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Staying adiabatic with unknown energy gap
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We introduce an algorithm to perform an optimal adiabatic evolution that operates without
an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm
maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on
the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The
result is compatible with an exponential speed-up for up to twenty qubits with respect to classical
algorithms. We finally study a possible algorithm improvement by combining it with the quantum
Zeno effect.

Adiabatic evolution has been used as a standard driv-
ing tool for quantum systems evolutions for decades. The
Adiabatic Theorem guarantees that a quantum system,
prepared in the ground state of a time-dependent Hamil-
tonian, will stay close to its instantaneous ground state if
the Hamiltonian governing the evolution is varied slowly
enough, i.e. adiabatically [1]. The most ubiquitous appli-
cation of this theorem is the solution of quantum mechan-
ical time evolutions in terms of simpler static problems:
if the adiabatic condition is fulfilled during the evolution,
i.e. the Hamiltonian is varied slowly with respect to the
instantaneous energy gap, one knows that the quantum
system is described by the instantaneous ground state
of the Hamiltonian. A more recent application of the
adiabatic theorem has been pointed out to define a new
quantum computation model, adiabatic quantum compu-
tation (AQC) or quantum annealing [2, 3]. Indeed, if it
is possible to define a Hamiltonian whose initial ground
state is easy to prepare and whose final ground state
encodes the solution to a computational problem, the
system can be used as a quantum computer, with the
same computational power as the circuit model quantum
computation [4]. In the AQC model, the computational
complexity is defined via the scaling of the time to reach
the final state (containing the solution to the problem),
as a function of the size of the input to the problem.
Even though, there have been discussions about the con-
sistency of the adiabatic theorem and the sufficiency of
its conditions [5–8], since the introduction of AQC, dif-
ferent interesting applications have been found, like for
example the Grover Search problem where the the well
known quadratic speed-up can be found analytically by
locally probing the system adiabaticity [9–12].

As stated before, the simplest formulation of the adi-
abatic condition states that the time needed to perform
an adiabatic evolution scales as the inverse of the mini-
mal energy gap between the ground and the first excited
state [1]. The problem of finding the time-optimal AQC
has been put forward recently and reformulated also in
geometrical terms [13–15]. However, in all these stan-
dard approaches it is necessary to know the instantaneous
spectrum of the system under consideration. This task

FIG. 1: Stepwise propagation scheme with two different ve-
locities v+ and v

−
. The state propagated with higher velocity

is further away from the ground state, the state with smaller
velocity (i.e. more adiabatic) stays closer to the ground state.
After each step i the variation ǫi between the two propagated
states is evaluated and used to update the velocities to remain
within a predefined error bound such that ǫi = ǫmax.

might be very difficult or even impossible, like for exam-
ple when dealing with quantum systems composed by a
large number of particles. Moreover, there are classes of
problems, such as the k-SAT studied here, where differ-
ent instances of different Hamiltonians have to be con-
sidered: each of them with a different energy spectrum
to be computed. Very recently, Quan and Zurek intro-
duced a method to circumvent this problem by using a
quenched echo [16]. The idea is to propagate the ground
state of the system forward and backward in time com-
paring the resulting states to evaluate the adiabaticity of
the evolution. Here, we introduce another scheme to find
an adiabatic evolution of a given system completely in-
dependently of any knowledge of the instantaneous spec-
trum: we probe locally (in time) the adiabaticity of the
system and adjust the local speed to stay close to the
instantaneous ground state. We apply this technique to
the Landau Zener transition [18] as testbed and then to
the computationally hard problem of 3-SAT. Finally, as
expected and already shown in a similar setting in [17],
we show that combining the algorithm with the quantum
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Zeno effect [19] the adiabaticity of the evolution can be
improved.
We consider a quantum system described by a time

