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We discuss analytic approximations to the ground-state phase diagram of the homogeneous Jaynes-
Cummings-Hubbard �JCH� Hamiltonian with general short-range hopping. The JCH model describes, e.g.,
radial phonon excitations of a linear chain of ions coupled to an external laser field tuned to the red motional
sideband with Coulomb-mediated hopping or an array of high-Q coupled cavities containing a two-level atom
and photons. Specifically, we consider the cases of a linear array of coupled cavities and a linear ion chain. We
derive approximate analytic expressions for the boundaries between Mott-insulating and superfluid phases and
give explicit expressions for the critical value of the hopping amplitude within the different approximation
schemes. In the case of an array of cavities, which is represented by the standard JCH model, we compare both
approximations to numerical data from density-matrix renormalization-group calculations.
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I. INTRODUCTION

In recent years, there has been a growing interest in quan-
tum optics systems as an experimental testing ground of fun-
damental models for quantum many-body physics and quan-
tum simulation. The most prominent examples are certainly
ultracold atoms in optical lattices �1,2�, which are almost
ideal representations of various types of Hubbard models
�3–7�. However, due to their finite mass, atomic systems rep-
resent, with few exceptions, only models with explicit par-
ticle number conservation. On the other hand, different quan-
tum optical systems, employing photons or quasiparticles,
such as phonons, have been suggested recently, which are
not limited by this constraint. For example, an array of
coupled high-Q microcavities containing a two-level atom
and a photon is described by the Jaynes-Cummings-Hubbard
model �JCHM� �8–11�. It is a combination of two well-
known systems, the Jaynes-Cummings model �12,13�, de-
scribing the coupling of a single two-level system to a
bosonic mode, and the hard-core Bose-Hubbard model �14�,
which describes the interaction and tunneling of bosons on a
lattice. Recently, we have shown that a modification of the
JCHM can also be implemented in a linear ion trap, which
has the advantage of an easier experimental realization since
the required parameter regime is already realizable with cur-
rent technology �15�. A large variety of analytic and numeric
methods was applied to the JCHM and related models, pro-
viding profound results for the phase diagram and other
ground-state quantities �16–23�. In the present paper, we
show that in the strong-interaction limit and near commen-
surate filling simple approximate analytic solutions of the
JCHM can be found if there is translational invariance, i.e.,
for an infinite homogeneous system or periodic boundary
conditions realizable, e.g., with ions in a race-track Paul trap
design. These solutions provide a good analytic approxima-
tion to the full ground-state phase diagram.

This paper is structured as follows. In Sec. II, we will
briefly summarize the main properties of the Jaynes-
Cummings model, together with other important quantities
needed later on. In Sec. III, we introduce two different ap-
proximation schemes, both giving analytic results for the
critical hopping amplitude for the Mott-insulator �MI� to su-
perfluid �SF� transition. In Sec. IV, we apply both approxi-
mations to the simple cubic nearest-neighbor JCH model,
describing an array of coupled cavities and to the special
case of a linear ion chain.

II. JCH MODEL

In this section, we will shortly review the main features of
the JCH model defined by the Hamiltonian

Ĥ = ��
j

âj
†âj + ��

j

�̂ j
†�̂ j

− + g�
j

��̂ j
†âj + âj

†�̂ j
−�

+ �
d

td�
j

�âj
†âj+d + âj+d

† âj� �1�

and discuss the main quantities needed in order to calculate
its phase diagram. The system �1� comprises bosonic and
spin degrees of freedom, the specific interpretation of which
depends on the actual physical system. Depending on the
implementation, âj

† and âj describe the creation and annihi-
lation of a photon �phonon� at the jth cavity �ion�, �̂ j

� are the
spin-flip operators between the internal states of the atom
�ion�, and � is the transition energy of the atom �the detuning
of the external laser field from the red motional sideband�. g
describes the cavity-mediated atom-photon coupling �the
phonon-ion coupling in the Lamb-Dicke limit� and � is the
cavity resonance �the local oscillation� frequency. Between
separated cavities �ions�, there is a photon �phonon� transfer
described in Eq. �1� by the distance-dependent hopping am-
plitude td.

