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1 Was ist Physik?

e Physikalische Groie X = Zahl - [X]
N
Einheit
e Sl-Basiseinheiten (Mechanik) Zeit [t] =1s
Lange [z] =1m
Masse m] = 1kg
2 Mechanik
2.1 Kinematik in 1D
bekannt gesucht Operation
o : . . dx
Geschwindigkeit | differenzieren  v(t) = @(t) = 5
Bahn x(t) t
d*z
Beschleunigung differenzieren  a(t) = i(t) = o)
t
Bahn integrieren z(t) = /v(t’) dt’ + x¢
Geschwindigkeit v(t) 0
Beschleunigung differenzieren  a(t) = 0(t)
t
Geschwindigkeit | integrieren v(t) = / a(t') dt’ + v
Beschleunigung a(t) 0
t
Bahn integrieren z(t) = /v(t’) dt’ + x¢
0

xo : Anfangsort

v :  Anfangsgeschwindigkeit

— vollstandige Information iiber 1D-Bahn:

Beispiel:

Bahn bei ¢ = const.

a(t), xg, vo !

z(t) = at’* + vt + 1z




2.2 Kinematik in 2D

e Ortsvektoren (angeheftet an Koordinatenursprung!)

e Momentangeschwindigkeit (Tangente an Bahn) v (t)

Bahngeschwindigkeit

e Beschleunigung

e Beispiel 1:

e Beispiel 2:

Allgemeiner Wurf unter Abwurfwinkel ¢ mit Erdbeschleunigung

g=9811%

Anfangsgeschwindigkeit

Anfangsort

Damit folgt fiir die Bahn

2
_%

z.B. Wurfweite TA =
g

o
(o)
70 - (

- sin(2¢)

ool )

0

Vg COS - T
vy sing -t — %gt2

Gleichformige Kreisbewegung mit Umlaufzeit 7' und Radius R

Bahn

Winkelgeschwindigkeit

Bahngeschwindigkeit

Zentripetalbeschleunigung

:R.<

i t
W = — = const.
T

cos(w ti )

sin(wt

(gleichformig!)

v = |U] =w- R = const.

02
>.R= 7 (Betrag)

a=|d =w



2.3 Dynamik
e 2. Newtonsches Axiom: mi(t) = Zﬁz

— Lineare Superposition aller am Massenpunkt m angreifenden Kréfte F},
[F]=1N=1%»

— Mit Anfangsort #(0) und Anfangsgeschwindigkeit #(0) folgt damit die gesamte
Bahn Z(t) (,,Programm der Mechanik*)

e Reibungskrifte (Betrige)
— proportional zur Normalkraft F},
— Maximale Haftreibungskraft Fry = pru - Fu
— Gleitreibungskraft Frg = pra - Fu Ura < URH

e Gravitationskraft (Betrag) zwischen Massen m; und my im Abstand r

miyma
) 2

Fe=dd

r

wirkt anziehend entlang Verbindung der Massenpunkte mit Gravitationskonstante

Nm?
G =667 107" —
) kg2

e Federkraft (Hooke’sches Gesetz) F(x) = ka

x:  Dehnung/Stauchung der Feder
k: Federkonstante

2.4 Arbeit und Energie

e Arbeit ciner Kraft F(Z) auf dem Weg von & nach &,

T2
W= / F(1)dz, W] = 152° — 1 J(Joule)
$;2
Variante in 1D W = /F(m) dz (Fliche unter Kurve F(z))

1
e Satz von der kinetischen Energie:

Arbeit <+ Bewegungsenergie fiir einen Massenpunkt m

1 1



e Energieerhaltungssatz: Bei konservativen Kréften F wird
W = Epot,l - Epot,?

E,o,i: potentielle Energie des Punktes &;

Damit folgt der Energieerhaltungssatz

1 I
§mvl2 + Epot1 = §mv22 + Epot,2 = Fges = const.
e Beispiele zur potentiellen Energie:

— Schwerefeld Eoot(2) = mgz z:  vertikale Koordinate
— Feder Epot(x) = ka? x:  Dehnung/Stauchung der Feder

