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1 Was ist Physik?
• Physikalische Größe X = Zahl · [X]

↖
Einheit

• SI-Basiseinheiten (Mechanik) Zeit [t] = 1 s
Länge [x] = 1m
Masse [m] = 1 kg

2 Mechanik
2.1 Kinematik in 1D

bekannt gesucht Operation

Bahn x(t)
Geschwindigkeit differenzieren v(t) = ẋ(t) = dx

dt

Beschleunigung differenzieren a(t) = ẍ(t) = d2x

dt2

Geschwindigkeit v(t)
Bahn integrieren x(t) =

t∫
0

v(t′) dt′ + x0

Beschleunigung differenzieren a(t) = v̇(t)

Beschleunigung a(t)
Geschwindigkeit integrieren v(t) =

t∫
0

a(t′) dt′ + v0

Bahn integrieren x(t) =
t∫

0

v(t′) dt′ + x0

x0 : Anfangsort
v0 : Anfangsgeschwindigkeit

→ vollständige Information über 1D-Bahn: a(t), x0, v0 !

Beispiel: Bahn bei a = const. x(t) = 1
2 a t

2 + v0 t+ x0
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2.2 Kinematik in 2D

• Ortsvektoren (angeheftet an Koordinatenursprung!) ~x (t) =
(
x (t)
y (t)

)

• Momentangeschwindigkeit (Tangente an Bahn) ~v (t) = ~̇x (t) =
(
ẋ (t)
ẏ (t)

)

Bahngeschwindigkeit v(t) = |~v| =
√
ẋ2 + ẏ2

• Beschleunigung ~a (t) = ~̈x (t) = ~̇v (t) =
(
ẍ (t)
ÿ (t)

)

• Beispiel 1: Allgemeiner Wurf unter Abwurfwinkel ϕ mit Erdbeschleunigung
g = 9,81 m

s2

Anfangsgeschwindigkeit ~v0 =
(
v0 cos(ϕ)
v0 sin(ϕ)

)

Anfangsort ~x0 =
(

0
0

)

Damit folgt für die Bahn ~x (t) =
(

v0 cosϕ · t
v0 sinϕ · t− 1

2gt
2

)

z.B. Wurfweite xA = v2
0
g
· sin(2ϕ)

• Beispiel 2: Gleichförmige Kreisbewegung mit Umlaufzeit T und Radius R

Bahn ~x (t) = R ·
(

cos(ω t)
sin(ω t)

)

Winkelgeschwindigkeit ω = 2π
T

= const. (gleichförmig!)

Bahngeschwindigkeit v = |~v| = ω ·R = const.

Zentripetalbeschleunigung a = |~a| = ω2 ·R = v2

R
(Betrag)
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2.3 Dynamik
• 2. Newtonsches Axiom: m~̈x (t) =

∑
i

~Fi

– Lineare Superposition aller am Massenpunkt m angreifenden Kräfte ~Fi,
[F ] = 1 N = 1 kg m

s2

– Mit Anfangsort ~x(0) und Anfangsgeschwindigkeit ~̇x(0) folgt damit die gesamte
Bahn ~x(t) („Programm der Mechanik“)

• Reibungskräfte (Beträge)
– proportional zur Normalkraft Fn

– Maximale Haftreibungskraft FRH = µRH · Fn

– Gleitreibungskraft FRG = µRG · Fn µRG < µRH

• Gravitationskraft (Betrag) zwischen Massen m1 und m2 im Abstand r

FG = G · m1 m2

r2

wirkt anziehend entlang Verbindung der Massenpunkte mit Gravitationskonstante

G = 6,67 · 10−11 Nm2

kg2

• Federkraft (Hooke’sches Gesetz) F (x) = kx

x: Dehnung/Stauchung der Feder
k: Federkonstante

2.4 Arbeit und Energie
• Arbeit einer Kraft ~F (~x) auf dem Weg von ~x1 nach ~x2

W =
~x2∫
~x1

~F (~x) d~x , [W ] = 1 kg m2

s2 = 1 J(Joule)

Variante in 1D W =
x2∫
x1

F (x) dx (Fläche unter Kurve F (x))

• Satz von der kinetischen Energie:
Arbeit ↔ Bewegungsenergie für einen Massenpunkt m

1
2m~v

2
1 +W = 1

2m~v
2
2
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• Energieerhaltungssatz: Bei konservativen Kräften ~F wird

W = Epot,1 − Epot,2

Epot,i: potentielle Energie des Punktes ~xi

Damit folgt der Energieerhaltungssatz

1
2m~v

2
1 + Epot,1 = 1

2m~v
2
2 + Epot,2 = Eges = const.