In the limit of vanishing hopping td�0, the resulting
Jaynes-Cummings model can easily be diagonalized. In this*amering@physik.uni-kl.de
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case, all sites j decouple and become independent. Since the

total number of excitations N̂j = âj
†âj + �̂ j

+�̂ j
− on every site j is

a constant of motion, the local JC Hamiltonian block diago-
nalizes. Within each two-dimensional excitation subspace,
the eigenstates can easily be found. Adapting the notation
from �18�, these are given by

�� ,n� =
��n � �� − ����↑ ,n − 1� � 2g	n�↓ ,n�

	2	�n
2 � �� − ���n

�2�

ª�n
��↑ ,n − 1� � �n

��↓ ,n� , �3�

with �n=	��−��2+4ng2 and n	0, and the eigenenergies
are

En
� = n� +

� − �

2
�

1

2
�n. �4�

For n=0, the ground state is nondegenerate and given by
�−,0�= �↓ ,0� with E0=0. Here, the state �↑ ,n−1� describes an
atomic excitation together with n−1 bosonic excitations;
�↓ ,n� is the state with the atom in the ground state and
n bosonic excitations. In the strong-interaction limit g
 ��
−��, the energy gap �En=En

+−En
−=�n
2g	n is large com-

pared to any other energy scale in the system and, thus, the
excited states �+,n� do not contribute to the ground state.

For the following discussion, it will be useful to consider
the action of a single bosonic creation or annihilation opera-
tor on a given JC eigenstate �� ,n�. Defining

An
� = �	n�n

��n+1
− � 	n + 1�n

��n+1
− , n 	 0,

�1
−, n = 0,

� �5�

Bn
� = �	n�n

��n+1
+ � 	n + 1�n

��n+1
+ , n 	 0,

− �1
+, n = 0,

� �6�

Cn
� = �	n − 1�n

��n−1
− � 	n�n

��n−1
− , n 	 1,

0, n � 1,
� �7�

Dn
� = �	n − 1�n

��n−1
+ � 	n�n

��n−1
+ , n 	 1,

��1
��n,1, n � 1,

� �8�

the action of â† and â on the state �� ,n� can be seen to be

â†�� ,n� = An
��+ ,n + 1� + Bn

��− ,n + 1� , �9�

â�� ,n� = Cn
��+ ,n − 1� + Dn

��− ,n − 1� , �10�

i.e., â† and â connect the manifold of states �� ,n� to the
manifolds �� ,n+1� and n	0, respectively, as expected.

In order to calculate the phase boundaries of the Mott-
insulating lobes for the JCH model, we will follow the usual
route. Since the total number of excitations in the system

N̂ = �
j

�âj
†âj + �̂ j

+�̂ j
−� �11�

commutes with the full Hamiltonian �1�, it is enough to treat
the system for a fixed number of excitations. The boundary

of the nth Mott lobe can then be determined by calculating
the total energy E�N� for N=nL−1, N=nL, and N=nL+1
excitations in a system with L sites. The chemical potential
then reads as

n
� = � �E�nL � 1� − E�nL�� , �12�

where the plus sign belongs to the upper boundary of the
Mott lobe and the minus sign to the lower one. For td�0, n

�

can be calculated straightforwardly. Starting with the energy
for N=nL excitations with n being an integer, i.e., for a com-
mensurate number of excitations, it can be seen that due to
the nonlinear dependence of the single-site energy En

− on n,
the excitations will distribute equally over the whole lattice.
The ground state is therefore given by n� = n ,n , . . . ,n�. Now,
when adding �removing� a single excitation from the whole
system, the ground state is given by n�1,n , . . . ,n�, where
we have ignored the degeneracy of the state since we are
only interested in the energy and the system is homogeneous.
With this, the energies at td=0 can be written as

E�nL − 1� = �L − 1�En
− + En−1

− , �13�

E�nL� = LEn
−, �14�

E�nL + 1� = �L − 1�En
− + En+1

− , �15�

and the chemical potentials evaluate to

n
+ = En+1

− − En
− �16�

=� −
�n+1

2
+ �1 − �n0�

�n

2
+ �n,0

� − �

2
, �17�

for any n and

n
− = En

− − En−1
− �18�

=� −
�n

2
+ �1 − �n1�

�n−1

2
+ �n,1

� − �

2
, �19�

for n	0. Thus, for a commensurate number of excitations
the system displays particle-hole gaps. Since n+1

− =n
+, the

chemical potential for noncommensurate total number of ex-
citations between N=nL and N= �n+1�L is the same, corre-
sponding to a critical point. For nonvanishing tunneling, the
critical points extend to critical regions.

