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We introduce a protocol to drive many body quantum systems into long-lived entangled states,
protected from decoherence by big energy gaps. With this approach it is possible to implement
scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a
prototype many-body quantum system that describes different experimental setups.

PACS numbers:

Entanglement represents the manifestation of correla-
tions without a classical counterpart and it is regarded as
the necessary ingredient at the basis of the power of quan-
tum information processing. Indeed quantum informa-
tion applications as teleportation, quantum criptography
or quantum computers rely on entanglement as a crucial
resource [1]. Within the current state-of-art, promising
candidates for truly scalable quantum information pro-
cessors are considered architectures that interface hard-
ware components playing different roles like for exam-
ple solid-state systems as stationary qubits combined in
hybrid architectures with optical devices [3]. In this sce-
nario, the stationary qubits are a collection of engineered
qubits with desired properties, as decoupled as possible
from one another to prevent errors. However, this archi-
tecture is somehow unfavorable to the creation and the
conservation of entanglement. Indeed, it would be desir-
able to have a hardware where “naturally” entanglement
is present and that can be prepared in a highly entan-
gled state that persists without any external control: the
closest quantum entanglement analogue of a classical in-
formation memory support, i.e. an entanglement-storage

unit (ESU). Such hardware once prepared can be used
at later times (alone or with duplicates) – once the de-
sired kind of entanglement has been distilled – to perform
quantum information protocols [1].

The biggest challenge in the development of an ESU is
entanglement frailty: it is strongly affected by the detri-
mental presence of decoherence [1]. Furthermore the
search for a proper system to build an ESU is under-
mined by the increasing complexity of quantum systems
with a growing number of components, which makes en-
tanglement more frail, more difficult to characterize, to
create and to control [2]. Moreover, given a many body
quantum system, the search for a state with the desired
properties might be very difficult. Indeed, a direct and
comprehensive study of a many body quantum system
is an exponentially hard task in the system size. Nev-
ertheless, in many-body quantum systems entanglement
naturally arises: for example –when undergoing a quan-
tum phase transition – in proximity of a critical point the
amount of entanglement possessed by the ground state
scales with the size [2, 4]. Unfortunately, due to the clo-
sure of the energy gap at the critical point, the ground
state is an extremely frail state: even very little pertur-
bations might destroy it, inducing excitations towards

FIG. 1: (Color online) Entanglement Storage Units protocol:
a system is initially in a reference state |ψ(−T )〉, e.g. the
ground state, and is optimally driven via a control field Γ(t)
in an entangled eigenstate |ψ(0)〉, protected from decoherence
by an energy gap.

other states. Very recently, the entanglement properties
of the eigenstates of many-body Hamiltonians have been
investigated, and it has been shown that in some cases
they are characterized by entanglement growing with the
system size [5, 13].

In this letter we show that by means of recently devel-
oped optimal control technique [7] it is possible to iden-
tify and prepare a many body quantum system in robust,
long-lived entangled states (ESU states). More impor-
tantly, we drive the system towards ESU states without
the need of any apriori information on the system, either
about the eigenstates or about the energy spectrum. Fi-
nally, we show that properly prepared systems can be ef-
fectively used as ESU exploiting the fact that ESU states
are well protected by large energy gaps.

Recently, optimal control has been used to drive quan-
tum systems in entangled states or to improve the gen-
eration of entanglement [6]. However, here we have in
mind a different scenario: to exploit the control to steer
a system into a highly entangled state that is stable and
robust even after switching off the control (see Fig. 1). In
the following we show that ESU states are gap-protected
entangled eigenstates of the system Hamiltonian in the

absence of the control. Here we show that for an ex-
perimentally relevant model this is indeed possible, and
that it is possible to drive the system in gap-protected
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states. We show that the ESU states, although not being
characterized by the maximal entanglement sustainable
by the system, are characterized by entanglement that
grows with the system size. Once a good ESU state has
been detected, due to its robustness it can be stored,
characterized, and thus used for later quantum informa-
tion processing.
Protocol - As depicted in Fig. 1, we consider the gen-

