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A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag
configuration when the radial potential reaches a critical value, depending on the particle number. This struc-
tural change is a phase transition of second order, whose order parameter is the crystal displacement from the
chain axis. We study analytically the transition using Landau theory and find full agreement with numerical
predictions by Schiffer #Phys. Rev. Lett. 70, 818 !1993"$ and Piacente et al. #Phys. Rev. B 69, 045324 !2004"$.
Our theory allows us to determine analytically the system’s behavior at the transition point.
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I. INTRODUCTION

Wigner crystals of ions in Paul or Penning traps are a
remarkable example of self-organized matter at ultralow
temperatures.1 These systems are usually composed of singly
charged particles, which are kept together by external time-
dependent radiofrequency or static magnetoelectric poten-
tials, and which reach crystallization by means of laser cool-
ing. Among several important aspects, the transition from
disorder to order for few ions was studied in Refs. 2–4;
long-range order in three-dimensional structures in Penning
traps was first demonstrated in Refs. 5 and 6 and more com-
plex crystalline structures have been realized, see, for in-
stance, Refs. 7–9. Most recently, these crystalline structures
have been attracting increasing attention for the realization
of quantum information processors10–12 and simulators.13–16

In this perspective, the clear understanding and characteriza-
tion of the structural properties would provide the possibility
to control at the microscopic level the dynamics of complex
systems. Moreover, ion crystals are systems characterized by
truly long-range, unscreened Coulomb interactions, and
hence constitute interesting physical systems where one can
test equilibrium and out-of-equilibrium statistical mechanics
models for systems exhibiting nonextensive thermodynamic
functions.17,18

Structural transitions in ion crystals are induced either by
changing the external potential19,20 or by introducing other
forms of instabilities.21 Structural transitions in low dimen-
sional ion crystals were first characterized experimentally in
Refs. 19 and 20. Here, starting from a chain configuration,
the sudden transition to a planar zigzag structure, as shown
in Fig. 1, was observed when the radial potential reached a
critical value, dependent on the ion number. In theoretical
investigations it was conjectured that the structural change
from a chain to a zigzag is a second order phase transition.22

Further numerical work showed that at this transition point
the ground state energy is characterized by a discontinuity in
the second derivative with respect to the particles density.23

In this article we study the structural phase transition of
an ion crystal from a linear chain to a zigzag configuration in
a suitably defined thermodynamic limit, by developing an

analytic theory which allows us to determine the behavior of
the system at the critical point. From symmetry consider-
ations we conjecture the spontaneous symmetry breaking.
Applying Landau theory,24 we identify the order parameter
and the soft mode driving the instability, and demonstrate
that the system undergoes a second order phase transition.
Our theory is valid at T=0, when the system exhibits long-
range order. It allows us to determine the system’s behavior
at the transition point, and the results we find are in agree-
ment with the numerical results reported in Refs. 22 and 23.

This article is organized as follows. In Sec. II we intro-
duce the model and discuss first the transition for a chain of
three ions from a linear to a zigzag configuration of charges.
In Sec. III we derive the dispersion relations and eigenmodes
at equilibrium of the linear chain and of the zigzag configu-
ration in the thermodynamic limit. In Sec. IV we focus onto
the classical phase transition between the two configurations,
identify the soft mode and study analytically the system
around the critical point. In Sec. V we conclude and in the
Appendixes we report the details of calculations presented in
Sec. IV.

II. ORDERED STRUCTURES OF IONS IN LOW
DIMENSIONS

The model we consider is constituted by N particles of
mass m and charge Q, which are confined by an external

FIG. 1. Structural phase transition in a string of equidistant
trapped ions from a linear to a planar zigzag configuration. For ions
in a harmonic trap, close to the transition point the zigzag configu-
ration is evident about the center of the trap, where the density of
ion is larger !Ref. 22".
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harmonic potential along one axis. The particles are classical,
and the Hamiltonian governing their dynamics reads

H = %
j=1

N
p j

2

2m
+ V!r1, . . . ,rN" , !1"

where r j = !xj ,yj ,zj" and p j are the positions and conjugate
momenta, with j=1, . . . ,N. The term V accounts for the os-
cillator’s potential and the Coulomb repulsion,

V =
1
2%

j=1

N

m#"2xj
2 + "t

2!yj
2 + zj

2"$ +
1
2%

j=1

N

%
j!i

Q2

&ri − r j&
. !2"

Here, the potential is characterized by harmonic confinement
at frequency " and "t in the axial and transverse direction,
respectively, whereby "t#" for the case we are going to
study. We denote by $'"t /" the trap aspect ratio, such that
$#1.

At sufficiently low temperatures, the ions localize them-
selves at the equilibrium positions r j

!0" which solve the
coupled equations describing the equilibrium of the forces,

( "V

"rj
(

rj=rj
!0"

= 0. !3"

When the transverse frequency "t exceeds a critical value
"t

!c", which depends on the axial trap frequency " and on the
number of ions, the solutions of Eq. !3" are aligned along the
x axis, forming a string. Tables of the equilibrium positions
for string up to 10 ions have been reported in Refs. 25 and
26. An analytical form for the linear density of ions along the
trap axis at equilibrium was determined in Ref. 27 for N!1
and using the local density approximation. The linear fluc-
tuations about the classical ground state of an ion chain in a
harmonic trap have been analytically studied in Refs. 28 and
29. This study identified as well the value of the critical
transverse frequency "t

!c")3N" / !4*log N", using an expan-
sion at leading order in 1 / log N, and by considering only
nearest-neighbor contributions. Within this approximation
this value is consistent with numerical results,22 and is in
good agreement with previous analytical evaluations in Ref.
30, which calculated the critical value taking into account the
long-range interaction between the ions but assuming that
the particles are equidistant.