The simplest numerical method to obtain a qualitative
phase diagram is the so-called mean-field theory. As de-
scribed, for instance, in �10,18,21,23�, the mean-field theory
can be implemented by introducing an order parameter �,
which in our case is chosen to be homogeneous and real
valued. Decoupling the hopping term by using

âj
†âl � ��âj

† + âl� − ���2, �20�

the whole JCH Hamiltonian �1� in the grand-canonical en-
semble uncouples in real space with a local Hamiltonian be-
ing
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ĤMF = �� − �â†â + �� − ��̂+�̂− + g�â†�̂− + â�̂+�

− 2J̃��â† + â� + 2J̃���2. �21�

At this point, we omitted the spatial index because the prob-
lem is purely local. The modified hopping amplitude J̃
=−�dtd gives the effective coupling within the mean-field
scheme. The phase diagram is now found by diagonalizing
the mean-field Hamiltonian �21� either exactly by means of
perturbation theory or numerically, setting an upper bound
for the maximal number of bosonic excitations in the system.
The ground-state energy is then given by min�E��� and the
MI is distinguished from the SF by the value of � for the
minimal energy. For ��0, the system is in a MI state, for
�	0, the ground state is superfluid. This sets the point of
the MI to SF transition. It should be mentioned at this point
that this method gives inadequate results in one dimension
�D=1� but is exact for D→�. Additionally, the effective
hopping J̃ must be larger than zero to yield useful results.

III. APPROXIMATIVE DETERMINATION OF THE
PHASE BOUNDARIES

A. Effective strong-coupling model

From the discussion above, it can be seen that the phase
boundaries are defined by the closure of the particle-hole
gap. In the present section, we will derive effective Hamil-
tonians in the strong-coupling limit for the calculation of the
upper and lower chemical potentials of the nth Mott lobe,
allowing to calculate the particle-hole gap in first order of the
hopping amplitudes td. To do so, we employ degenerate per-
turbation theory using Kato’s expansion as summarized in
�24� up to first order with Heff=PVP. This procedure is
equivalent to the polariton mapping considered in �11,22�.
First, we note that according to Eq. �4� the state �+,n� is
separated by a large energy gap from the ground state
�−,n�. Thus, �+,n� can be completely neglected in the follow-
ing as already mentioned in �11,16�.

When looking for the energy of the ground state with N
=nL, from perturbation theory, no first-order contributions
are present. So, the Hilbert space per site is one dimensional,
consisting of the single state �−,n�. Thus, up to first order, the
energy is given by E�nL�=LEn

−. When adding an excitation,
the local Hilbert space increases; now �locally�, the two
states �−,n� and �−,n+1� need to be taken into account. So,
in this limit, the system for an additional particle can be
understood as a system consisting of effective spin 1

2 par-
ticles. We will identify the states �⇑ � with the state
�−,n+1� and �⇓ � with �−,n�. In order to derive the effective
spin 1

2 model, one has to look on the action of the hopping
operator âj+1

† âj on the states in the Hilbert space. Using Eqs.
�5�–�8� and neglecting the contributions from the states
�+,n� and �+,n+1�, the hopping operator âj+1

† âj acts as

âj+1
† âj� ⇓ � j+1� ⇑ � j = Bn

−Dn+1
− � ⇑ � j+1� ⇓ � j �22�

within the considered subspace. Therefore, by introducing
spin operators �̂ j

�, the hopping term is equivalent to a
nearest-neighbor spin-spin interaction with

âj+1
† âj = Bn

−Dn+1
− �̃ j+1

+ �̃ j
−. �23�

Together with the energy of the system, one can thus write an
effective Hamiltonian describing the upper boundary of the
nth Mott lobe