eral scenario of a system represented by a Hamiltonian
Ho with an additional tunable term H1[Γ], where Γ(t)
is the driving field, starting in an initial state |ψ0〉, not
necessarily entangled, in which the system can be easily
prepared. The Hamiltonian is then H = H0 + H1[Γ],
where the control parameter is initially set at a constant
value (in particular it can vanish, Γ(0) = 0). The control
field is modulated Γ(t) for −T < t < 0 with the condi-
tion that at time t = 0 the control field is Γ(−T ) = Γ(0)
(absence of control). A CRAB optimization is then per-
formed –in the time interval [−T, 0]– with the goal of
minimizing the cost function F (see [7] for details of the
method):

F(λ)|ψ(T )〉 = −S + λ
∆E0

E0
, (1)

where S represents a measure of entanglement, ∆E0 =
√

〈ψ|H2
0 − 〈H0〉2|ψ〉 and E0 = 〈ψ|H0|ψ〉 correspond re-

spectively to the energy fluctuations and the energy com-
puted with respect to H [Γ0], λ is a Lagrange multi-
plier, and the cost function is evaluated on the optimized
evolved state |ψ(0)〉. As shown in the following, the in-
clusion in F of the constraint on the energy fluctuations
is the crucial ingredient to stabilize the result of the op-
timization and possibly to steer the system into an ESU
state.
Model - Here we provide an important example of this

approach, based on the the Lipkin-Meshkov-Glick (LMG)
model [8]; we prepare an ESU maximizing the Von Neu-
mann entropy of a bipartition of the system and we
model the action of the surrounding environment with
noise terms in the Hamiltonian. However, our protocol
is compatible with different entanglement measures and
different models, and with a straightforward generaliza-
tion it can adapted to a full description of open quantum
systems [15]. The LMG model represents a prototype of
the challenge we address: it describes different experi-
mental setups [3, 10], and the entanglement properties
of the eigenstates are in general not known. Indeed,
the entanglement properties of the eigenstates of one-
dimensional many-body quantum systems have been re-
lated with the corresponding conformal field theories [5];
however for the LMGmodel, to our knowledge, this study
has never been performed and a conformal theory is not
available [9]. Finally, the optimal control problem we ad-
dress is highly non-trivial as the control field is global and
space-independent with no single-site addressability [6].
The LMG Hamiltonian describes an ensemble of

spins with infinite-range interaction and is written as:
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FIG. 2: (Color online) LMG model: Ground state entan-
glement at the critical point of the (blue full line); central
eigenstate entanglement at Γ = 10 (full red circles); maxi-
mal eigenstate entanglement obtained with the optimization
for λ 6= 0 (empty red circles) and λ = 0 (green triangle).
The red (green) dashed line is numerical fit A · log

2
(N/2 + 1)

with A = 0.61 (A = 0.95). Inset: Static entanglement
S of the eigenstates at Γ = 10 for different system sizes
N = 16, 32, 64, 80. The eigenstates are ordered according to
their energy, i.e. n = 1 corresponds to the ground state.

HLMG = −
∑N
i<j Jijσ

x
i σ

x
j − Γ(t)

∑N
i σ

z
i , where N is

the total number of spins, σαi ’s (α = x, y, z ) are the
Pauli matrices on the ith site and Jij = J/N (infinite
range interaction). By introducing the total spin opera-

tor ~J =
∑

i ~σi, the Hamiltonian can be rewritten, apart
from an additive constant, as

H = −
1

N
J2
x − ΓJz, (2)

(from now on we set J = 1 and ~ = 1). The Hamil-
tonian hence commutes with J2 and does not couple
states having a different parity of the number of spins
pointing in the magnetic field direction: [H, J2] = 0
and [H,