When the transverse frequency is varied, so that "t%"t
!c",

the stable configuration is first a zigzag structure, then at
smaller values it has an abrupt transition to a helicoidal one,
and so on thereby acquiring more complex structures.19,20,30

Eventually, for a large number of ions and for aspect ratios $
sufficiently close to unity the structure is expected to take the
bcc crystalline form.1 In the following, we study the transi-
tion from an ion chain to a zigzag structure for the most
simple model, namely three ions in a linear Paul trap. This
system allows us to get some insight into the system, before
considering the structural transition in the thermodynamic
limit in Sec. III.

A. Structural stability of a three-ion chain

We consider N=3 ions inside a trap with "t#", and cal-
culate their equilibrium positions as a function of the aspect
ratio $="t /". We restrict for simplicity to two dimensions,
which we here identify with the x−y plane, and rewrite the
potential !2" in dimensionless variables as

Ṽ =
1
2%

i=1

3

!xi!
2 + $2yi!

2" + %
i%j

1
*!xi! − xj!"2 + !yi! − yj!"2

, !4"

where xi!=xi / l, yi!=yi / l, l3=Q2 / !m"2", and Ṽ=V / !l2m"2".
Throughout this section we drop the prime superscript.

The normal modes frequencies for the linear and the zig-
zag structures are displayed in Fig. 2 as a function of $,
when $ is decreased across the value for which the linear
chain becomes mechanically unstable. The transition to the
zigzag configuration takes place at the value $=$*, such that
the smaller transverse frequency of the linear chain vanishes.
We now study in detail the classical equilibrium positions for
$#1. Assuming the convention x1%x2%x3, the symmetry
of the trapping potential imposes x2

!0"=0, x1
!0"=−x3

!0"'−x̄,
with x̄#0. From Eqs. !3" we also find y2

!0"=−2ȳ and y1
!0"

=y3
!0"' ȳ, with ȳ&0. The linear configuration, namely the set

of solutions with ȳ=0, is found when the aspect ratio
$#$*, where $*'*12 /5. When $%$*, then ȳ#0 and the
structure becomes planar. We denote this case by “zigzag
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FIG. 2. !Color online" Excitation frequencies of the oscillations
modes of a three-ion string, in units of the axial trap frequency ", as
a function of the trap anisotropy $. The eigenmodes for $#$* are
the longitudinal !top" and the transverse ones !bottom". For $
%$* the eigenmodes are combination of longitudinal and trans-
verse modes with opposite parity by reflection about x=0.
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configuration”, as it is indeed the most elementary instance
of the structure one observes for many ions. Here, for $
%$* terms x̄, ȳ take the form

x̄ = +4,1 −
$2

3
-.−1/3

, ȳ =
1
3
*, 3

$2-2/3
− x̄2. !5"

Their functional dependence on the aspect ratio $ is dis-
played in Fig. 3. One can observe the discontinuity of the
derivative at $*, corresponding to the transition to a different
equilibrium configuration. For $→$* the change is faster
for the transverse displacement, as it is visible by the expan-
sion of x̄ , ȳ at '$=$*−$,

ȳ = y0'$1/2 + O!'$3/2",

x̄ = x̄lin − x0'$ + O!'$2" ,

where x̄lin= !5 /4"1/3 is the value taken by x̄ when the linear
chain is stable, while y0)0.74, x0)1.85. We note that,
about the instability point of the linear chain, the transverse
displacement ȳ plays the role of the order parameter, while
the changes of the axial distance x̄ are induced by the
changes of ȳ, and therefore about the value $* these are less
dramatic.

III. LINEAR AND ZIGZAG STRUCTURES

In this section, we study the static properties of the linear
chain and of the zigzag configuration in the thermodynamic
limit. For an ion chain inside a trap, a good thermodynamic
limit is found by fixing the interparticle spacing a at the
chain center when N→(. This corresponds to the require-
ment that the axial trap frequency vanishes according to the
relation "/*log N /N.28,29 In this limit, the critical transverse
frequency "t

!c" is constant, and the behavior at the mechanical
instability is equivalent to that of a uniform chain with equal
interparticle distance a between neighboring ions.31 The uni-
form chain is the model we will use for determining the

ground state and the motion of the linear and zigzag structure
in the thermodynamic limit.

A. Linear chain

We assume a stable linear chain of ions, namely "t#"t
!c".

In this limit the equilibrium positions lie along the x axis,
r j

!0"= !xj
!0" ,0 ,0", and we use the convention xi#xj for i# j.