H̃ = En
−�

j

�̃ j
−�̃ j

+ + En+1
− �

j

�̃ j
+�̃ j

−

+ Bn
−Dn+1

− �
d

td�
j

��̃ j+d
+ �̃ j

− + �̃ j
+�̃ j+d

− � . �24�

This Hamiltonian is equivalent to

H̃ = �L − 1�En
− + En+1

− + Bn
−Dn+1

− �
d

td�
j

��̃ j+d
+ �̃ j

− + �̃ j
+�̃ j+d

− �

�25�

since we are at fixed magnetization with only one spin point-
ing upward. This Hamiltonian can be further simplified, by
using a Jordan-Wigner transformation mapping the spin op-
erators �̃ j

− onto fermionic operators ĉj and, subsequently, per-
forming a Fourier transformation

ĉj =
1
	L

�
k

e−2�ikj/Lĉk. �26�

Then, the ground-state wave function factorizes since the
Hamiltonian decouples in momentum space

H̃ = �L − 1�En
− + En+1

− + 2Bn
−Dn+1

− �
d

td�
k

cos�2�
kd

L
�ĉk

†ĉk.

�27�

This model is equivalent to free fermionic particles with hop-
ping amplitudes given by td. In momentum space, a single
fermion will occupy the mode with the lowest energy. Thus,
the total energy of the single particle and therefore the total
energy of an additional excitation on top of the nth Mott
insulator in the JCH model is given by

E�nL + 1� = �L − 1�En
− + En+1

− + Fn�k�� , �28�

where

Fn�k� = 2Bn
−Dn+1

− �
d

td cos�2�
kd

L
� , �29�

and the momentum mode k� is chosen such that Fn�k� �k� is
minimal. It should be mentioned that the product Bn

−Dn+1
− is

positive for any �� ,� ,n�, so the momentum mode is purely
determined by the minimum of �dtd cos�2�

kd
L �.

To calculate the energy for a hole in the nth Mott insula-
tor, we follow exactly the same route. Now, the state �⇓ � is
associated with �−,n−1� and �⇑ � with �−,n�. The hopping
operators act as

âj+1
† âj� ⇓ � j+1� ⇑ � j = Bn−1

− Dn
−� ⇑ � j+1� ⇓ � j �30�

and the effective Hamiltonian is given by
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H̃ = En−1
− �

j

�̃ j
−�̃ j

+ + En
−�

j

�̃ j
+�̃ j

−

+ Bn−1
− Dn

−�
d

td�
j

��̃ j+d
+ �̃ j

− + �̃ j
+�̃ j+d

− � . �31�

Here the magnetization consists of one spin pointing down-
ward. Again, after making use of a Jordan-Wigner transfor-
mation and, subsequently, a Fourier transformation, the en-
ergy of a single hole is given by

E�nL − 1� = �L − 1�En
− + En−1

− + Fn−1�k�� , �32�

where the same condition holds for k�. Now, putting the cal-
culated energies �28� and �32� together, the chemical poten-
tials and therefore the boundaries of the nth Mott-insulating
lobe can easily be derived. They are given by

n
+ = En+1

− − En
− + 2Bn

−Dn+1
− �

d

td cos�2�
k�d

L
� , �33�

n
− = En

− − En−1
− − 2Bn−1

− Dn
−�

d

td cos�2�
k�d

L
� , �34�

where k� �k�� is chosen such that n
+�k�� �n

−�k��� is minimal
�maximal�. This result generalizes the findings from �16,22�
to arbitrary hoppings td.

B. Fermion approximation

In this section, we will apply an even simpler but not that
obvious approximation. When looking at the JCH Hamil-
tonian �1�, it can be seen that all terms are quadratic. These
kinds of models are in general suited for an exact solution by
means of a Fourier transform. The problem at this point is,
however, that the commutation relations of spin operator �̂ j

�

are not as simple as that of bosons or fermions. This limits
the applicability of a Fourier transform since the operators in
momentum space will not obey the same commutation rela-
tion as in real space. The usual step of a prior Jordan-Wigner
transformation, transforming the spin operators to proper fer-
mionic operators, is not applicable in this case since the in-
teraction part is linear in the spin operators, so the Jordan-
Wigner factors do not cancel out. Thus, both transformations
cannot be carried out exactly without increasing the descrip-
tional complexity of the problem. Nevertheless, the Hamil-
tonian can be diagonalized by a Fourier transform in an ap-
proximate way.

