + γ σ

y

i σ
y

j

) − �(t)
N∑
i

σ z
i , (12)

where J is the uniform spin-spin interaction (we set J = 1
in the following), N is the number of spins in the system,
� is the transverse field, and σα

i are the Pauli matri-
ces. By introducing the total spin operator Sα = ∑

i σ
α
i /2,

Eq. (12) can be rewritten, apart from an additive constant, as
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FIG. 2. (Color online) Optimized infidelity f as a function of
the number of optimization parameters Nc with principal harmonics
[dark grey (blue), full symbols] and randomized frequencies [light
grey (green), empty symbols] for different target states |ψ1

G〉 (circle),
|ψ2

G〉 (squares), |ψ3
G〉 (diamonds).

H = − 1
N

[S2
x + γS2

y ] − �Sz. The Hamiltonian hence com-
mutes with S2 and does not couple states having a different
parity in the number of spins pointing in the magnetic field
direction: [H,S2] = 0 and [H,

∏
i σ

z
i ] = 0. In the isotropic

case γ = 1, also the z component of �S is conserved, [H,Sz] =
0. In the thermodynamical limit, the LMG model undergoes
a second-order quantum phase transition at �c = 1 from a
paramagnet (� > 1) to a ferromagnet (� < 1). The phase
transition is characterized by mean-field critical exponents
[32]. The phase transitions dramatically affects the dynamical
behavior of quantum systems: as discussed in more detail in
Sec. VI, the gap closure at the critical point promotes dynam-
ical excitations, preventing adiabatic evolutions whenever the
adiabaticity condition T � −1 is not fulfilled, where T is the
total evolution time and  the minimum spectral gap [33–42].
Following Ref. [26], we employ the CRAB optimization to
drastically reduce the residual density of defects present in
the system in a strongly nonadiabatic dynamics, drastically
reducing the time needed to connect the ground state in
one phase with the ground state of the other phase with
respect to adiabatic nonoptimized strategies. We chose as
initial state the ground state (gs) of H [�(t)] at �i � 1,
i.e., the state in which all the spins are polarized along the
positive z axis (paramagnetic phase). As target state, we chose
the gs of H [� = 0] (ferromagnetic phase). We focused our
attention on the case γ = 0, representative of the class γ < 1
(for γ = 1 the dynamics is trivial due to the symmetry of
H ) [43]. For this model, indeed, a lot of physical information is
available: the gap between the ground state and the first excited
state closes polynomially with the size at the critical point [32],
 ∼ N−1/3. Furthermore, it has been recently demonstrated
that the minimum time required to obtain a perfect conversion
between the initial and the final state here considered, the so
called quantum speed limit, is given by TQSL = π/ [26,44].
In order to test the performance of CRAB, we fixed the total
evolution time above this threshold, at T = 2TQSL, in a regime
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FIG. 3. (Color online) Infidelity as a function of the size in the
LMG model. Squares represent the data before the optimization;
circles the data after the optimization with CRAB.

in which in principle it is possible to produce an arbitrarily
small infidelity with optimized evolutions.

The results of our simulations for the LMG model are
summarized in Figs. 3 and 4; the data shown in the two pictures
(with the only exception of the inset of Fig. 4 as explained
in the following) have been produced assuming Eq. (9) as
control field and the infidelity as cost function to minimize.
In Fig. 3, we plotted the infidelity as a function of the size N ,
before the optimization for a linear driving field �0(t) ∝ t/T