— Potentielle Energie im Gravitationsfeld der Masse M

mM

”
Achtung: Referenzpunkt ist hier r = oo

Eooi(r) = -G r:  Abstand von Masse M

2.5 Impuls und Impulserhaltungssatz

e Impuls einer Masse m mit Geschwindigkeit o/
p=muv

e Wenn nur innere Kréfte (actio = reactio) zwischen den Massen m; wirken, gilt der Im-
pulserhaltungssatz
— — —>
Zpi = Zmivi = const.
i i
e Anwendung: Zentraler elastischer Stof zwischen den Massen m; und ms

(m1 — mg)Ul -+ 2m2112

vy =
m1+m2

(m2 — ml)Ug -+ 2TTL1U1

vl =
mi + Mo

v;:  Anfangsgeschwindigkeit von Masse m; mit Vorzeichen

/

v;:  Endgeschwindigkeit von Masse m,; mit Vorzeichen



2.6 Starrer Korper — Drehbewegungen

e Translation des Schwerpunkts Zg

— 1 —
g = Z m;T;
mges 7
i Positionen der Massenpunkte m;

Mges = D My;: Gesamtmasse
(2

Dann lautet die Bewegungsgleichung der Translation

Mges fS = Z F;
i
F}: dufere Krafte

e Kinematische Grundgréfien der Rotation (um eine feste Drehachse)
»,Bahn“ der Rotation = Winkel um Drehachse ¢(t)
—  Winkelgeschwindigkeit w(t) = o(t)
— Winkelbeschleunigung at) = ¢(t)

e Drehmoment (skalare Formulierung)

M =rFsin®

F: angreifende Kraft unter Winkel © im
Abstand r zur Drehachse (,,Ursache®
der Rotation)

Drehachse

e Bewegungsgleichung der Rotation

Ir=3% mr?: Tragheitsmoment der Massen m; im Abstand r; zur Drehachse
M;: angreifende Drehmomente

e Satz von Steiner zu Tragheitsmomenten
I =15+ mge-d

Ig: Tréagheitsmoment um Schwerpunktsachse S
I:  Tréagheitsmoment um Achse parallel zu S im Abstand d

e Drehimpuls um eine Achse mit zugehorigem Trégheitsmoment [

L=1¢p=1Iw



Damit wird die Bewegungsgleichung der Rotation
Wenn keine dufleren Drehmomente am starren Kérper angreifen, gilt Drehimpulserhal-
tung

L = Iw = const.

e Kinetische Energie der Rotation (,,Rotationsenergie“) um eine Achse
1
Eror = *IWQ
2

Anwendung: Rollen eines Rades (auch Zylinder oder Kugel) mit Radius R und der
Masse mges im Schwerefeld

1 1
Eges - §mges Ug' + 5 SCLJQ + Mges gh = const.
Schwerpunktsgeschwindigkeit vs =wR (Rollbedingung)

e Gegentiberstellung von Translation und Rotation

Translation (1D) Rotation
Masse m Tragheitsmoment 1
Geschwindigkeit v Winkelgeschwindigkeit w
Kraft F Drehmoment M
Impuls p=mu Drehimpuls L=1Iw
Bewegungsgleichung p=F Bewegungsgleichung L=M
Kinetische Energie Eyin = 3mv? Rotationsenergie Eror = 3102

2.7 Schwingungen

e Freie, ungedampfte Schwingungen: harmonischer Oszillator

— Wichtig: linear riickstellende Kraft (z.B. Feder)

F=—kx



— Bewegungsgleichung (2. Newton’sches Axiom) fiir Masse m
i +wiz=0
ergibt Schwingung (Bahn der Masse m)

x(t) = A - cos(wpt)

mit Amplitude A und Eigenfrequenz (Kreisfrequenz!)

|k
Wy = —
m

— Periodendauer der Schwingung 7' = 27 /wy

— zugehorige Frequenz
1 Wo

e Mathematisches Pendel (Massenpunkt) der Lénge [
b+uwye =0
— Eigenfrequenz wy = /g/l

e Physikalisches Pendel (starrer Korper, Masse m) mit Tragheitsmoment I um Dreh-
achse im Abstand d vom Schwerpunkt

B+ wyp =0
Eivent \/mgd \/ mgd
— Eigenfrequenz wy = =
& 4 0 ]D IS + md?

e Freie, gedampfte Schwingung
— Wichtig: lineare, riickstellende Kraft ' = —kx und Reibungskraft Fr ~ &

— Bewegungsgleichung fiir Masse m

i+ 2Ki +wiz =0

— Exponentiell abklingende Schwingung

x(t) = Ae " cos(wt)
mit Dampfungskonstante x und Kreisfrequenz w = (/w2 — k2 < wy

e Angetriebener Oszillator — Resonanz

— AuBere antreibende Kraft ' ~ cos(Qt)



— Bewegungsgleichung fiir Masse m

& + 2k® + wix = const.-cos(Qt)

wird gelost von

x(t) = A(Q) cos [Qt — ()]

— Amplitude
const.