dependent Hamiltonian Ĥ(s(t)) initially prepared in its
ground state. The Hamiltonian parameter depends on
time according to a given function s(t) that increases
monotonically from s(0) = 0 to s(T ) = 1, where T is the
total evolution time. Our goal is to find the fastest possi-
ble way to perform such transformation while still obtain-
ing an adiabatic transformation within a given error ǫ. To
find such evolution, without using any apriori knowledge
of the system spectrum and instantaneous ground state,
we evolve the system state |Ψ(t)〉 by varying the system
parameter from s(t) at time t with velocity v = ∆s/∆t,
with two different small velocities v± = v(1 ± δ). In
general, the system ends in two slightly different states
that we compare to evaluate the adiabaticity of the evo-
lution. Indeed, since the energy spectrum is bounded
from below, the two states are some excited states above
the ground state. If the two states are almost equal,
it means that both velocities v± satisfy the adiabaticity
condition and the system is in the instantaneous ground
state, that is, we are performing an adiabatic evolution.
It is then possible to increase the velocity v to obtain
the fastest possible adiabatic transformation. The limit-
ing case where the error induced by the transformation
with velocity v− is below the threshold while the other,
induced by v+, is above can be used to determine the
maximal velocity allowed for an adiabatic transformation
within a certain tolerance.
The idea presented above can be recast in a simple

algorithm as illustrated in Fig. 1:

1. At t = 0 prepare the system in the ground state of
Ĥ(0), i.e. |Ψ(0)〉 = |Φ0(0)〉,

2. Propagate the system wave function from |Ψ(ti)〉
to |Ψ(±)〉, changing s to s+∆s with v±i = vi(1± δ)
in time ∆t± = ∆t/(1± δ).

3. Evaluate the distance ǫi between |Ψ(±)〉.

4. Maximize vi, such that ǫ = ǫmax.

5. Repeat 2 to 4 until s(t) = s(T ) = 1.

The free parameters ǫmax and δ are the maximum er-
ror that we allow per step, and the difference between the
propagating velocities. By choosing ∆t and ǫmax appro-
priately, it is possible to control the final evolution time

T and thus the final fidelity F (T ) =
∣

∣〈Φ0(T )|Ψ(T )〉
∣

∣

2
. In-

deed, the overall final excitation of the evolved state is a
function of the errors accumulated during the evolution.
The error or distance per step ǫi between the states

|Ψ(±)〉 can be quantified by different figures of merit.
Here we choose the energy difference between the result-
ing states

ǫ1 = ∆E = 〈Ψ(+)|H |Ψ(+)〉 − 〈Ψ(−)|H |Ψ(−)〉 (1)

as a natural measure of the adiabaticity of the process.
We also used the Quantum Fisher Information (QFI) for

FIG. 2: Infidelity 1−F (T ) as a function of the total running
time T for time step ∆t = 0.1 (blue crosses), ∆t = 0.07 (green
circles), ∆t = 0.05 (red stars), ∆t = 0.03 (light blue spots)
and different errors ǫmax = 10−10, . . . , 5 ·10−5, δ = 0.8. Upper
(lower) curves are obtained using the energy difference ∆Ei

(Quantum Fisher Information FQ ) as a figure of merit. The
black (red) line is a power-law fit y = a ·xb with a = 0.76 and
b = −2.05 (a = 0.26 and b = −2.04).

pure states [20, 21]:

ǫ2 = F+
Q − F−

Q (2)

where FQ = 4(∆H)2 = 〈H2〉 − 〈H〉
2
. The QFI can be

seen as a statistical distance between quantum states
and is a more elaborate method of comparison than
the energy difference. However, as we show in the fol-
lowing, the final result is not crucially dependent on
the choice of the figure of merit. To avoid unphysical
“kinks” in the evolution parameter (when the value of
the velocity v changes discontinuously from vi to vi+1)
that would introduce spurious excitations in the sys-
tem, we smooth the transition using the error function
v(t) = (vi−1 − vi)erf[9(t− ti−1)/∆t] + 1/2(vi + vi−1) for
t ∈ [ti−1, ti].
First of all, as a testbed of the proposed algorithm,

we search for the optimal adiabatic Landau-Zener (LZ)
transition showing its effectiveness. The adimensional
two-level time dependent LZ Hamiltonian is given by