For small vibrations around these points we approximate the
potential in Eq. !2" by its second order Taylor expansion in
the displacements qj =xj −xj

!0", yj, zj. In this limit the equa-
tions of motion are

q̈i = − "2qi − %
j!i

Ki,j

m
!qi − qj" , !6"

ÿi = − "t
2yi +

1
2%

j!i

Ki,j

m
!yi − yj" , !7"

z̈i = − "t
2zi +

1
2%

j!i

Ki,j

m
!zi − zj" , !8"

and describe a system of coupled oscillators, with long range
interaction and position-dependent coupling strength. Here,
the coefficients Ki,j '−"2V /"xj"xi&x

j
!0" read

Ki,j =
2Q2

&xi
!0" − xj

!0"&3
. !9"

We note that at second order in the harmonic expansion the
axial and transverse vibrations are decoupled. It is easily
verified that the center-of-mass motion is an eigenmode of
the secular equations !6"–!8" at eigenfrequencies " and "t for
the axial and transverse motion, respectively. The solution to
Eqs. !6"–!8" have been studied in Refs. 28 and 29.

For the purpose of studying the behavior at the mechani-
cal instability, we now consider the simplified model of the
uniform chain, where the interparticle distance at equilibrium
is fixed. This case is found by setting "=0 in Eqs. !6"–!8"
and assuming constant interparticle distance a=xj+1

!0" −xj
!0".

Such condition can be realized for the central ions of a long
ion chain inside of a linear Paul trap32 or for ions confined in
a ring of large radius.19,20 This second scenario corresponds
to take periodic boundary conditions, q1=qN+1, etc. Crystal-
lization is found assuming, for instance, that one ion is
pinned at the position x0

!0"=0. Then, the classical equilibrium
positions are xj

!0"= ja and the coupling strengths in Eqs.
!6"–!8" take the form

Ki,j
uniform =

2Q2

&i − j&3a3 ' Ki−j . !10"

The dispersion relations are33

)0!k"2 = 4,2Q2

ma3-%
j=1

N
1
j3 sin2 jka

2
, !11"
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FIG. 3. Equilibrium position of the external ions of a string of
three particles as a function of the trap anisotropy $. The solid and
dashed lines display the longitudinal and transverse variables, x̄ and
ȳ, in units of the characteristic length l. The vertical dotted line
indicates the transition value $*, where the equilibrium configura-
tion makes an abrupt change from a linear chain to a zigzag
structure.
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)!!k"2 = "t
2 − 2,2Q2

ma3-%
j=1

N
1
j3 sin2 jka

2
, !12"

with k=2*n /Na and n=0, +1, +2, . . . ,N /2. The spectrum
corresponding to Eqs. !11" and !12" is shown in Fig. 4. The
axial eigenmodes at frequency )0!k" are ,k

!+", such that

qj =* 2
N %

k#0
!,k

!+"cos kja + ,k
!−"sin kja" , !13"

where the superscript + indicates parity by reflection k→
−k. Analogously, we denote the transverse eigenmodes at
frequency )!!k" by -k

y!+" and -k
z!+", where

yj =* 2
N %

k#0
!-k

y!+"cos kja + -k
y!−"sin kja" , !14"

zj =* 2
N %

k#0
!-k

z!+"cos kja + -k
z!−"sin kja" . !15"

We note that the modes at k=* /a are even. A close inspec-
tion to Eq. !12" shows that there may exist values of the
transverse trap frequency, at fixed interparticle distance a, for
which )!

2 %0, that is, imaginary frequency solutions. For
such values, thus, the chain is unstable. The threshold value
"t

!c", such that for "t#"t
!c" the linear chain is stable, is found

by solving mink!)!"=0 !see Sec. IV A". The minimum is
found at k=* /a and correspondingly

"t
!c"2 = 2,2Q2

ma3-%
j=1

N
1
j3 sin2 j*

2
→

Q2

ma3

7
2

.!3" , !16"

where result !16" is found for N→( using %!#0!2!−1"−p

= !1−2 −p".!p", with .!p" the Riemann-zeta function. The
value in Eq. !16" depends on the interparticle spacing a and
provides the range of validity of the results presented in this
section. It coincides with the value reported in Ref. 30,
where a similar model to the one discussed here was consid-
ered. It is close to the result #"t

!c",trap$2=4Q2 /matrap!0"3found
at leading order in 1 / log N in Ref. 29, where a!x" gives the
interparticle distance as a function of x in the local density

approximation, and a!0"'a is the value at the chain center.
This result was obtained by considering the inhomogeneous
distribution of ions along the chain, but keeping only the
nearest-neighbors interaction. The small discrepancy be-
tween the two values is to be attributed to the different ap-
proximations that have been applied in each model.

