Introduction to Asymptotic Methods

Maxim Efremov

Institut für Quantenphysik, Universität Ulm

Summer Semester 2019

Sheet 8

Exercise 24

Find the leading term of the asymptotic expansion for the modified Bessel function $I_n(x)$ as $x \to +\infty$, defined by the integral

$$I_n(x) = \frac{1}{\pi} \int_0^{\pi} e^{x \cos \varphi} \cos(n\varphi) d\varphi.$$
 (2 Points)

Exercise 25

Proof the following asymptotic behavior for the integral

$$\int_0^{\pi} x^n \sin(x) dx \sim \frac{\pi^{n+2}}{n^2} \quad \text{as } n \to \infty.$$
(1 Point)

Exercise 26

Find the first three terms of the asymptotic expansion for the integral

$$\int_{-\infty}^{\infty} d\eta \ e^{-x\eta^2} \ln(1 + \eta + \eta^2)$$

as $x \to \infty$.

(2 Points)

Exercise 27

Find the asymptotic behavior for the integral

$$\int_0^1 \exp\left(-\frac{1}{x} - \lambda x\right) dx$$

for large and positive λ .

(2 Points)

Date: 03.07.2019 **Discussion:** 09.07.2019