HLZ/J = σx + s(t)σz (3)

where σz and σx are the Pauli spin matrices [18] (we set
from now on ~ = 1). We control the adiabatic trans-
formation between the initial and final ground states of
the Hamiltonian |Φ0(0)〉 and |Φ0(T )〉 by applying the al-
gorithm introduced above. In Fig. 2 we report the final
infidelity as a function of the total evolution time T for
different values of the time step ∆t and local error ǫmax,
obtained using both the energy difference and the Fisher
information as a local measure of error. As it can be
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clearly seen, in a wide range of parameters the data col-
lapse onto two distinct lines (corresponding to the differ-
ent local error measure ǫ) following the power law

1− F (T ) ∼ T−2 ∼
ǫmax

∆t2
. (4)

Fluctuations around this scaling law increase for shorter
times, however the agreement is almost perfect on two
orders of magnitude in time and on four in the infidelity.
As expected, longer times T allows for better fidelities
and the total evolution time T is determined by the choice
of the algorithm parameters ǫmax and ∆t. We stress that
the results slightly depend on the error measure ǫi as only
the prefactor significantly changes, suggesting that the
outcome of the algorithm is independent on the details of
the error measure. The important information is whether
|Ψ(±)〉 are different, not how this is measured. Similar
results have been obtained on different systems, like the
adiabatic version of the Grover search algorithm (data
not shown). Note that, from the fit of Fig. 2 while using
the Fisher information (ǫmax = F+

Q , assuming that the

Fisher information of the state |Ψ−〉 can be neglected, i.e.
that the latter is nearer to the ground state), we obtain
that the total error is equal to

1− F (T ) ≃
FQ

4∆t2
. (5)

We can compare Eq.( 5) with the standard perturba-
tive expression for the infidelity of a slightly perturbed
state [20]:

1− F (τ) =
FQτ

2

4
, (6)

obtaining the relation τ = 1/∆t: allowing a maximal
error ǫmax every time ∆t results in an overall perturbative
process with effective time τ . That is, if ∆t → ∞ the
process is exact.
We then apply the proposed algorithm to an adia-

batic quantum computation used to solve a paradigmatic
classically hard problem –k-SAT– showing how it allows
to find a solution with a scaling with the input size
that could be exponentially faster than the classical one.
Given n Boolean variables, the disjunction of k variables
(possibly negated) defines a clause: the conjunction of
m clauses is an instance of the k-SAT problem. The
search for an assignment for all variables such that all
clauses of the instance are satisfied at the same time de-
fines the satisfability problem. The complexity of this
problem heavily depends on the ratio of clauses and vari-
ables α = m/n and for classical algorithms, the critical
value for which the satisfability problem becomes hard is
around α = 4.3 [22]. To find the hard instances to test
our algorithm, we created sets of thousand instances of
3-SAT for different values of α. We then solved them
with the classical DPLL algorithm and chose the clas-
sically hardest clauses [23]. These clauses showed an
exponential increase in the number of iterations of the

FIG. 3: Mean total running time T̄ for 100 different instances
of 3-SAT as a function of the number of qubits n = 5, . . . , 20
and ǫmax = 3.4 · 10−6, ∆t = 0.1, δ = 0.5. The fits are a
linear (dashed green), quadratic (solid blue) and an exponen-
tial function (dashed red). The adjusted coefficient of de-
termination R2 are .98824, .9974 and .9627 for the linear,
quadratic and exponential respectively. Inset: Distance of
ten best (blue) (ten worst (green)) instances from T̄ and dis-
tribution standard deviation σ (red) for n = 4, . . . , 20.