As said above, all modes decouple at td=0. For this rea-
son, the spin operators are in this limit equivalent to fermi-
onic operators. If we assume that this replacement also holds
for small values of td, the JCH model �1� can be rewritten in
a fermionic approximation

Ĥ = ��
j

âj
†âj + ��

j

ĉ j
†ĉj + g�

j

�ĉj
†âj + âj

†ĉj�

+ �
d

td�
j

�âj
†âj+d + âj+d

† âj� . �35�

Here the spin operators �̂+ ��̂−� are replaced by fermionic
operators ĉ† �ĉ�. Within this approximation, a Fourier trans-

form of both the bosonic and fermionic degrees of freedom
can be easily accomplished via

âj =
1
	L

�
k

e−2�ikj/Lâk, �36�

ĉj =
1
	L

�
k

e−2�ikj/Lĉk. �37�

Here âk and ĉk are operators in momentum space. Doing so,
the JCH Hamiltonian transforms to that of uncoupled Jaynes-
Cummings systems

Ĥ = �
k

�kâk
†âk + ��

k

ĉk
†ĉk + g�

k

�ĉk
†âk + âk

†ĉk� , �38�

with

�k = � + 2�
d

td cos�2�
kd

L
� . �39�

The ground state in any mode is given by the Jaynes-
Cummings ground state �2� with frequency �k. The energy of
mode k with n excitations is

Ek
n = �1 − �n0��n�k +

� − �k

2
−

1

2
	�� − �k�2 + 4ng2� .

�40�

Since the total number of excitations in the system

N̂ = �
j

�âj
†âj + �̂ j

†�̂ j
−� � �

k

�âk
†âk + ĉk

†ĉk� �41�

commutes with the Hamiltonian �38�, a common basis can be
chosen. Thus, the full solution of Eq. �38� for a fixed total
number of excitations N=nL is given by the distribution n�
= nk1

,nk2
, . . .� of N excitations on L momentum modes with

minimal energy EN�n��=�kEk
nk together with the constraint

�knk�N. Note that the number of momentum modes L is
equal to the number of sites.

When constructing the phase diagram, the energy of N
=nL−1, N=nL, and N=nL+1 excitations needs to be calcu-
lated. In the limit of vanishing hopping �t=0� and for com-
mensurate filling, i.e., N=nL, the distribution of occupation
numbers, which has the lowest energy, is again n�
= n ,n , . . . ,n�. This corresponds to a MI state with an integer
number of excitations on every lattice sites. The phase is
gapped with a particle-hole gap, as described in Sec. II.
When t is increased, the ground state remains the same, but
the gap closes and a quantum phase transition occurs from
the MI to the SF phase at some critical value of t. The only
remaining thing in order to calculate the chemical potentials
is to find the momentum mode, where the addition �removal�
of an excitation gives the maximum �minimum� reduction
�increase� in the total energy. This yields

n
+ = Ek�

n+1 − Ek�
n , �42�
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n
− = Ek

n − Ek
n−1, �43�

where k� �k� is chosen such that n
+�k�� �n

−�k�� is minimal
�maximal�. The actual values of k and k� depend mainly on
the sign of the hopping amplitudes td.

IV. APPLICATION TO SPECIFIC REALIZATIONS
OF THE JCH MODEL

After having introduced the two approaches used in this
paper, we will apply them to the case of the simple JCHM
with positive effective-mass and nearest-neighbor hopping
and to a modified model describing the physics of a linear
ion chain. The case of the simple JCHM essentially serves as
a testing ground for our approximation schemes, including a
comparison of the analytic results to numerical data from
density-matrix renormalization-group �DMRG� and mean-
field calculations. Later on, the generalized JCHM will be
treated by both approximations giving analytic results for the
phase diagram in a wide range of parameters.

A. JCHM with positive effective-mass and
nearest-neighbor hopping

Without loss of generality, we will specialize here on the
case discussed in �20�. The Hamiltonian of the JCHM in this
case is given by

Ĥ = ��
j

âj
†âj + ��

j

�̂ j
†�̂ j

− + g�
j

��̂ j
†âj + âj

†�̂ j
−�

− t�
j

�âj
†âj+1 + âj+1

† âj� , �44�

with �=�. Comparing with the Hamiltonian �1�, one notes
that the hopping amplitudes satisfy td=−t�d1.