\/(92 — w%)Q + 4K20)2

mit Resonanzfrequenz (Maximum)

Qs =/ wi — 22

— Phasenverschiebung (Oszillator ,hinkt hinterher*)
2KS2

() = arctan D

_K/(D0=O.1

W

N

Skalierte Amplitude A
[\ w

—_
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Skalierte Kreisfrequenz

(a) Amplitude A(Q) zeigt Resonanz

(%)
=l
*

T2

/4

Phasenverschiebung

a |
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Skalierte Kreisfrequenz ==

wo

(b) Phasenverschiebung t(€2)



2.8 Mechanik fluider Medien (inkompressibel)

e Grundgroflen

— Druck
_

="
ausgeiibt von der senkrechten Komponente F', einer Kraft F auf eine Fliche A mit
den Einheiten

N
[p] = 1@ = 1Pa(Pascal) = 107° bar

— Dichte

_m
P=y
eines Korpers mit der Masse m und dem Volumen V' mit der Einheit
kg
[p] =1 ]
e Hydrostatischer Druck
p=po+ pgh

in der Tiefe h bei aulerem Druck pg

Kontinuitiatsgleichung (Erhaltungsgesetz)
Av = const.

bei laminarer, stationdrer Stromung mit Geschwindigkeit v durch Querschnittsfliche A

Bernoulli-Gleichung

1
p+ 5,01}2 + pgy = const.

bei Geschwindigkeit v und statischem Druck p in der Héhe y

Oberflachenspannung

o= ——-

AA

bei VergrofSerung A A einer Oberfliche und dazu notwendiger Arbeit AW .
Einfache Messmethode tiber eine Kraft ' zum Heben der Fluidlamelle mit Lange [ ergibt

F
o= —
21
Anwendung: Kapillare Steighche
20
pgr

in einem Rohr mit Radius r (totale Benetzung)



3 Thermodynamik (Warmelehre)

3.1 Thermodynamische Systeme
e Teilchenzahl N ~ 10?3

e Stoffmenge

mit Avogadro-Konstante

1
Nj = 6,022 - 10—
mol

e Makroskopische Zustandsgrofen:
— Druck p
— Volumen V'

— Temperatur 7 (in Kelvin)

3.2 Temperatur

e Empirische Celsius-Temperatur f¢ in °C und Temperatur 7" in Kelvin
Oc
T = C +273,15 | K

3.3 Thermische Zustandsgleichungen

e Ideales Gas
pV =nRT = NkgT

mit allg. Gaskonstante R = Ny kg = 8,314 m(;]lK

und Boltzmann-Konstante kg = 1,38 - 10—23%

e Kinetische Theorie des idealen Gases: Grundgleichung

p= N 1m W*)  mit () = / dvv? fo (v) = Skpl
0

V3
und der Maxwell-Verteilung

3/2 va
e (i) oo
fM (U) i 27TkBT exp 2]{/’BT

m : Masse eines idealen Gasteilchens
N : Anzahl der Gasteilchen

m

10



e Mittlere thermische Energie eines Gasteilchens
1
(e =f 2 kgT

f : Anzahl Freiheitsgrade
kp : Boltzmann-Konstante mit kg = 1,38 - 1072%

Damit folgt die innere Energie eines idealen Gases, die sog. kalorische Zustands-
gleichung
f

U:N(e>:§nRT

3.4 Erster Hauptsatz der Thermodynamik

e Differentielle Form

dU = 6Q + 6W

dU : differentielle Anderung der Zustandsgréfe innere Energie
5Q : differentielle Anderung der Prozessgrofie Wirme
W : differentielle Anderung der Prozessgrofie Arbeit
z.B. Volumenarbeit 6\WW = —pdV
e Molare, spezifische Warmen C, idealer Gase mit f Freiheitsgraden

— isochorer Prozess: dV =0

5Q]V:n-0mv-dT mit CmvzgR
— isobarer Prozess: dp =0

0Q|, =n-Chy - dT mit C’mp:§R—I—R

11