DPLL-algorithm for α ∼ 4.4 already with moderate sys-
tem sizes that can be simulated in the quantum case [23].
The corresponding quantum problem is defined along the
lines of [2] and simulated via adiabatic quantum compu-
tation using the algorithm presented before. In Fig. 3 we
show the scaling of the total running time T as a function
of the number of qubits. Although the scaling is still not
conclusive, the best fit to the data is a sub-exponential
fit, namely a quadratic function which is in agreement
with the results in [2, 24]. The inset shows the differ-
ence between the ten best (ten worst) instances and the
mean total running time T̄ and the standard deviation
σ as a function of the number of qubits. Note that the
width of the distribution for the total running time ap-
pears to reach a constant value as a function of the num-
ber of qubits: thus, the scaling of the average running
time determines the complexity of the algorithm, giving
an indication that no pathological clauses exist.
Finally we investigate the possible combination of

the presented algorithm with the Quantum Zeno effect,
where a quantum system can be frozen in its state by
repeated measurements [19]. It is somehow natural to
combine it with our approach, by introducing a periodic
measurement of the energy of the system at regular time
intervals tZ. At each measurement there is a probabil-
ity to remain in the instantaneous ground state given by

Pi =
∣

∣〈Ψ|Φ0(t)〉
∣

∣

2
; the overall probability to end in the

final ground state is the product Pnz
=

∏nz

i Pi, where
nz = T/tZ is the number of Zeno measurements. As a
manifestation of the Quantum Zeno effect, both Pnz

and
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FIG. 4: Upper panel: Final infidelity 1 − F (T ) as a function
of the time between Zeno measurements tz/T (symbols) nor-
malized to the total time T and without Zeno measurements
nz = 0 (lines) for different total time T = 12.2, δt = 0.1 (green
data) and T = 99.2, δt = 0.1 (blue data) and δ = 0.8. Lower

panel: Final excitation probability 1 − Pnz
(Probability of

algorithm failure) as a function of tz/T for T = 12.2 (green
corsses) and T = 99.2 (blue circles).

the final fidelity should increase for larger nz [17]. More-
over, for faster, i.e. less adiabatic evolutions, the effect
should be more significant as the projective measurement
will ensure that the system remains in the ground state.
In Fig. 4 the infidelity 1−F (T ) and probability 1−Pnz

to leave the ground state are plotted against the normal-
ized time between Zeno measurement tz/T for two differ-
ent total evolution times T . The results clearly indicates
that the two total times chosen, almost one order of mag-
nitude apart, corresponds to a non-adiabatic and an adi-
abatic evolution. We normalize the Zeno time tz to fairly
compare such different time scales. The upper panel of
Fig. 4 shows that the final infidelity decreases for shorter
intervals tz/T , i.e. more measurements, as one would ex-
pect. However, when compared with the final infidelity

without Zeno measurements (full lines) a big improve-
ment can be seen in the region 0.01 . tz/T . 0.1 for the
non-adiabatic case (more than four orders of magnitude)
while in the other case about one order of magnitude can
be gained. In the lower panel of Fig. 4 we report the cor-
responding probability of the algorithm failure 1−Pnz

as
a function of tz/T . Here, the two different kinds of evo-
lutions studied are clearly visible: in the case of the adi-
abatic evolution, the probability of exciting the system
is greater in presence of the Zeno measurements, while
in the non-adiabatic case the Zeno measurements helps
the systems to remain int he ground state. Indeed, in the
latter case, for 0.01 ∼ tz/T there is an improvement of
the final fidelity of about four orders of magnitude with
a chance of failure of only a few percent: for very fast
evolutions exploiting Zeno effect is a successful strategy
to improve the algorithm convergence.

In conclusion, we introduced an algorithm to optimize
an adiabatic transition for an arbitrary time dependent
quantum system with total ignorance of the instanta-
neous eigenstates and the resulting gap of the system.
Numerical simulations showed an expected correlation
between the total running time and the final fidelity
which does not largely depend on the comparison method
used for the evaluation of the adiabaticity of the evolu-
tion of each step. We applied the algorithm to the 3-SAT
problem and reproduced the results obtained by [2], sug-
gesting an exponential speed-up of the adiabatic com-
putation with respect to the classical one. Finally, we
combined the algorithm with the quantum Zeno effect to
further improved the results for very fast (non-adiabatic)
transitions. As a final note, we mention that the algo-
rithm effectively measures the size of the instantaneous
gap, thus it can be used to investigate systems with a
closing gap, also in combination with numerical tech-
niques such as tensor network methods where the full
knowledge of the system spectrum is out the computa-
tional capability of actual classical computers.
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