For the calculation of the chemical potentials, we first
have to determine the momentum modes k� and k�, which
contribute to the energy. For �=�, the coefficients in Eq. �2�
are �n

�= 1
	2

=�n
� and therefore

Bn
− = �

	n + 	n + 1

2
n 	 0

−
1
	2

n = 0 � = Dn+1
− . �45�

With this, the function Fn�k� is given by

Fn�k� = − t
�	n + 	n + 1�2

2 − �n,0
cos�2�

k

L
� . �46�

Both chemical potentials have its minimum �maximum� at
k=0. Putting everything together, the phase boundaries of the
nth Mott lobe, calculated using the effective strong-coupling
model read as

n
+ = � −

1

2
�n+1 +

1 − �n0

2
�n − t

�	n + 	n + 1�2

2 − �n0
, �47�

for any n and

n
− = � −

1

2
�n +

1 − �n1

2
�n−1 + t

�	n + 	n − 1�2

2 − �n1
, �48�

for n	0. This allows for the determination of the critical
hopping amplitude tcrit, where n

+=n
−, which is given by

tcrit/g = 2
2	n − 	n + 1 − 	n − 1

�	n + 	n + 1�2 + �	n + �n1 + 	n − 1�2
. �49�

Second, we apply the second approximation to this model.
With the given system parameters, the momentum-dependent
phonon energies from Eq. �39� are given by

�k = � − 2t cos�2�
k

L
� �50�

and the energy in the kth momentum mode for a given filling
n reads as �see Eq. �40��

Ek
n = �1 − �n0��n� − 2nt cos�2�

k

L
� + t cos�2�

k

L
�

−	t2 cos2�2�
k

L
� + ng2� . �51�

Finally, following Eqs. �42� and �43�, the momentum modes
k� �k�, which minimize �maximize� the chemical potentials
need to be found. In the present case �t1�0�, these are k�
=0 and k= L

2 . Thus, the resulting chemical potentials are

n
+ − � = − 2t + t�n0 − 	t2 + �n + 1�g2 + �1 − �n0�	t2 + ng2,

�52�

for any n and

n
− − � = 2t − t�n1 − 	t2 + ng2 + �1 − �n1�	t2 + �n − 1�g2,

�53�

for n	0. A closed form for the critical hopping can be found
but is rather lengthy and will therefore be skipped.

We now compare our analytic results to various numerical
calculations. Figure 1 shows both analytic approximations
along with numerical data from DMRG �20� and mean-field
�23� calculations, where the modified hopping amplitude in

the mean-field Hamiltonian �21� evaluates as J̃= t. From the
figure, it can be seen that the effective model gives a much
better agreement with the numerical DMRG data, especially,
the slopes of the lobes agree perfectly at small hopping. The
fermion approximation overestimates the size of the Mott
lobe. In particular, while the lower boundaries are rather well
reproduced, the upper boundaries have the wrong slope. Sur-
prisingly though the critical hopping amplitudes seem to
agree better with the DMRG data than the results obtained
from the effective strong-coupling Hamiltonians. Although
the fermion approximation is quantitatively worse than the
effective strong-coupling Hamiltonians, it provides a simple
approximative solution to the JCHM beyond the mean-field
level, which has the advantage of giving a closed form of the
ground state.
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B. Linear ion chain

As a second example, we consider a linear string of ions
in an ion trap �15�, where the ions are coupled to an external
laser field and interact with each other due to the Coulomb
repulsion via phonon exchange. This system is well de-
scribed by a modified JCH model with a specific short-range
hopping with negative effective-mass and site-dependent pa-
rameters. First, we will shortly introduce the model and give
a derivation of the corresponding homogeneous limit. After-
ward, we will apply the both approximations and discuss the
phase boundaries within these approximations, giving ex-
plicit analytic results for them.