B. Zigzag structure

For "t%"t
!c", and sufficiently close to the critical value, the

stable configuration is a zigzag structure. We now evaluate
its dispersion relation and eigenmodes for ions on a ring and
for periodic boundary conditions. We assume the equilibrium
positions to lie on the x-y plane with rn

!0"= !xn
!0" ,yn

!0" ,0". Then,
xn

!0"=na and yn
!0"= !−1"nb /2, with b a real and positive con-

stant, which is determined from the equation

m"t
2

Q2 − %
!#0

4
#!2 ! − 1"2a2 + b2$3/2 = 0. !17"

Figure 5 displays the transverse equilibrium displacement b
as a function of the transverse frequency "t, as it is obtained
by solving numerically Eq. !17". Assuming that the zigzag
configuration is stable, we denote by qn=xn−xn

!0", wn=yn

−yn
!0", and zn the axial and transverse displacements, and ex-

pand the potential of Eq. !2" up to second order. In this limit
the motion along the z direction is decoupled from the vibra-
tions on the plane, and the resulting equations of motion for
qn and wn read

m qn
¨ = − %

!!0
K!

x!qn − qn+!" − !− 1"n %
!!0

Y!!wn − wn+!" ,

!18"

m wn
¨ = − m"t

2wn + %
!!0

K!
y!wn − wn+!"

− !− 1"n %
!!0

Y!!qn − qn+!" . !19"

The coefficients appearing in these equations depend only on
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FIG. 4. !Color online" Excitation spectrum of the uniform chain.
The eigenfrequencies ), in units of )0=*Q2 /ma3, are plotted as a
function of the quasimomentum k, in units of * /a. The axial spec-
trum !solid line" and the transverse spectrum !dashed line" are ob-
tained from Eqs. !11" and !12", respectively. Here, "t=1.1"t

!c".
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FIG. 5. Transverse equilibrium displacement b, in units of the
interparticle spacing a, as a function of the transverse frequency "t

in units of "t
!c". On the right of the curve the ion crystal is a linear

chain. In the region on the left of the curve it exhibits a zigzag
structure.
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the interparticle distance, !a= !n!−n"a, as the structure is
periodic along x. In particular, for ! even they read

K!
x = 2K!

y =
2Q2

a3

1
& ! &3

, Y! = 0,

while for ! odd they are given by

K!
x =

Q2

a3

2!2 − /2

#!2 + /2$5/2 ,

K!
y =

Q2

a3

!2 − 2/2

#!2 + /2$5/2 ,

Y! =
Q2

a3

3 ! /

#!2 + /2$5/2 ,

with /=b /a. The coefficients in Eq. !10", and the corre-
sponding equations of motion for the linear chain, Eqs. !6"
and !7", are recovered for /→0.

In general, the structural change brings to a doubling of
the unit cell d of the crystal, which from d=a in the linear
chain goes to d=2a in the zigzag configuration. Correspond-
ingly, the Brillouin zone of the zigzag is reduced by a factor
2, and the wave vectors now take the values k=2*n /Na and
n=0, +1, +2, . . . ,N /4. In Eqs. !18" and !19" one can easily
verify that the bulk excitations are eigenmodes at frequencies
" and "t. The other eigenvalues and eigenfunctions can be
found using the ansatz fn

!j,+", with

fn
!j,+"!k" = !+1"ne−i)j,+t+ikna#x̂ 0 ie−in*1k

!j,+"ŷ$ , !20"

where j=1,2 and ka varies on the interval #−* /2,* /2$. In
particular, we note the relation fn

!j,−"!k"= fn
!j,+"!k+* /a". The

corresponding eigenmodes are given by the real and imagi-
nary parts of these vectors. Using this ansatz, we obtain the
coupled equations

) j,+!k"2 = C1
!+"!k" + 1k

!j,+"B!k" , !21"

!"t
2 − ) j,+!k"2" = C2

!+"!k" − 1k
!j,+"−1B!k" , !22"

whereby

B!k" =
2
m %

!#0
Y2!−1 sin!2 ! − 1"ka,

C1
!+"!k" =

4
m %

!#0
K!

x sin2k ! a

2
,

C2
!+"!k" =

4
m %

!#0
,K2!

y sin2k ! a + K2!−1
y cos2 !2 ! − 1"ka

2
-,

C1
!−"!k" =

4
m %

!#0
,K2!

x sin2k ! a + K2!−1
x cos2 !2 ! − 1"ka

2
-,

C2
!−"!k" =

4
m %

!#0
K!

y sin2k ! a

2
.

The eigenfrequencies are found by eliminating the parameter
1k

!j,+" from Eqs. !21" and !22". The excitation spectrum ex-
hibits four branches in the new Brillouin zone, and their
functional dependence on k is

) j,+!k"2 =
"t

2 + C1
!+"!k" − C2

!+"!k"
2

+ !− 1" j*#"t
2 − C1

!+"!k" − C2
!+"!k"$2

4
+ B!k"2,

!23"

with j=1,2. The spectrum for the excitations on the x−y
plane is displayed in Fig. 6.

We note that in the limit b→0 the branches of the spec-
trum of the linear chain, Eqs. !11" and !12", are recovered
from Eqs. !23". In fact, for b=0 we have B=0 and C1

!+"

=2C2
!0", such that each solution has double degeneracy, with

&)2,+!k"2&b=0 = &)2,−!k"2&b=0 = &C1
!+"!k"&b=0

and

)1,+!k"2 = )1,−!k"2 = &"t
2 − C1

!+"!k"&b=0/2,

which reproduce respectively Eqs. !11" and !12" #note that
"t

2−C1
!+"!k"−C2

!+"!k"%0$.