∏

i σ
z
i ] = 0. The symmetries of the Hamilto-

nian imply that the dynamics is restricted to subspaces
of fixed total magnetization J ; a convenient basis for such
subspaces is represented by the Dicke states |J, Jz〉 with
−J < Jz < J [11]. In the thermodynamical limit the sys-
tem undergoes a 2nd order QPT from a quantum para-
magnet to a quantum ferromagnet at a critical value of
the transverse field |Γc| = 1. There is no restriction to
the initial value of Γ0 (in the implementation of Ref. [3]
it goes to infinity when the control lasers are switched
off) and to the initial state |ψ0〉: we choose Γ0 ≫ 1,
corresponding to the paramagnetic phase and as initial
state |ψ0〉, the ground state of H [Γ0], i.e. the separa-
ble state in which all the spins are polarized along the
positive z-axis. A convenient measure of the entangle-
ment in the LMG model is given by the von Neumann
entropy SL,N = −Tr(ρL,N log2 ρL,N) associated to the
reduced density matrix ρL,N of a block of L spins out of
the total number N , which gives a measure of the entan-
glement present between two bipartitions of a quantum
system [12]. In our analysis we consider two equal bipar-
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FIG. 3: (Color online) Entanglement entropy S(t) (left) and
survival probability P (t) (right) as a function of time for dif-
ferent λ values: λ = 0 (black) continuous, λ = 5 (red) dash-
dash-dotted, λ = 1.8 (green) dot-dashed, λ = 1.9 (orange)
dot-dot-dashed, λ = 1.2 (cyan) dashed line. Blue circles rep-
resent the entropy of the eigenstates for N = 64 and Γ0 = 10.
Inset: Optimal driving field Γ(t) for λ = 1.8 and N = 64
(time unit J−1).

titions, i.e. S ≡ SN/2,N . In the inset of Fig. 2 we report
the entanglement SN/2,N of the eigenstates deeply inside
the paramagnetic phase at Γ = 10, for systems of differ-
ent sizes. Clearly, also far from the critical point Γ = 1
many eigenstates possess a remarkable amount of entan-
glement that scales with the system size. The effect is
shown more clearly in Fig. 2, where the entanglement of
the central eigenstate (red full circles) at Γ0 = 10 is com-
pared with the entanglement of the ground state at the
critical point (blue continuous line, from Ref. [12]). Both
sets of data show a logarithmic scaling with the size, but
the entanglement of the central eigenstate is systemati-
cally higher and grows more rapidly.

Dynamics.— We prepare the system in the ground
state of the Hamiltonian H = H0 + H1(Γ0) so that in
the absence of control, i.e., Γ ≡ Γ0 independent from
the time, the state does not evolve apart from a phase
factor. After the action of the CRAB-optimized driving
field Γ(t) for a time T the state is prepared in |ψ(0)〉 (a
typical optimal pulse is shown in the inset of Fig. 3), we
observe the evolution of the state over times t > 0. The
behavior of the entanglement is shown in the left panel
of Fig. 3 for different values of the weighing factor λ and
N = 64; the control is active for negative times, i.e., in
the interval [−T, 0]. For λ = 0 highly entangled states
are produced, however the entanglement S(t) oscillates
indefinitely with the time, reflecting the fact that the
system state is changing over time. On the contrary, if
the energy fluctuations are included in the cost function
(λ 6= 0), the optimal driving field steers the system into
entangled eigenstates, as confirmed by the absence of the
oscillations in the entanglement and by the entanglement
eigenstate reference values (empty blue circles). These
results are confirmed by the survival probability in the
initial state P (t) = |〈ψ(0)|ψ(t)〉|2 reported in the right
panel of Fig. 3: the state prepared with λ = 0 decays
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FIG. 4: (Color online) Lower panel: Survival probability P (t)
as a function of time in the presence for three realizations of
the noise with Iα = Iβ = 0.01 at frequency νR, system size
N = 64, and λ = 1.8 (full symbols) or λ = 0 (empty symbols).
Upper left panel: Blow up of the region around t = 0. Upper
right panel: Survival probability P (t) as a function of time,
averaged over 30 noise instances for Iα = Iβ = 0.2, N = 64,
r = 1.8, and different noise frequencies. The worst case is for
νR = 0.78J .