As shown in �15�, the Hamiltonian of a linear string of L
ions simultaneously irradiated by a laser, which is tuned
close to the red radial motional sideband and in the Lamb-
Dicke regime, is given by

Ĥ = �
j=0

L−1

� jâj
†âj + ��

j

�̂ j
†�̂ j

− + g�
j

��̂ j
†âj + âj

†�̂ j
−�

+ �
j=0

L−2

�
d=1

L−j−1

tj,j+d�âj+d
† âj + âj

†âj+d� . �54�

Here âj
† and âj describe the creation and annihilation of a

local phonon at the jth site �ion�, �̂ j
� are the spin-flip opera-

tors between the internal states of the ion, and � is the de-
tuning of the external laser field from the red motional side-
band. g describes the phonon-ion coupling in the Lamb-
Dicke limit �for a precise definition, see �15��. The local
oscillation frequencies � j and the hopping amplitudes tj,j+d
are determined by the longitudinal and transversal trap fre-
quencies �z and �x via

� j = −
�z

2

2�x
�
l=0

l�j

L−1
1

�uj − ul�3
, tj,j+d =

�z
2

2�x

1

�uj − uj+d�3
, �55�

where uj are the equilibrium positions of the ions �25�. For
sufficiently large L, the equilibrium positions of the ions at
the center are approximately equidistant, giving uj = jũ, with
ũ being the distance of two adjacent ions.

Let us now discuss the limit of a homogeneous chain
neglecting any boundary effect. In this limit, Eqs. �55� can be
rewritten for L→�, yielding position-independent phonon
energies � j �−� and hopping amplitudes tj,j+d� td,

td =
�z

2

2�xũ
3

1

d3 = t
1

d3 , �56�

� = 2
�z

2

2�xũ
3��3� = 2t��3� , �57�

where t=
�z

2

2�xũ
3 acts as a small parameter and �	0. ��x� is the

Riemann � function.
One notices a negative oscillator energy −� and a nega-

tive effective mass, which is a result of the positive hopping
strength t. This negative mass is the reason why the applica-
tion of the mean-field theory is not that straight forward.
When simply calculating the modified hopping amplitude J̃
=−t�d

1
d3 =−t��3�, the hopping becomes negative and, there-

fore, the mean-field theory is inapplicable. This problem can
be overcome by first applying a canonical transformation to
all used operators. The transformation

âj � �− 1� jâj �58�

for the annihilation operator and accordingly to all the other
operators âj

†, �̂ j
�, maps the JCH model �1� back onto itself,

but with td� �−1�dtd. After this transformation, the modified

hopping evaluates to J̃=−t�d
�−1�d

d3 =3t��3� /4 being positive.
Now the application of the mean-field theory is straightfor-
ward, following the usual route.

After having introduced the homogeneous limit of the
model, the approximations introduced in Sec. III will both be
applied. Starting with the effective strong-coupling theory
from Sec. III A, the chemical potentials for the upper and
lower boundaries of the lobes are given by Eqs. �33� and
�34�. The proper momentum modes k� , k�, which minimize
�maximize� the chemical potentials, are both found to be k
=L /2. This results from the negative mass. Due to the com-
plexity of the problem, especially the analytic form of Bn

− and
Dn

−, analytic representation of the chemical potentials are left
out here. They can be found straightforwardly just as in the
case of the simple cubic JCH model.

When following the approximative method from Sec.
III B, the Hamiltonian for the uncoupled JC models is given
by Eq. �38�, with the phonon energies being
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FIG. 1. �Color online� Comparison of ground-state phase dia-
gram of the 1D JCHM �44� obtained by DMRG �data points, from
�20�� as well as mean-field results �dot-dashed line� with the pre-
diction from our approaches �solid line: strong-coupling effective
Hamiltonian; dashed line: fermion approximation� for �=�=1 and
g=1. Taking into account the simplicity of both approaches, the
agreement with the DMRG data is rather good while the mean-field
predictions are rather poor, as expected for 1D systems. The critical
hopping amplitudes estimated from the DMRG data agree surpris-
ingly well with those predicted within the fermion approximation,
although the shape of the Mott lobe is different.
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�k = − � + 2t�
d

cos�2�
kd

L
�

d3 , �59�

according to Eq. �39�. Note that since �=2t��3�, all �k’s are
negative. Using the polylogarithm Lin�x�=�d=1

� xd

dn , one can
write them in the explicit form

�k = t�Li3�e2�ik/L� + Li3�e−2�ik/L� − 2��3�� . �60�

The minimum value of �k=−7t��3� /2 is attained for k= L
2 , as

expected from the positive sign of the hopping term. The

energies for each momentum mode are given by the solution
�40� of the JC model and the corresponding spectrum is
shown in Fig. 2.

