Introduction to Asymptotic Methods

Maxim Efremov

Institut für Quantenphysik, Universität Ulm

Summer Semester 2019

Sheet 2

Exercise 4

For $x \to +\infty$, find the first two terms in the asymptotic expansion of the function f(x), defined as

$$f(x) = \int_{0}^{x} \sqrt{1+t^2} dt,$$

and compare the result obtained with the exact analytical formula.

(2 Points)

Exercise 5

For $x \to +\infty$, the function $f(x) \sim x^{\nu}$ with $\text{Re}(\nu) = -1$ and $\text{Im}(\nu) \neq 0$. By considering an example of such a function, $f(x) = x^{\nu} + 1/(x \log^{\mu}(x))$ with $\mu > 0$, find the condition on the parameter μ , under which the following estimation of the integral

$$\int_{a}^{x} f(t)dt = \mathcal{O}(1)$$

for $x \to +\infty$ and any finite a > 0 is correct.

(2 Points)

Exercise 6

Find the solution $w \equiv w(z, \alpha_1, \beta_1, \alpha_2, \beta_2)$ of the transcendental equation

$$z^{\alpha_1 w + \beta_1} = \alpha_2 w + \beta_2$$

in terms of the Lambert function. Here z > 0, $\alpha_{1,2}$ and $\beta_{1,2}$ are the constants. (1 Point)

Exercise 7

Calculate the integrals

$$\int W_0(x)dx$$
 and $\int x^{-1}W_0(x)dx$,

with $W_0(x)$ being the Lambert function, that is $W_0(x) \ge -1$ and $W_0(0) = 0$. (2 Points)

Date: 30.04.2019 **Discussion:** 07.05.2019