over very fast timescales τ0, while for λ 6= 0 it remains
close to the unity for very long times τλ >> τ0. The
small residual oscillations for N = 64 and λ = 1.2 are
due to the fact that in this case the optimization leads to
a state corresponding to an eigenstate up to 98%. We re-
peated the optimal preparation for different system sizes
and initial states, and show the entanglement of the opti-
mized states for λ = 0 (empty green triangles) and λ 6= 0
( ∆E0/E0 < 0.05, P > 95% empty red circles) for dif-
ferent system sizes in Fig. 2. In all cases a logarithmic
scaling with the size is achieved.
Noise.— A reliable ESU should be robust against ex-

ternal noise and decoherence even when the control is
switched off, in such a way that it could be used for sub-
sequent quantum operations. In order to test the robust-
ness of the optimized states, we model the effect of deco-
herence by adding a random telegraph noise and we mon-
itor the time evolution in such noisy environment [1]. In
particular we study the evolution induced by the Hamil-
tonian

H = −
1

N
[1 + Iαα(t)]J

2
x − Γ0[1 + Iββ(t)]Jz (3)

where α(t), β(t) are random functions of the time with
a flat distribution in [−Ij , Ij ] (j = α, β), changing ran-
dom value every typical time 1/ν. The case Iα = Iβ = 0
corresponds to a noiseless evolution. The first important
observation is that the frequency ν of the signal fluctua-
tions is crucial in determining its effects [14]. Indeed in
the right upper panel of Fig. 4, the survival probability
P (t) is plotted as a function of the time in the presence
of a strong noise, Iα = Iβ = 0.2, for a system of N = 64
spins and for a given initial optimal state obtained with
λ = 1.8 (corresponding to the third eigenstate in Fig. 3).
When ν is either too low (empty circles) or too high
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FIG. 5: (Color online) Time T0.8 required to reduce the sur-
vival probability P below 0.8 for different prepared states
|ψ(0)〉 with λ = 0 (red squares) and λ 6= 0 (black triangles) as
a function of the system size N . The dashed lines are fits of
the four rightmost points (biggest system sizes) resulting in
N−0.97 and N−0.03 respectively. Inset: Time T0.8 as a func-
tion of the intensity I = Iα = Iβ of the disorder for different
system sizes N .

(full diamonds) the effect of the noise is reduced; how-
ever around a resonant frequency νR (dashed line with
crosses) its effect is enhanced and the state is quickly de-
stroyed. We checked that the resonant frequency is the
same for different eigenvalues, different sizes, and dif-
ferent noise strengths (data not shown), reflecting the
fact that in the paramagnetic phase (Γ0 ≫ 1) the gap
separating the eigenstates is proportional to Γ0 indepen-
dently of the size of the system and of the state itself, see
Eq. (2). Therefore we analyze this worst case scenario,
setting ν = νR from now on. The results of this anal-
ysis, show that ESU states – differently from the states
produced optimizing only entanglement – are extremely
robust to noise at the resonant frequency. This is shown
in Fig. 4 where we compare the survival probability P (t)
for three instances of the disorder at the resonant fre-
quency with an intensity of the disorder Iα = Iβ = 0.01.
The noise-induce dynamics of the states obtained opti-
mizing only with respect to the entanglement (i.e. setting
λ = 0) drastically depends on the (in general unknown)
details of the noise affecting the system, as shown by
the different evolutions induced by different instances of
the noise. Thus, such states cannot be used as ESU,
unlike those prepared with λ 6= 0 that are stable, noise-
independent long-living entanglement states. Finally, in
Fig. 5 we study the decay times of the survival probability
P (t) studying the time T0.8 needed to drop below a given

threshold Pmin = 0.8 as a function of the system size N
and of the intensity of the disorder I = Iα = Iβ (inset).
These results clearly show that T0.8 for ESU states is al-
most independent from the system size, reflecting the fact
that the energy gaps in this region of the spectrum are
mostly size independent. Notice that, on the contrary,
T0.8 for maximally entangled states decays linearly with
the system size and that there are more than four orders
of magnitude of difference in the decay times τλ and τ0.
Finally, the inset of Fig. 5 shows that the scaling of T0.8
with the noise strength for ESU states is approximately
linear and again depends very weakly on the system size
N .

