

Open Effective Field Theories and Universality

H.-W. Hammer

Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI

Deutsche Forschungsgemeinschaft

614. WE-Heraeus Seminar, Bad Honnef, April 18-10, 2016

Outline

- Introduction
 - Low-Energy Universality
 - Resonant interactions and the unitary limit
- Universality in Few-Body Systems
- Inelastic Processes and Open EFT

(with E. Braaten, G.P. Lepage)

Summary and Outlook

Low-Energy Universality

- Separation of scales:
 - $1/k = \lambda_{dB} \gg \ell$
- Limited resolution at low energy: \rightarrow expand in powers of $k\ell$
- Generic/natural case: $|a| \sim \ell$
- Resonant case: $|a| \gg \ell$

Low-Energy Universality

- Separation of scales:
 - $1/k = \lambda_{dB} \gg \ell$
- Limited resolution at low energy: \longrightarrow expand in powers of $k\ell$
- Generic/natural case: $|a| \sim \ell$
- Resonant case: $|a| \gg \ell$

- Classic example: light-light-scattering (Euler, Heisenberg, 1936) Contact interactions for $\omega \ll m_e$: $\mathcal{L}_{QED}[\psi, \bar{\psi}, A_{\mu}] \rightarrow \mathcal{L}_{eff}[A_{\mu}]$ $\downarrow \downarrow \downarrow$
- Change of resolution: Renormalization group (Kadanoff, Wilson)

Physics Near the Unitary Limit

Consider system with short-ranged, resonant interactions

• Unitary limit:
$$a \to \infty$$
, $\ell \to 0$ (cf. Bertsch problem, 2000)

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} -ik\right]^{-1} \implies i/k$$

Scattering amplitude scale invariant, saturates unitarity bound

Open Effective Field Theories and Universality – p. 4

Physics Near the Unitary Limit

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a \to \infty$, $\ell \to 0$ (cf. Bertsch problem, 2000)

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} -ik\right]^{-1} \implies i/k$$

- Scattering amplitude scale invariant, saturates unitarity bound
- Use as starting point for description of few-body properties
 - Large scattering length: $|a| \gg \ell \sim r_e, l_{vdW}, ...$
 - Natural expansion parameter: $\ell/|a|$, $k\ell$,...
 - Universal dimer with energy $E_d = -\hbar^2/(ma^2)$ (a > 0)

size
$$\langle r^2 \rangle^{1/2} = a/2$$

Physics Near the Unitary Limit

- Unitary limit important in many areas of physics
- Nuclear physics: dripline nuclei
 - 2N-system: $|a| \gg r_e \sim 1/m_\pi \longrightarrow B_d \approx 2.2 \text{ MeV}$
 - ¹¹Be \Rightarrow ¹⁰Be + n: n separation energy \approx 0.5 MeV
- Particle physics: hadronic molecules
 - X(3872) as a $D^0 \bar{D}^{0*}$ molecule? $(J^{PC} = 1^{++})$ $B_X = (0.11 \pm 0.21) \text{ MeV}$
- Atomic physics:
 - ⁴He: $a \approx 104 \text{ Å} \gg r_e \approx 7 \text{ Å} \sim l_{vdW} \longrightarrow B_d \approx 100 \text{ neV}$
 - Feshbach resonances: a can be varied experimentally \implies tune system to the unitary limit

Broken Scale Invariance

- Three-boson system near the unitary limit (Efimov, 1970)
- Hyperspherical coordinates: $R^2 = (r_{12}^2 + r_{13}^2 + r_{23}^2)/3$
- Schrödinger equation simplifies for $|a| \gg R \gg l$:

- Singular Potential: renormalization required
- Boundary condition at small R: breaks scale invariance
 - \implies scale invariance is anomalous
 - \implies observables depend on boundary condition and a
- Universality concept must be extended \Rightarrow 3-body parameter

- **•** Effective Lagrangian (Kaplan, 1997; Bedaque, HWH, van Kolck, 1999)
- $\mathcal{L}_d = \psi^{\dagger} \left(i\partial_t + \frac{\vec{\nabla}^2}{2m} \right) \psi + \frac{g_2}{4} d^{\dagger} d \frac{g_2}{4} (d^{\dagger} \psi^2 + (\psi^{\dagger})^2 d) \frac{g_3}{36} d^{\dagger} d\psi^{\dagger} \psi + \dots$
- 2-body amplitude: --- = --- + --- + --- + ---
- 2-body coupling g_2 near fixed point (1/a = 0)