IV. LANDAU THEORY OF THE STRUCTURAL PHASE
TRANSITION

If the ions are crystallized along a line, by lowering the
transverse confinement "t the system will be led to a situa-
tion in which the linear chain gets unstable. In this regime,
one observes experimentally a transition, in which the ions
are crystallized on a plane, according to a zigzag distribution
of particles. In the literature it was conjectured that this is a
second-order phase transition. This conjecture is supported
by the numerical results in Refs. 22 and 23.
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FIG. 6. !Color online" Branches of the excitation spectrum of a
zigzag structure for the modes on the x−y plane, as obtained from
Eq. !23". The curves display the frequencies )2,+!k" !solid", )2,−!k"
!dotted", )1,+!k" !dot-dashed", and )1,−!k" !dashed", in units of )0,
as a function of k, in units of * /a. The Brillouin zone is now half
the Brillouin zone of the linear chain due to the doubling of the
crystal periodicity. Here, "t=0.9"t

!c".
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Indeed, one can observe that the transition from a linear to
a zigzag configuration is characterized by a symmetry break-
ing resulting in the increase of the unit cell by a factor of 2.
It is combined with a transition from a linear to a planar
structure corresponding to the loss of rotational symmetry
about the x axis. Then, one can identify the order parameter
with the displacement of the equilibrium position from the x
axis, while the control parameter can be taken as the trans-
verse frequency "t when the interparticle distance is fixed.
Starting from this educated guess we apply Landau theory to
the transition.24 We focus on the situation in which the inter-
particle distance a is fixed, and study the crystal structure
when the transverse confinement "t varies across the critical
value "t

!c". We explicitly determine the critical exponent of
the order parameter around the critical value, and find that it
is in agreement with the numerical results in Ref. 22.

A. Soft mode

Let us now go back to the dispersion relation for the
transverse modes of the linear chain in Eq. !12". The struc-
tural transition takes place for the critical value "t

!c", Eq. !16",
such that the frequency of the lowest transverse mode of the
linear chain vanishes, as shown in Fig. 7!a". The smallest
transverse frequency )! is found at the value of the wave
vector k, at which the semipositive-definite function

F!2" = %
j=1

N
1
j3 sin2!j2"

is maximum in the interval 0323* /2, as seen from Eq.
!12" for ka= #0,*$. We first observe that "F /"2=0 at 2
=0,* /2. As F!0"=0, at 2=0 the function has an absolute
minimum. The second-order derivative at 2=* /2 is nega-
tive, and one can simply prove analytically that this point is
at least a relative maximum. Numerical studies show that it
is an absolute maximum, such that the smallest transverse
frequency is found at wave vector k0'* /a and takes the
value

)!,min
2 = "t

2 − "t
!c"2. !24"

This identifies the soft mode. The corresponding eigenmodes
exhibit a periodic deformation of the chain at periodicity 2a,
analogous to the zigzag structure. We denote by b0 the am-
plitude of its oscillations, with b0=b0!"t", such that the trans-
verse oscillations along y of the ion j are described by the
function

yj
soft = !− 1" jb0/2. !25"

In the following we assume zero temperature and study the
equilibrium position of the crystal with the transverse fre-
quency varying in the interval #"t

!c"−'" ,"t
!c"+'"$, thus on

both sides of the critical point, whereby '" is a small positive
quantity. Following Landau theory, we demonstrate that the
zigzag mode of the linear chain, given by Eq. !25", is indeed
the soft mode, driving the instability across the critical point,
and we evaluate the critical exponents for some quantities of
interest.

B. Equilibrium positions around the critical point

In order to determine the behavior at the critical point, we
first expand Eq. !2" until the fourth order around the equilib-
rium positions of the chain, V=%l=1

4 V!l", where l labels the
order. The zero order term at leading order in 1 /N is27

V!0" =
Q2

a
!N − 1"+4 − ln 2 + ln!N" + O, 1

N2-. , !26"

where 4=0.577216. . . is Euler’s constant. The first order
term vanishes as a result of the requirement that we are look-
ing for a minimum. Using the decomposition into the eigen-
modes of the linear chain, Eqs. !13"–!15", the quadratic term
of the expansion of potential !2" #with the use of Eqs. !6"–!9"
and Eqs. !11" and !12"$ takes the form

V!2" =
m

2 %
k#0,s=+

#)0!k"2,k
!s"2 + 5!k"!-k

y!s"2 + -k
z!s"2"$ ,

!27"

where )0 is given by Eq. !11", while

5!k" = "t
2 − 2,2Q2

ma3-%
j=1

N
1
j3 sin2 jka

2
!28"

and it coincides with )!
2 !k", Eq. !12", for "t#"t

!c". The third
and fourth order terms, obtained by using this decomposi-
tion, are presented in Appendix B.