• Beispiele zur potentiellen Energie:
– Schwerefeld Epot(z) = mgz z: vertikale Koordinate

– Feder Epot(x) = 1
2kx

2 x: Dehnung/Stauchung der Feder

– Potentielle Energie im Gravitationsfeld der MasseM

Epot(r) = −GmM
r

r: Abstand von Masse M

Achtung: Referenzpunkt ist hier r =∞

2.5 Impuls und Impulserhaltungssatz
• Impuls einer Masse m mit Geschwindigkeit ~v

~p = m~v

• Wenn nur innere Kräfte (actio = reactio) zwischen den Massen mi wirken, gilt der Im-
pulserhaltungssatz ∑

i

~pi =
∑
i

mi~vi = −−−→const.

• Anwendung: Zentraler elastischer Stoß zwischen den Massen m1 und m2

v′1 = (m1 −m2)v1 + 2m2v2

m1 +m2

v′2 = (m2 −m1)v2 + 2m1v1

m1 +m2

vi: Anfangsgeschwindigkeit von Masse mi mit Vorzeichen
v′i: Endgeschwindigkeit von Masse mi mit Vorzeichen

4



2.6 Starrer Körper – Drehbewegungen
• Translation des Schwerpunkts ~xS

~xS ≡
1

mges

∑
i

mi~xi

~xi: Positionen der Massenpunkte mi

mges = ∑
i
mi: Gesamtmasse

Dann lautet die Bewegungsgleichung der Translation

mges ~̈xS =
∑
i

~Fi

~Fi: äußere Kräfte

• Kinematische Grundgrößen der Rotation (um eine feste Drehachse)
– „Bahn“ der Rotation = Winkel um Drehachse ϕ(t)
– Winkelgeschwindigkeit ω(t) = ϕ̇(t)
– Winkelbeschleunigung α(t) = ϕ̈(t)

• Drehmoment (skalare Formulierung)

M = rF sin Θ

F : angreifende Kraft unter Winkel Θ im
Abstand r zur Drehachse („Ursache“
der Rotation)

+
Drehachse

r

F

Θ

• Bewegungsgleichung der Rotation

Iϕ̈ =
∑
i

Mi

I = ∑
i
mir

2
i : Trägheitsmoment der Massen mi im Abstand ri zur Drehachse

Mi: angreifende Drehmomente

• Satz von Steiner zu Trägheitsmomenten

I = IS +mges · d2

IS: Trägheitsmoment um Schwerpunktsachse S
I: Trägheitsmoment um Achse parallel zu S im Abstand d

• Drehimpuls um eine Achse mit zugehörigem Trägheitsmoment I

L ≡ Iϕ̇ = Iω
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Damit wird die Bewegungsgleichung der Rotation

L̇ =
∑
i

Mi

Wenn keine äußeren Drehmomente am starren Körper angreifen, gilt Drehimpulserhal-
tung

L = Iω = const.

• Kinetische Energie der Rotation („Rotationsenergie“) um eine Achse

Erot = 1
2Iω

2

Anwendung: Rollen eines Rades (auch Zylinder oder Kugel) mit Radius R und der
Masse mges im Schwerefeld

Eges = 1
2mges v

2
S + 1

2ISω
2 +mges gh = const.

Schwerpunktsgeschwindigkeit vS = ωR (Rollbedingung)

• Gegenüberstellung von Translation und Rotation

Translation (1D) Rotation

Masse m Trägheitsmoment I

Geschwindigkeit v Winkelgeschwindigkeit ω

Kraft F Drehmoment M

Impuls p = mv Drehimpuls L = Iω

Bewegungsgleichung ṗ = F Bewegungsgleichung L̇ = M

Kinetische Energie Ekin = 1
2mv

2 Rotationsenergie Erot = 1
2Iω

2

2.7 Schwingungen

• Freie, ungedämpfte Schwingungen: harmonischer Oszillator

– Wichtig: linear rückstellende Kraft (z.B. Feder)

F = −kx
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– Bewegungsgleichung (2. Newton’sches Axiom) für Masse m

ẍ+ ω2
0x = 0

ergibt Schwingung (Bahn der Masse m)

x(t) = A · cos(ω0t)

mit Amplitude A und Eigenfrequenz (Kreisfrequenz!)