From the knowledge of the dispersion relation for differ-
ent fillings, it is now easy to construct the phase diagram. As
discussed in Sec. III B, the flat dispersion for t=0 leads to
the ground state having an equal number of excitations in
every momentum mode k. The chemical potentials for t	0
are then determined by the k� and k values, minimizing or
maximizing Eqs. �42� and �43�. When looking at the disper-
sion in Fig. 2, one recognizes that this is given for k�=L /2
and k=0. So, the chemical potentials are given by

n
+ = EL/2

n+1 − EL/2
n , �61�

n
− = E0

n − E0
n−1, �62�

and when using the analytic form �Eqs. �40� and �60��, the
phase boundaries of the nth Mott lobe read as

n
+ =

1

2
�−	4�n + 1�g2 + �7

2
��3�t + ��2

−
7

1 + �n0

��3�t + �n0�

+ �1 − �n0�	4ng2 + �7

2
��3�t + ��2� , �63�

n
− =

1 − �n1

2
	4�n − 1�g2 + �2 −

1

2
	4ng2 + �2 +

�n1

2
� .

�64�
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FIG. 2. �Color online� Energies of the JCH Hamiltonian for
fixed filling n as function of momentum k. Shown are the energies
from Eq. �4� for the five lowest fillings 0 , . . . ,4 �from top to bot-
tom� for �=0 and g=1. Solid lines: t /g=0.02; dashed lines: t /g
=0.2. One clearly recognizes the minimum at k=L /2 and the flat
dispersion for t /g→0.
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FIG. 3. �Color online� Phase diagram of the JCH model for a linear ion chain for three depicted values � /g=−0.8,0 ,0.8. Shown are the
upper boundary of the zero filling lobe �always lowest line� and the boundaries of the lobes with filling from 1 to 5 on a double-logarithmic
scale. Beside the used approximations �solid line: fermion approximation; crosses: first-order effective theory�, the results from the mean-
field theory �dot-dashed line� after the canonical transformation are shown. It can be seen that the fermionic approximation again overesti-
mates the phase boundary �compared to the more reliable effective strong-coupling theory� but gives a better agreement compared to the
mean-field theory �mind the logarithmic scale�.
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Figure 3 shows the resulting phase diagram for three val-
ues of � comparing the different approaches. One recognizes
the typical lobe structure of the MI phases with a closing of
the lobes at some value tn

crit���. While the mean-field results
underestimate the extent of the MI regions, our fermionic
approach overestimates them but with a better agreement
with the first-order effective strong-coupling model com-
pared to the mean-field solution. The main advantage of the
fermionic approximation is the easy closed form for the
chemical potentials as well as for the ground state and a
more reasonable agreement of the critical hopping amplitude
tn
crit���, as can be seen from the figure. Figure 4 shows the

full phase diagram of the model as a function of the detuning
� obtained from the fermionic approximation only.

The critical hopping amplitude tn
crit��� can easily be cal-

culated from the analytic expressions for the chemical poten-
tial given above. Figure 5 shows the dependence of the criti-
cal hopping amplitude from the detuning � for the different
MI lobes. One recognizes the unboundness of the first lobe,
i.e., tn

crit���→�, as �→−�.

V. SUMMARY

In summary, we have presented two simple analytic ap-
proximations to the phase diagram of the Jaynes-Cummings-
Hubbard. The first approximation describes the particle-hole
excitations in the vicinity of the Mott-insulator to superfluid
transition for a specific filling by a simple effective spin

model, which generalizes the know results to arbitrary short-
range hopping. The second approximation treats the spins as
fermions, which allows for a simple solution of the model by
means of a Fourier transformation. A comparison of both
methods to DMRG and mean-field data shows reasonable
agreement to the numerics. The approximative description by
effective strong-coupling Hamiltonians makes very good
quantitative predictions for the phase boundaries of the Mott-
insulating lobes for small hopping and can be straightfor-
wardly written down up to second order. The fermion ap-
proximation also performs very well for the lower
boundaries but is less accurate for the upper ones. It does
make, however, rather good predictions for the critical hop-
ping at commensurate fillings and has the advantage of giv-
ing a closed form for the ground state in the whole parameter
regime. Altogether, both methods provide quite reasonable
results for the phase boundaries compared to numerical re-
sults from DMRG simulations.
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