The linear chain becomes mechanically unstable when, by
varying "t, the frequency of the mode with wave vector k0
=* /a, Eq. !25", vanishes. Starting from this observation, we
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FIG. 7. !Color online" Branches of the excitation spectrum at !a"
"t="t

c+0+ !just above the critical value" and !b" "t="t
c+0− !just

below the critical value". In !b" the equilibrium structure is a zig-
zag, the periodicity is doubled with respect to the linear chain and
the new Brillouin zone is halved. The four branches of the spectrum
are obtained at this point by “folding” the two branches of the linear
chain in !a". The units and style codings in !a" and !b" are the same
as in Figs. 4 and 6, respectively. Here, "t

!c"12.05)0.
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study the behavior of the corresponding mode close to the
instability point, when "t1"t

!c". For convenience, we denote
by -0

y and -0
z the zigzag modes of the linear chain along the

y and z direction, respectively, at wave vector k0. Around the
instability point these modes will be coupled significantly to
other quasidegenerate modes by the third and fourth order
terms V!3" and V!4". These quasidegenerate modes are long
wavelengths axial modes ,'k at wave vectors 'k, such that
&'k &a#1, and short wavelength transverse modes -k0+'k!

6 at
wave vector k=k0+'k!, with &'k! &a#1.

At first order in the small parameter &'k &a#1, the part
Vk0

!3", that contains the summands of the third order term V!3"

giving the coupling of the mode at k0 with the other quaside-
generate modes, has the form

Vk0

!3" =
21

2*2
.!3"

Q2

a3*N
%

'k#0
'k %

6=y,z
-0

6!,'k
!+"-'k

6!−"

+ ,'k
!−"-'k

6!+"" + O!'k2a2" , !29"

where we adopted for convenience the notation -'k
6

ª-k=k0+'k
6 . We note that Eq. !29" is of first order in 'k. The

part Vk0

!4" of the fourth order term V!4", which is relevant to the
dynamics of the soft mode at k0, involves only the transverse
modes that are close in k to k0, and has the form

Vk0

!4" = A#!-0
y"2 + !-0

z"2$2 + 12A %
6=y,z

!-0
6"2 %

'k#0
#!-'k

6!+""2

+ !-'k
6!−""2$

+ 4A %
6=y,z;6!!6

!-0
6"2 %

'k#0
#!-'k

6!!+""2 + !-'k
6!!−""2$

+ 16A-0
y-0

z %
'k#0

#-'k
y!+"-'k

z!+" + -'k
y!−"-'k

z!−"$

+ A!-0
y + -0

z"F!-'k1

6!+",-'k2

6!!−",-'k1+'k2

6"!−" " + O!'k2a2" ,

!30"

where A is calculated from the coefficients of V!4" at kj =k0
!j=1,2 ,3 ,4", see Appendix B, and it takes the form A
=A /N with

A =
3
2

31
32

.!5"
Q2

a5 . !31"

The function F in Eq. !30" contains a sum of products of
three amplitudes -'k

6!+" for 'k!0, and it is of no importance
for the following considerations. The numerical factors ap-
pearing in Eq. !30", multiplying each term of the sum, ac-
count for all possible permutations of the amplitudes -'k

6 in
each summand #see Appendix B and Eq. !B3" therein$. The
coupling between the transverse modes at k0 and the axial
modes does not appear explicitly in Eq. !30", as it scales with
!'ka"2#1, and it is hence of higher order with respect to the
coupling among the transverse modes. Since the third order
term, Eq. !29", scales with 'ka, at zeroth order in the expan-
sion in &'k &a and close to the instability, the effective poten-
tial describing the dynamics of the mode at k0 is given by
#see Eqs. !27" and !30"$

Veff =
m

2
50#!-0

y"2 + !-0
z"2$

+
m

2 %
'k#0

5'k %
6=y,z

#!-'k
6!+""2 + !-'k

6!−""2$ + V0
!4",

!32"

where 5'k'5!k0−'k". We now allow the transverse fre-
quency "t to take values in the interval #"t

!c"−'" ,"t
!c"+'"$,

such that 5'k may take on small but negative values. We first
determine the amplitude of the zigzag mode k0 and then
show that in the vicinity of the frequency "t

!c" no other modes
are stable. For this purpose for 5'k%0 we determine the
corrections -̄'k

y!+", -̄'k
z!+" to the equilibrium positions of the

linear chain using Eq. !32", assuming that these give rise to a
small displacement b with respect to the equilibrium inter-
particle distance b#a. In particular, following our hypoth-
esis that close to the transition point the soft mode is unique,
and it is the zigzag mode, we consider the set of solutions
where -̄'k

!+"=0 for 'k#0, and introduce the Fourier ampli-
tude of the displacement in the transverse plane !̄=*Nb /2,
as indicated from Eq. !13", such that

!̄ = *!-̄0
y"2 + !-̄0

z"2.

From Eq. !32" one finds !̄=0 for 50#0, while for 50%0

!̄ = ,− N
m50

4A -1/2
. !33"

This is indeed a minimum if we ignore terms in Veff with
nonzero 'k. It will be shown in what follows that this mini-
mum is stable with respect to addition of such terms.

We now demonstrate that Eq. !33" is actually the trans-
verse displacement, giving the equilibrium transverse posi-
tions of the zigzag structure, by verifying that Eq. !33", to-
gether with -̄'k

!+"=0 for 'k#0, yields a stable solution. To
check stability the matrix of the second derivatives of Veff
with respect to the various variables should be calculated.
The second derivative of Veff, given in Eq. !32". with respect
to !̄ is positive,

( "2Veff

"!2 (
2!,-'k3=2!̄,03

= −2 m50 # 0. !34"

In order to investigate the coupling of the soft mode with the
modes with 'k!0, one can calculate the second derivatives
of Veff with respect to -0

6. We find

( "2Veff

"-0
6 " -'k

6!!+"(
2!,-'k3=2!̄,03

= 0.

