Theoretical Quantum Optics

Sheet 4

Date of issue: 09-05-2017

SS 2017 Discussion: 19-05-2017

Exercise 5 Atom-light dressed states

Within the rotating wave approximation, the dynamics of a two-level atom, consisting of the ground $|g\rangle$ and exited $|e\rangle$ states and interacting with an external and near-resonant electromagnetic field, is described by the Hamiltonian

$$\hat{H}_{RWA} = \frac{\hbar}{2} \begin{pmatrix} \Delta & -\Omega_0 \\ -\Omega_0 & -\Delta \end{pmatrix} .$$

a) Find the eigenvalues E_{\pm} and the corresponding normalised eigenvectors $|\pm\rangle$ of the Hamiltonian \hat{H}_{RWA} . Proof the orthogonality of $|+\rangle$ and $|-\rangle$ states.

(2 points)

b) Sketch and discuss the behaviour of the energies $E_{\pm}(\Omega_0)$ as a function of Ω_0 for the cases of $\Delta = 0$ and of $\Delta \neq 0$.

(1 point)

c) By introducing $\cos \theta = \frac{\Delta}{\Omega_R}$ and $\sin \theta = \frac{\Omega_0}{\Omega_R}$ and presenting the Hamiltonian \hat{H}_{RWA} in the form

$$\hat{H}_{RWA} = \frac{\hbar\Omega_R}{2} \begin{pmatrix} \cos\theta & -\sin\theta\\ -\sin\theta & -\cos\theta \end{pmatrix},$$

with $\Omega_R = \sqrt{\Omega_0^2 + \Delta^2}$ being the Rabi frequency, find the real matrix $\hat{\mathcal{U}}(\theta)$ with $\det(\hat{\mathcal{U}}) = 1$, that transforms \hat{H}_{RWA} into the diagonal form

$$\hat{H'}_{RWA} = \hat{\mathcal{U}}^{-1}(\theta)\hat{H}_{RWA}\hat{\mathcal{U}}(\theta) = \frac{\hbar\Omega_R}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

(2 points)

Exercise 6 The Bloch-Siegert shift

The Hamiltonian describing the system of an atom and a near-resonant light field has been introduced in the lecture and reads

$$\hat{H} = \frac{\hbar}{2} \begin{pmatrix} \Delta & -\Omega_0 \\ -\Omega_0 & -\Delta \end{pmatrix} - \frac{\hbar\Omega_0}{2} \left(e^{2i\omega_L t} \sigma_+ + e^{-2i\omega_L t} \sigma_- \right) \equiv \hat{H}_{RWA} + \hat{V}(t) ,$$

where $\sigma_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\sigma_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

a) By using the transformation matrix $\hat{\mathcal{U}}(\theta)$ defined in the Exercise 5, represent \hat{H} in the basis of the dressed states $|\pm(\theta)\rangle$

$$\hat{H}' = \frac{\hbar\Omega_R}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} - \frac{\hbar\Omega_0}{2} \left[e^{2i\omega_L t} \hat{\Sigma}_+(\theta) + e^{-2i\omega_L t} \hat{\Sigma}_-(\theta) \right] \equiv \hat{H}'_{RWA} + \hat{V}'(t) ,$$

where $\hat{\Sigma}_{\pm}(\theta) = \hat{\mathcal{U}}^{-1}(\theta) \sigma_{\pm} \hat{\mathcal{U}}(\theta).$ (2 points)

b) Proof that the solution

$$\begin{pmatrix} c_+(t) \\ c_-(t) \end{pmatrix} = e^{-\frac{i}{\hbar}\hat{H'}_{RWA}t} \hat{U}(t) \begin{pmatrix} c_+(0) \\ c_-(0) \end{pmatrix}$$

of the Schrödinger equation

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} c_+(t) \\ c_-(t) \end{pmatrix} = \hat{H}'(t) \begin{pmatrix} c_+(t) \\ c_-(t) \end{pmatrix}$$

is given by the time-evolution operator $\hat{U}(t),$ presented in the form of the Magnus-Dyson expansion

$$\hat{U}(t) = \mathbb{1} - \frac{i}{\hbar} \int_0^t \hat{H}'_I(t') \, \mathrm{d}t' + \frac{(-i)^2}{\hbar^2} \int_0^t \mathrm{d}t' \int_0^{t'} \mathrm{d}t'' \, \hat{H}'_I(t') \hat{H}'_I(t'') + \dots , \quad (1)$$

where

$$\hat{H}'_{I}(t) = e^{\frac{i}{\hbar}\hat{H}'_{RWA}t} \hat{V}'(t) e^{-\frac{i}{\hbar}\hat{H}'_{RWA}t}.$$

(3 points)

c) Within the first-order approximation with respect to $\hat{H}'_{I}(t)$, find the probability of transition between the dressed states $|\pm\rangle$.

(2 points)

Hint: Find the coefficients $\langle \pm | \hat{U}(t) | + \rangle$ of the expansion

$$c_{\pm}(t) = e^{-\frac{i}{\hbar}E_{\pm}t} \left(\langle \pm | \hat{U}(t) | + \rangle c_{+}(0) + \langle \pm | \hat{U}(t) | - \rangle c_{-}(0) \right) ,$$

by taking into account only the second term in Eq. (1) for $\hat{U}(t)$.

d) Consider the third term of the Magnus-Dyson expansion for $\hat{U}(t)$, see Eq. (1), and proof that this term has a contribution, which is a linear function of time t, that is

$$\langle \pm | \hat{U}(t) | \pm \rangle \Rightarrow \frac{i}{\hbar} \delta E_{\pm} t$$

with

$$\delta E_{\pm} = \frac{\hbar^2 \Omega_0^2}{4} \sum_{\nu=\pm} \left(\frac{\langle \pm | \hat{\Sigma}_+ | \nu \rangle \langle \nu | \hat{\Sigma}_- | \pm \rangle}{E_{\nu} - E_{\pm} - 2\hbar\omega_L} + \frac{\langle \pm | \hat{\Sigma}_- | \nu \rangle \langle \nu | \hat{\Sigma}_+ | \pm \rangle}{E_{\nu} - E_{\pm} + 2\hbar\omega_L} \right)$$

being the Bloch-Siegert shift and $E_{\pm} = \pm \frac{\hbar \Omega_R}{2}$. In particular, consider the case of $\Omega_R \ll \omega_L$ and $\Omega_0 \ll \omega_L$.

(5 points)