ω0 ≡
√
k

m

– Periodendauer der Schwingung T ≡ 2π/ω0

– zugehörige Frequenz
f = 1

T
= ω0

2π

• Mathematisches Pendel (Massenpunkt) der Länge l

ϕ̈+ ω2
0ϕ = 0

– Eigenfrequenz ω0 =
√
g/l

• Physikalisches Pendel (starrer Körper, Masse m) mit Trägheitsmoment ID um Dreh-
achse im Abstand d vom Schwerpunkt

ϕ̈+ ω2
0ϕ = 0

– Eigenfrequenz ω0 =
√
mgd

ID
=
√

mgd

IS +md2

• Freie, gedämpfte Schwingung

– Wichtig: lineare, rückstellende Kraft F = −kx und Reibungskraft FR ∼ ẋ

– Bewegungsgleichung für Masse m

ẍ+ 2κẋ+ ω2
0x = 0

– Exponentiell abklingende Schwingung

x(t) = Ae−κt cos(ωt)

mit Dämpfungskonstante κ und Kreisfrequenz ω =
√
ω2

0 − κ2 < ω0

• Angetriebener Oszillator – Resonanz

– Äußere antreibende Kraft F ∼ cos(Ωt)
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– Bewegungsgleichung für Masse m
ẍ+ 2κẋ+ ω2

0x = const.·cos(Ωt)

wird gelöst von
x(t) = A(Ω) cos [Ωt− ψ(Ω)]

– Amplitude
A(Ω) ≡ const.√(

Ω2 − ω2
0

)2
+ 4κ2Ω2

mit Resonanzfrequenz (Maximum)

Ωres ≡
√
ω2

0 − 2κ2

– Phasenverschiebung (Oszillator „hinkt hinterher“)

ψ(Ω) ≡ arctan 2κΩ
ω2

0 − Ω2
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2.8 Mechanik fluider Medien (inkompressibel)
• Grundgrößen

– Druck
p = F⊥

A

ausgeübt von der senkrechten Komponente F⊥ einer Kraft ~F auf eine Fläche A mit
den Einheiten

[p] = 1 N
m2 = 1Pa(Pascal) = 10−5 bar

– Dichte
ρ = m

V

eines Körpers mit der Masse m und dem Volumen V mit der Einheit

[ρ] = 1 kg
m3

• Hydrostatischer Druck
p = p0 + ρgh

in der Tiefe h bei äußerem Druck p0

• Kontinuitätsgleichung (Erhaltungsgesetz)

Av = const.

bei laminarer, stationärer Strömung mit Geschwindigkeit v durch Querschnittsfläche A

• Bernoulli-Gleichung
p+ 1

2ρv
2 + ρgy = const.

bei Geschwindigkeit v und statischem Druck p in der Höhe y

• Oberflächenspannung
σ ≡ ∆W

∆A
bei Vergrößerung ∆A einer Oberfläche und dazu notwendiger Arbeit ∆W .
Einfache Messmethode über eine Kraft F zum Heben der Fluidlamelle mit Länge l ergibt

σ = F

2l

Anwendung: Kapillare Steighöhe
h = 2σ

ρgr

in einem Rohr mit Radius r (totale Benetzung)
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3 Thermodynamik (Wärmelehre)
3.1 Thermodynamische Systeme
• Teilchenzahl N ∼ 1023

• Stoffmenge
n = N

NA
, [n] = 1 mol

mit Avogadro-Konstante
NA = 6,022 · 1023 1

mol
• Makroskopische Zustandsgrößen:

– Druck p
– Volumen V
– Temperatur T (in Kelvin)

3.2 Temperatur
• Empirische Celsius-Temperatur θC in ◦C und Temperatur T in Kelvin

T =
(
θC
◦C + 273,15

)
K

3.3 Thermische Zustandsgleichungen
• Ideales Gas

pV = nRT = NkBT

mit allg. Gaskonstante R = NA kB = 8,314 J
mol K

und Boltzmann-Konstante kB = 1,38 · 10−23 J
K

• Kinetische Theorie des idealen Gases: Grundgleichung

p = N

V

1
3 m 〈v

2〉 mit 〈v2〉 =
∞∫

0

dv v2 fM (v) = 3kBT
m

und der Maxwell-Verteilung

fM (v) = 4πv2
(

m

2πkBT

)3/2
exp

(
− mv2

2kBT

)

m : Masse eines idealen Gasteilchens
N : Anzahl der Gasteilchen
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• Mittlere thermische Energie eines Gasteilchens

〈ε〉 = f
1
2 kB T

f : Anzahl Freiheitsgrade
kB : Boltzmann-Konstante mit kB = 1,38 · 10−23 J

K

Damit folgt die innere Energie eines idealen Gases, die sog. kalorische Zustands-
gleichung

U = N〈ε〉 = f

2 nRT

3.4 Erster Hauptsatz der Thermodynamik
• Differentielle Form

dU = δQ+ δW

dU : differentielle Änderung der Zustandsgröße innere Energie
δQ : differentielle Änderung der Prozessgröße Wärme
δW : differentielle Änderung der Prozessgröße Arbeit

z.B. Volumenarbeit δW = −p dV

• Molare, spezifische Wärmen Cm idealer Gase mit f Freiheitsgraden
– isochorer Prozess: dV = 0

δQ|V = n · CmV · dT mit CmV = f

2 R

– isobarer Prozess: dp = 0

δQ|p = n · Cmp · dT mit Cmp = f

2 R +R
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