(squares), and after the optimization with CRAB (circles): for
each size we have been able to produce an infidelity below
10−6 starting from an infidelity of order O(1). In particular,
the data have been produced by minimizing Eq. (10) with
respect to �A and �B, while keeping �ω fixed, for a total of
2 × Nc = 16 parameters. In this case, the frequencies �ω have
been chosen by exploiting the physical information available.
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FIG. 4. (Color online) Infidelity as a function of the number of
control parameters for different sizes in the LMG model. The total
evolution time is T = 2TQSL = 2π/. Inset: infidelity as a function
of the number of parameters for a single size N = 32: comparison
between data optimized using as cost function the infidelity (empty
circles) and the final energy (full circles). Green squares represent the
results with randomized frequencies.
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We chose the frequencies equal to the minimum spectral gap
ω1 = 2π/T = 2π/2TQSL =  and we considered the main
harmonics ωk = kω1 for k up to Nc. In Fig. 4, we plot the
infidelity as a function of number of parameters employed
to build the optimal field of Eq. (9)—adding a frequency ωk

corresponds to add two parameters, Ak and Bk . First, it can
be noticed that 5 harmonics are sufficient to reach the best
optimization result,I ∼ 10−6; however, with only 3 harmonics
the infidelity is already of order 10−4, of the order of the
required threshold for fault-tolerant quantum computation.
Considering the implementation of an optimal pulse in an
NMR or quantum optics experiment, the gain with respect
to other OC methods providing a totally arbitrary �opt(t) is
evident. The second interesting feature is that the behavior
of the infidelity in Fig. 4 is approximately independent of
the size (for the smallest system considered, N = 10, finite
size effects are more evident): this confirms the intuition that
the most relevant energy scale for the LMG model is given by
the minimum spectral gap.

Finally, in order to verify the independence of the optimiza-
tion from the knowledge of the target state, we repeated the
simulations assuming as a cost function the final energy Ef (T )
of Eq. (2). In the inset of Fig. 4, we compare the infidelity of
the data optimized using as cost function the infidelity itself
(empty circles) and the final energy (full circles), for a specific
size of the system N = 32 and for different number of control
parameters: as shown in the picture, the agreement is very
good. We also repeated the optimization using randomized
frequencies, obtaining the same results as before. Thus, also in
the case where the chosen frequencies are optimal, introducing
randomness does not prevent the optimization to work. On the
contrary, if one has no access to any information on the system,
the randomization does not prevent reaching the same optimal
result.

IV. STATE TRANSFER ALONG A SPIN CHAIN

In this section, we study the optimization of a model
representing a possible implementation of a quantum bus.
The model consists in a chain of spins coupled via uniform
nearest-neighbor (n.n.) interaction; by acting with an external,
parabolic magnetic field, it is possible to transfer a quantum
state along the chain [9,27,45]. In particular, we follow the
lines of Refs. [45,46]. The Hamiltonian of the system is

H (t) = −J

2

N−1∑
n=1

�σn · �σn+1 +
N∑

n=1

Bn(t)σ z
n , (13)

where N is the number of spins in the chain, �σn represents the
Pauli n-th-spin operator, J is the uniform n.n. interaction (we
set J = 1 in our simulations), and Bn(t) is the tunable magnetic
field along the z direction. In particular, we considered a
parabolic magnetic field tunable in position and strength [45],

Bn(t) = C(t)[xn − d(t)]2, (14)

where d(t) is the position of the potential minimum along
the chain, xn is the position of the n-th spin, and C(t)
is the instantaneous curvature of the field. Far from the
minimum, the spins are forced by the magnetic field to be
aligned along the z axis irrespective of their mutual interaction;

instead close to the minimum, the n.n. coupling prevails and
can be exploited to transfer the information (i.e., the state) from
one site to the next. The Hamiltonian commutes with the total
magnetic field along the z direction, [H (t),

∑N
n=1 σ z

n ] = 0,
so that the dynamics occurs in a subspace whose dimension
grows just linearly with the size N of the system. We chose
to work in the subspace 〈∑N

n=1 σ z
n 〉 = 1; in particular, we

aimed at transferring a spin-up state from one end of the
chain to the opposite end, or in other words to transform
the state |ψi〉 = |10...0〉 into the state |ψG〉 = |0...01〉, with
0 (1) corresponding to the n-th spin pointing in the down (up)
direction along the z axis. We employed CRAB to optimize the
two control parameters, �1(t) = d(t) and �2(t) = C(t); as in
the previous section, we set the total evolution time above the
quantum speed limit threshold at the value T = 2TQSL, where
for the latter we used the estimate made in Refs. [27,45].
The optimization has been performed by keeping �ω1, �ω2

fixed (in particular ω1k = ω2k = 2kπ/T for k = 1,...,Nc) and
minimizing the infidelity with respect to �A1, �B1, �A2, �B2, where
the index 1 and 2 refer to d(t) and C(t), respectively.