This result shows that the derivatives with respect to -0
6

form a sub-block of the stability matrix that can be diagonal-
ized separately. All its eigenvalues are found to be positive.
The other second derivatives at these points read
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( "2Veff

"-'k
z!+"2(

2!,-'k3=2!̄,03
= m5'k + 8A!̄2 + 16A!-̄0

z"2,

!35"

( "2Veff

"-'k
y!+"2(

2!,-'k3=2!̄,03
= m5'k + 8A!̄2 + 16A!-̄0

y"2,

!36"

( "2Veff

"-'k
y!+" " -'k

z!0"(
2!,-'k3=2!̄,03

= 0, !37"

( "2Veff

"-'k
y!+" " -'k

z!+"(
2!,-'k3=2!̄,03

= 16A-̄0
y-̄0

z , !38"

where we have used that 0#5'k#50. This result shows that
the modes -'k

y!+" and -'k
z!+" are coupled in pairs. All contri-

butions resulting of differentiation of the function F in Eq.
!30" vanish. The stability matrix splits into 272 blocks that
can be diagonalized separately. Using Eq. !33" and 50%5'k
one finds that the eigenvalues of each block are m!5'k
−250" and m!5'k−650", hence both positive. Thus, a gap
opens between the soft mode frequency and the frequency of
the modes at 'k!0 in the vicinity of the transition point.
Therefore, the instability is driven by the soft modes with
wave vector k0, determining the order of the zigzag
phase.34,35

C. Behavior at the critical point

From Eq. !32", using the results of the previous section
we can now write the effective potential for the soft modes,
which reads

Vsoft = V#!-0
y"2 + !-0

z"2$ + A#!-0
y"2 + !-0

z"2$2, !39"

where A is given by Eq. !31" and

V =
m

2
50 =

1
2

m!"t
2 − "t

!c"2" . !40"

Here, we have used that 50=)!,min
2 , which in turn is given

by Eq. !24". Hence, for V#0 the potential Vsoft has a single
minimum with -0

6=0, and the linear chain is the ground
state structure, while for V%0 the potential landscape has
the characteristic form of a Mexican hat with degenerate zig-
zag ground states at different angles around the symmetry
axis. Indeed, while the order parameter !̄ is fixed by condi-
tion !33", the ratio -̄0

y /-̄0
z is arbitrary. The system hence

possesses “Goldstone modes” at zero frequency, which are a
consequence of the symmetry by rotations around the trap
axis.

The transverse displacement from the trap is given from
Eq. !33" by using Eq. !25" and the relation b /2= !̄ /*N,
which links the displacement in real space with its Fourier
decomposition. Hence, for "t%"t

!c" the transverse displace-
ment from the trap depends on "t as

b = b̄*"t
!c" − "t, !41"

with b̄=*2m"t
!c" /A. This behavior is in agreement with the

numerical results in Ref. 22.
From Eq. !41" we evaluate the difference between the

ground state energy of the linear and of the zigzag structure.
Considering the energy per particle, from Eq. !39" we find

8E =
Vsoft!"t → "t

!c"−" − Vsoft!"t → "t
!c"+"

N

= −
1
2

mCa2!"t − "t
!c""2, !42"

where C=112 .!3" / #93 .!5"$, and whose second derivative
with respect to "t is clearly discontinuous at the critical point.
This result is consistent with the result presented in Ref. 23,
where a discontinuity in the second derivative of the ground
state energy with respect to the particles density was found.

D. Discussion

Using symmetry arguments we have demonstrated that
the transition from a linear chain to a zigzag structure, in a
system of anisotropically confined charges, is a second-order
phase transition, whose order parameter is the displacement
from the trap axis. This theory has been developed in the
thermodynamic limit, fixing the interparticle distance a as
the number of ions was let to infinity. In this limit, we found
that the soft modes are the zigzag modes of the linear chain,
whose periodicity is equal to twice the interparticle distance
a. The instability is thus driven by these modes as the trans-
verse potential is changed across the critical value "t

!c".
These considerations are strictly valid for N→(, but can

still be useful for finite systems, and in particular when the
ions are confined in a trap, which provides also axial har-
monic confinement. While detailed quantitative predictions
can be only made by accurately evaluating the finite-size
corrections, we can still make some reasonable conjectures,
based on previous results in the literature and on our theory.
Inside a harmonic trapping potential, the interparticle dis-
tance between the ions varies along the chain and it is mini-
mal at the center. Numerical results, based on molecular dy-
namics simulations, showed that in this case the zigzag
structure appears at the center of the chain where the density
is highest.22 Analytical studies found that the short wave-
length modes are characterized by largest displacements at
the chain center, while the ions at the edge almost do not
move.29 In this case, hence, we can still identify the zigzag
mode of the ion chain with the soft mode. In the presence of
axial confinement, however, both the transverse as well as
the axial equilibrium points will change. In particular, when
going to the zigzag structure the axial density of ions in the
center will increase. Close to the transition point, one finds
that the axial corrections to the linear chain positions are
much smaller than the transverse displacements from the trap
axis as this is a quantity that follows the order parameter.
This is also confirmed by the analysis made for the simple
case of three ions in Sec. II A, where close to the critical
value of the aspect ratio the transverse displacement varies
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faster than the axial one. Therefore, we expect that our
theory will still provide reasonable predictions close to the
critical point, also in presence of axial confinement.