Conclusions.— Exploiting optimal control we pro-
posed a method to steer a system into apriori unknown
eigenstates satisfying desired properties. We demon-
strated, on a particular system, that this protocol can
be effectively used to build long-lived entangled states
with many-body systems, indicating a possible imple-
mentations of an Entanglement Storage Unit scalable
with the system size. The presented method is com-
patible with different measures of entanglement and it
can be extended to any other property one is interested
in, as for example the squeezing of the target state. It
can be applied to different systems with apriori unknown
properties: optimal control will select the states (if any)
satisfying the desired property and robust to system per-
turbations. We underscore that an adiabatic strategy is
absolutely ineffective for this purpose, as transitions be-
tween different eigenstates are forbidden. Applying this
protocol to the full open-dynamics description of the sys-
tem, e.g. via a CRAB optimization of the Lindblad dy-
namics as done in [16], will result in an optimal search of
a Decoherence Free Subspace (DFS) with desired prop-
erties [17]. If no DFS exists, the optimization would lead
the system in an eigenstate of the superoperator with
longest lifetime and desired properties [15]. Although
the state so prepared may be unstable over long times,
it represents the best and most robust state attainable,
and additional (weak) control might be used to preserve
its stability. Finally, working with excited states would
reduce finite temperature effects, relaxing low temper-
atures working-point conditions, simplifying the experi-
mental requirements to build a reliable ESU.
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support from the EU projects AQUTE, PICC, the
SFB/TRR21 and the BWgrid for computational re-
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[1] M. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
2000).

[2] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev.
Mod. Phys. 80, 517 (2008). A. Osterloh, L. Amico, G.

Falci, and R. Fazio, Nature 416, 608 (2002).
[3] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,

Nature 464, 1301 (2010). K. Baumann, R. Mottl, F.
Brennecke, and T. Esslinger (2011), arXiv:1105.0426.

[4] G. Vidal, J. Latorre, E. Rico, and A. Kitaev, Phys. Rev.

http://arxiv.org/abs/1105.0426


5

Lett. 90, 227902 (2003).
[5] V. Alba, M. Fagotti, and P. Calabrese, J. Stat. Mech. p.

P10020 (2009).
[6] F. Platzer, F. Mintert, and A. Buchleitner, Phys. Rev.

Lett. 105, 020501 (2010). X. Wang, A. Bayat, S. G.
Schirmer, and S. Bose, Phys. Rev. A 81, 032312 (2010).

[7] P. Doria, T. Calarco, and S. Montangero, Phys. Rev.
Lett. 106, 190501 (2011); T. Caneva, T. Calarco, and S.
Montangero (2011), arXiv:1103.0855.

[8] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys.
62, 188 (1965).

[9] J. I. Latorre and A. Riera, J. Phys. A: Math. Theor. 42,
504002 (2009).

[10] R. Bucker, J. Grond, S. Manz, T. Berrada, T. Betz,
C. Koller, U. Hohenester, T. Schumm, A. Perrin, and
J. Schmiedmayer, Nat. Phys. (2011).

[11] T. Caneva, R. Fazio, and G. E. Santoro, Phys. Rev. B
78, 104426 (2008).

[12] J. I. Latorre, R. Orus, E. Rico, and J. Vidal, Phys. Rev.
A 71, 064101 (2005).

[13] F. C. Alcaraz, M. Berganza, and G. Sierra, Phys. Rev.
Lett. 106, 201601 (2011).

[14] P.Facchi, S.Montangero, R.Fazio, and S.Pascazio Phys.
Rev. A 71, 060306 (2005).

[15] T.Caneva, T.Calarco, S.Montangero, in preparation.
[16] F. Caruso, S. Montangero, T. Calarco, S. F. Huelga, and

M. B. Plenio (2011), arXiv:1103.0929.
[17] G. M. Palma, K. A. Suominen, and A. K. Ekert, Proc.

Roy. Soc. Lond. A 452, 567 (1996); L.-M Duan and G.-C.
Guo, Phys. Rev. Lett. 79, 1953 (1997); P. Zanardi and
M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).

http://arxiv.org/abs/1103.0855
http://arxiv.org/abs/1103.0929