The results of our simulations for the state transfer along
the chain are summarized in Figs. 5 and 6. In Fig. 5, we show
the infidelity as a function of the size before the optimization
(squares), for a constant C(t) and d(t) = t/T , and after the
optimization with CRAB (circles): for each size considered,
we were able to reach an infidelity below the value 10−4

starting from an initial infidelity of order 1. In Fig. 6, we plot the
infidelity as a function of the number of parameters employed
in the minimization procedure; in this case, unlike for the
LMG model in Fig. 4, the data show a strong dependence on
the size. We interpreted this behavior as a consequence of the
structure of the problem. Considering the particular transfer
mechanism, in which the information moves step by step from
one site to the next one, we expect the optimal pulse to be able
to modulate the magnetic field around each spin; this occurs
only when the spectrum of the pulse involves frequencies of
the order of the inverse of the time spent on a generic site n;
i.e., ω ∼ 2π/(T/N) = Nω1. As a test, in the inset of Fig 4 we
plotted the infidelity as a function of the number of parameters
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Information transfer

FIG. 5. (Color online) Infidelity as a function of the size in
the transfer state problem. Squares represent the data before the
optimization; circles the data after the optimization with CRAB.
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FIG. 6. (Color online) Infidelity as a function of the number of
control parameters for different sizes in the in the state transfer model.
The total evolution time T = 2TQSL. Inset: infidelity as a function of
the number of parameters divided by the size.

divided by the size; the good agreement of the rescaled data
confirms our expectation.

V. ENTANGLEMENT ENTROPY MAXIMIZATION

Among its various applications, OC can be exploited for
entanglement production [47,48]. Here we employ the CRAB
technique in the LMG model to maximize the von Neumann
entropy SL,N = −Tr(ρL,N log2 ρL,N ) associated to the reduced
density matrix ρL,N of a block of L spins out of the total
number N at a given final time T , which gives a measure
of the entanglement present between two bipartitions of a
quantum system. As seen in Sec. III, due to the symmetry
of the Hamiltonian [H,S2] = 0, the dynamics is restricted to
subspaces with fixed total angular momentum; in particular,
assuming as initial state the ground state of the system,
we have S = N/2. The Dicke states |S = N/2,Sz〉 with
Sz = −N/2,...,N/2 provide a convenient basis spanning
the subspace accessible through the dynamics. Indeed the
entanglement entropy SL,N can be easily evaluated noticing
that, since the maximum value of the total spin can be achieved
only with maximum value of the spin in each bipartition, the
following decomposition holds [43,49]:

|N/2,n〉 =
L∑

l=0

p
1/2
l,n |L/2,l − L/2〉

⊗|(N − L)/2,n − l − (N − L)/2〉, (15)

where n and l correspond, respectively, to the number of
up spins in the whole system and in the block of size L,
and pl,n = L!(N − L)!n!(N − n)!/[l!(L − l)!(n − l)!(NL −
n + l)!N !]. Expressing the evolved state |ψ(T )〉 in the Dicke
state basis and using the previous decomposition, it is
immediate to evaluate SL,N (T ).

In our simulations, we considered a system equally bipar-
tite, i.e., L = N/2, and we took as starting state the ground
state of the LMG Hamiltonian at � � 1, in which all the spins
are polarized along the positive z direction, so that the state
factorizes and the entanglement entropy vanishes; see Fig. 7.