V. CONCLUSIONS AND OUTLOOK

The structural phase transition from a linear chain to a
zigzag configuration, in a system composed of trapped singly
charged particles, is a second order phase transition. Using a
mean field approach we have derived a classical model, de-
scribing the system at the critical point and its vicinity. Our
theory is analytical and its predictions agree with the numeri-
cal simulations of Refs. 22 and 23.

The corresponding phase diagram is shown in Fig. 8, it
shows the regions of stability of the linear chain as a function
of the interparticle spacing a and the transverse frequency "t.
The phase diagram is evaluated in the thermodynamic limit,
corresponding in keeping a fixed as N and the chain length
go to infinity. The analysis is valid for T=0, where long-
range order in one-dimensional structures exists. The quan-
tum statistics of the particles at these densities seem
irrelevant even at these ultralow temperatures since the inter-
action energy is at all stages much larger than the kinetic
energy, and the particles can be considered distinguishable at
all effects.36 On the other hand, at the critical point, where
large fluctuations of the transverse motion classically occur,
quantum effects may be relevant and could be in principle
observed.
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APPENDIX A: EXPANSION ABOUT THE EQUILIBRIUM
POSITIONS OF THE LINEAR CHAIN

In this appendix we evaluate the higher order terms of the
expansion of the potential in Eq. !2" about the equilibrium
position of the linear chain. For this purpose we rewrite the
interparticle distance as &ri−r j & =*Aij +9ij +1ij with

Aij = !i − j"2a2,

9ij = 2a!i − j"!qi − qj",

1ij = !qi − qj"2 + 'ij
2 ,

and 'ij
2 = !yi−yj"2+ !zi−zj"2 and we have used xj = ja+qj. We

now expand in the parameters 1ij and 9ij, assuming that they
are small with respect to Aij, i.e., to the axial equilibrium
distances between the ions when the chain is stable. We will
check later for consistency of this assumption. We can write

V!l" =
Q2

2 %
i,j!i

Wij
!l", !A1"

with

Wij
!0" =

1
&i − j&a

,

Wij
!1" = −

6ij

!i − j"2a2 !qi − qj",

Wij
!2" =

1
2&i − j&3a3 #2!qi − qj"2 − 'ij

2 $,

Wij
!3" =

6ij

2&i − j&4a4 !qi − qj"#3'ij
2 − 2!qi − qj"2$,

Wij
!4" =

1
&i − j&5a5,3

8
'ij

4 + !qi − qj"4 − 3'ij
2 !qi − qj"2- ,

where we have introduced 6ij = !i− j" / &i− j&. We notice that

V!1" = −
Q2

2a2%
i

%
j!i

6ij
qi − qj

!i − j"2 = 0 !A2"

as one can easily verify by using the definition of 6ij. This is
satisfied also in the ion chain in the presence of an axial
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FIG. 8. Phase diagram close to the linear-zigzag transition in the
thermodynamic limit, for 40Ca+ ions. The horizontal axis is the
interparticle spacing a in :m; the vertical axis the corresponding
critical frequency "t

!c" in MHz. This graphic does not report further
curves in the left region, giving the transition to more complex
structures. A detailed study of the transitions to these structures can
be found in Refs. 19, 20, and 23.
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trapping potential, since V!1"=0 determines the equilibrium
positions.

APPENDIX B: POTENTIAL TERMS FOR THE NORMAL
MODES OF THE LINEAR CHAIN

Here we report the third and fourth order terms of the
potential, decomposed into the modes ,k=,k

!+"− i,k
!−" and

-k
6=-k

6!+"− i-k
6!−". The third order term takes the form

V!3" = %
k1+k2+k3=0

B!k1,k2,k3"

7+,k1,3 %
6=y,z

-k2

6 -k3

6 − 2,k2
,k3-. , !B1"

where the sum runs over positive and negative values of kj
and

B!k1,k2,k3" = − i* 2
N

Q2

a4 %
m#0

1
m4 4

p=1

3

sin
kpma

2
. !B2"

Term !B1" is real, as it is visible by using the decomposition
into even and odd modes. In particular, it has odd parity,
coupling either three odd modes or two even modes with an
odd one.

The quartic term reads

V!4" = %
k1+k2+k3+k4=0

A!k1,k2,k3,k4"

7 +3
8 %

6,6!=y,z

-k1

6 -k2

6 -k3

6!-k4

6! + ,k1
,k2

,k3
,k4

− 3 %
6=y,z

-k1

6 -k2

6 ,k3
,k4. !B3"

with

A!k1,k2,k3,k4" =
4
N

Q2

a5 %
m#0

1
m5 4

p=1

4

sin
kpma

2
. !B4"

This term is even, and it thus couples either four modes with
the same parity, or two odd modes with two even ones.
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