Theoretical Quantum Optics

Sheet 3

Date of issue: 02-05-2015

Exercise 6 Population and coherence in terms of the density matrix

We consider the density matrix $\hat{\rho}$ and an orthogonal basis $|u_n\rangle$ (n = 1, 2, ...) of the state space.

a) By using the Cauchy-Schwarz inequality, prove the relation

$$\rho_{nn}\rho_{mm} \geq |\rho_{nm}|^2 \tag{1}$$

for $\rho_{nm} \equiv \langle u_n | \hat{\rho} | u_m \rangle$. Inequality (1) reveals that for a density matrix $\hat{\rho}$, the coherence $(\rho_{nm} \neq 0 \text{ for } n \neq m)$ can only occur between the states $|u_n\rangle$ and $|u_m\rangle$ whose populations $(\rho_{nn} \text{ and } \rho_{mm})$ are non-zero.

(1 point)

b) Moreover, prove that Inequality (1) results in the criteria

 $\mathrm{Tr}\rho^2 \leq 1$

for the system to be in a pure $(\text{Tr}\rho^2 = 1)$ or in a mixed $(\text{Tr}\rho^2 < 1)$ state.

(1 point)

Exercise 7 Density matrix for a continuous basis

A bipartite system, consisting of the two subsystems A and B, is prepared in a pure state and characterized by the wave function $\psi(\alpha, \beta)$, where α and β are continuous variables of the subsystems A and B, accordingly. We introduce the reduced density matrix

$$ho_A(lpha, lpha') \;\; = \;\; \int \mathrm{d}\beta \, \psi^*(lpha, eta) \psi(lpha', eta)$$

to describe only the subsystem A.

a) Find the condition for the function $\psi(\alpha, \beta)$, such that

- $\operatorname{Tr}(\rho_A) = 1$ is fulfilled.

- the reduced density matrix $\rho_A(\alpha, \alpha')$ describes a pure state.

SS 2015 Discussion: 15-05-2015 b) We define the mean value $\langle \hat{f}_A \rangle$ of the operator \hat{f}_A , which only acts on the variable α of the subsystem A, as

$$\left\langle \hat{f}_A \right\rangle \equiv \int \mathrm{d}\alpha \int \mathrm{d}\beta \,\psi^*(\alpha,\beta) \hat{f}_A \psi(\alpha,\beta) \;.$$

Represent $\left\langle \hat{f}_A \right\rangle$ in terms of $\rho_A(\alpha, \alpha')$.

(1 point)

c) Write down the dynamical equation for $\rho_A(\alpha, \alpha', t)$.

(2 points)

Exercise 8 The Bloch and pseudofield vectors

a) From the Bloch equations without relaxation, prove that for a constant pseudofield vector $\vec{\Omega}$ the angle between the Bloch vector and $\vec{\Omega}$ remains constant. Discuss (suggest) the geometric interpretation of this result.

(1 point)

b) Let the pseudofield vector $\vec{\Omega}(t)$ be a slowly varying function of time t compared to the inverse Rabi frequency $\Omega_R^{-1}(t)$. Prove that if initially the Bloch vector is parallel to $\vec{\Omega}(t)$, it remains like that (approximately).

(2 points)