1 10 100
T

0.1

1

10
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N=10
N=32
N=100
1.12 T

FIG. 7. (Color online) Final entanglement entropy as a function
of the total evolution time T for N = 10,32, and 100 of one of two
equal bipartitions of the system. The time is measured in units of J−1.

Then we performed the optimization with CRAB, modulating
the field according to Eq. (9) and using as a cost function
Eq. (3). The behavior of entanglement entropy after the opti-
mization Sopt(T ) for different values of the total evolution time
T is shown in Fig. 7: after a short transient of linear growth,
Sopt(T ) reaches a saturation value growing with the size, as
expected. It is interesting to notice that such a behavior closely
resembles the features observed in one-dimensional systems
after a sudden quench [50], although here we are dealing with
a fully connected model [51,52]. In Fig. 8, we plotted the
saturation value reached with the optimization as a function
of the size N ; comparing our data with the maximum possible
value of the von Neumann entropy for a subsystem of L = N/2
spins (described by a Hilbert space of dimension N/2 + 1)
Smax = log2(N/2 + 1), we obtain almost the maximal possible
amount of entanglement, Sopt/Smax ∼ 0.95.

00101
N
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2

3

4

5

6
Sopt

0.947 Smax

FIG. 8. (Color online) Entanglement entropy saturation value as
a function of the size (red circles) and the function A log2(N/2 + 1)
(dashed line). A fit gives A = 0.947.
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VI. LINEAR VS. OPTIMAL DRIVING

In this section, we analyze in more detail the features
characterizing the optimal dynamics induced by CRAB. In
order to better understand the matter, we draw a comparison
with a simpler nonoptimized dynamics, in which the driving
field is linearly dependent on time; in particular, we focus the
attention on the LMG model. An important point in the study
of the dynamics of a quantum system is usually represented
by the adiabatic theorem [33]. The latter establishes that a
system initially prepared in its ground state can be driven
by a time-dependent Hamiltonian adiabatically (i.e., without
introducing excitations), if the time scale of the evolution is
much larger than the minimum spectral gap; i.e., T � −1. In
critical systems, the spectral gap closes at the phase transition,
so that the system gets excited from the instantaneous gs while
crossing the critical point for any finite-time evolution [34].
For finite-size systems, the critical gap is not completely
closed, but it presents a pronounced minimum where the
excitation appears, as shown in Fig. 9: an estimate of the
excitations induced by a linear driving can be obtained by
Kibble-Zurek theory [35,37,41,43,53]. In Fig. 9, we monitored
the instantaneous total excitation probability Ptot (dashed line)
and the populations of lowest levels [different style (color)
lines] during the dynamics. The evolution starts at large
negative times (left) and ends at the time t = 0 (right); the
critical point is crossed around the time t = 11 when �(t) ∼ 1;
see Sec. III. Far from the critical point, the system evolves
adiabatically as demonstrated by the low total instantaneous
excitation probability; notice that before reaching the critical
point, the total excitation probability coincides with the small
excitation of only the first level (red continuous line). In a
restricted region around the critical point (−15 < t < −10),
the total excitation probability jumps to values of order 1
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FIG. 9. (Color online) Instantaneous excitation probabilities Pi

of the i-th excited level (P1, continuous; P2, dotted; P3, dot-dashed;
P4, dot-dot-dashed; P25, dash-dash-dotted line) and total excitation
probability Ptot = ∑N

i=1 Pi (dashed purple line) in the LMG model
with N = 50 for an evolution induced with a driving field linear in
time, �(t) ∝ −t/T , T/TQSL = 2, N = 50. The thick (red) dashed
line signals the crossing of the critical point. The time is measured in
units of J −1.
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FIG. 10. (Color online) Optimal instantaneous excitation proba-
bilities Pi in the LMG model for T/TQSL = 2, N = 50. Codes are
the same as described in the legend of Fig. 9. The time is measured
in units of J −1.

and does not change significantly any more. Notice that in
the final part of the evolution, more levels get populated, as
shown by the difference between the instantaneous infidelity
and the excitation probability of the first level. At the final
time t = T , the excitation probability is equal to the infidelity
of the process; i.e., Ptot(T ) = f1. We then optimize the final
infidelity, and the correspondent plot for the optimal evolution
is reported in Fig. 10. The scenario in this case is completely
different: the system is excited at the very beginning of
the dynamics and remains excited for the most part of the
evolution until close to the end, when the infidelity drops
abruptly to zero. It is interesting to notice that just a few
levels are excited, as demonstrated by the small difference
between the total excitation probability (dashed line) and
the excitation probability of the first level (red continuous
line). This result is in agreement with previous findings
where the authors showed that this kind of dynamics can
be approximated by a two-level system dynamics [26]. The
abrupt jump in the probabilities around time 20 is due to
an abrupt (double) change of sign in �CRAB(t), reversing
suddenly the order of the levels and transforming the gs in
the most excited state [dash-dash-dotted (cyan) line]; thus,
this signature is not due to a collective involvement of all
the levels but simply to a reshuffling of their order. Indeed,
as shown in the picture for −18 < t < 0, with the subsequent
change of sign the previous order is reestablished. We can then
summarize the main features of the optimal evolution induced
by CRAB in three points: it is strongly nonadiabatic, it involves
just a restricted number of levels although not necessarily
close to the nominal instantaneous ground state, and it is such
that at the very end all populations constructively interfere to
obtain the desired goal state.

VII. CONCLUSIONS

In this paper, we studied in detail the performance of
quantum optimal control through the CRAB optimization [11].
In particular, we focused our attention on three different
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systems and different figures of merit, in order to outline the
versatility of the method. We first studied the optimization of
state transformations of two qubits via a controlled coupling.
We have shown that the CRAB optimization is very effective
already using only a few optimization parameters and the
fundamental role that the randomization of the function
basis plays in increasing the process convergence. We then
analyzed two many-body quantum systems: the first one,
the LMG model, is the prototype of many-body systems
with long-range interaction undergoing a quantum phase
transition. The success of CRAB in this context confirms the
possibility of controlling complex systems typically studied in
condensed-matter physics, with relatively small resources: due
to the unique features of CRAB, only a few parameters (three
frequencies) are indeed sufficient to obtain excellent results.
The second many-body quantum system studied, the transfer
of information along a spin chain, is a typical problem studied
in quantum information theory: the high accuracy achievable
through CRAB optimization makes it a valuable tool for this
kind of application. Moreover, due to the simple structure of
the optimal pulses, they may be used to extract information
on the typical timescales involved on the system dynamics, as
we did for the information transfer in spin chains. We stress
also that the exponential dependence of the figures of merit
as a function of the number of parameters found in all cases
(see Figs. 2, 4, and 6) suggests that, in general, a moderate
number of optimization parameters will be sufficient to get
huge improvements in the desired processes.

Finally, we have shown that with a simple change of the
cost function, the CRAB optimization can be used to optimize

the search of the unknown ground state of a Hamiltonian
or to generate quantum states satisfying desired properties,
i.e., high entangled states. Monitoring the instantaneous
excitation probabilities generated by the optimized process,
we have demonstrated the highly nonadiabatic character of
the dynamics and the fact that, despite the complexity of
the system under study, just a restricted number of excited
levels are really populated during the evolution. The latter
fact justifies the compatibility of CRAB with DMRG-like
techniques. We mention that the CRAB optimization has been
applied also to open quantum systems obtaining interesting
results and thus increasing its possible applications [54].

In conclusion, the main features of the CRAB
optimization—versatility (different constraints, compatibility
with approximate simulation methods and experiments), fast
convergence (the final error scales exponentially with the
number of optimization parameters while the number of algo-
rithm iterations linearly), and simplicity (small modification to
existing numerical codes for quantum system simulations)—
demonstrate that the CRAB optimization is not only an unique
solution for many-body quantum systems optimal control but
it is a valid alternative also in many different settings where
other optimal control tools exist [1].
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