 \Rightarrow scale and conformal invariance (Mehen, Stewart, Wise, 2000; Nishida, Son, 2007; ...)

unitary limit

Limit Cycle

- RG invariance \implies running coupling $H(\Lambda) = g_3 \Lambda^2 / (9g_2^2)$
- $H(\Lambda)$ periodic: limit cycle

 $\Lambda \to \Lambda \, e^{n\pi/s_0} \approx \Lambda(22.7)^n$

(cf. Wilson, 1971)

 Anomaly: scale invariance broken to discrete subgroup

$$H(\Lambda) \approx \frac{\cos(s_0 \ln(\Lambda/\Lambda_*) + \arctan(s_0))}{\cos(s_0 \ln(\Lambda/\Lambda_*) - \arctan(s_0))}, \quad s_0 \approx 1.00624$$

(Bedaque, HWH, van Kolck, 1999)

- Three-body parameter: Λ_*, \ldots
- Limit cycle \iff Discrete scale invariance

Universal Correlations

- \checkmark 2 Parameters at LO \Rightarrow 3-body observables are correlated
 - \implies Phillips line (Phillips, 1968)
- No four-body parameter at LO (Platter, HWH, Meißner, 2004) \Rightarrow 4-body observables are correlated \Rightarrow Tjon line

- Variation of 3-body parameter generates correlations
- Nuclear physics: RG evolution of 2-body forces

More Universal Correlations

- Radiative proton capture on ⁷Be determines high-energy part of solar neutrino spectrum
- EFT calculation of S-factor using ab initio ANCs (Zhang, Nollett, Phillips, 2014, 2015)
- S-factor for proton capture on ⁷Be and charge radius of ⁸B are correlated

Ryberg, Forssen, HWH, Platter, Eur. Phys. J. A 50 (2014) 170

Limit Cycle: Efimov Effect

Universal spectrum of three-body states (Efimov, 1970)

- Discrete scale invariance for fixed angle ξ
- Geometrical spectrum for $1/a \rightarrow 0$

$$B_3^{(n)}/B_3^{(n+1)} \xrightarrow{1/a \to 0} \left(e^{\pi/s_0}\right)^2 = 515.035...$$

- Universal four- and higher-body states
- Ultracold atoms \implies variable scattering length \implies loss resonances

Three-body recombination:

3 atoms \rightarrow dimer + atom \Rightarrow loss of atoms

- Recombination constant: $\dot{n}_A = -K_3 n_A^3$
- K₃ has log-periodic dependence on scattering length
 (Nielsen, Macek, 1999; Esry, Greene, Burke, 1999; Bedaque, Braaten, HWH, 2000)
- Deep dimers: Efimov trimers aquire width \Rightarrow resonances
- Loss term in short distance b.c.: $\Lambda_* \longrightarrow \Lambda_* \exp^{i\eta_*/s_0}$ \implies non-hermitian Hamiltonian
- Universal line shape of recombination resonance (a < 0)

$$K_3^{deep} = \frac{64\pi^2(4\pi - 3\sqrt{3}) \coth(\pi s_0)\sinh(2\eta_*)}{\sin^2\left[s_0\ln(a/a_-)\right] + \sinh^2\eta_*} \frac{\hbar a^4}{m}, \qquad s_0 \approx 1.00624.$$

and other observables ...

Efimov States in Ultracold Atoms

- First experimental evidence in ¹³³Cs (Krämer et al. (Innsbruck), 2006) now also ⁶Li, ⁷Li, ³⁹K, ⁴¹K/⁸⁷Rb, ⁶Li/¹³³Cs
- Example: Efimov spectrum in ⁶Li/¹³³Cs mixture (Gross et al. (Bar-Ilan Univ.), Phys. Rev. Lett. **105** (2010) 103203)

• Van der Waals tail determines $a_-/l_{vdW} \approx -10 \ (\pm 15\%)$ (Wang et al., 2012; Naidon et al. 2012, 2014; ...) ... but not η_* ...

- Loss coefficients used in few-body rate equations
- Complete description requires density matrix
- Effective density matrix from tracing over high-energy states?
- Naive evolution equation for $H_{eff} = H iK$

$$i\hbar \partial_t \rho = H_{\text{eff}} \rho - \rho H_{\text{eff}}^{\dagger} = [H, \rho] - i\{K, \rho\}$$

• Implies $\partial_t \operatorname{Tr}(\rho) = -\operatorname{Tr}(2K\rho)/\hbar$

 \implies probability not conserved

Need evolution equation for open system

 \implies Lindblad equation (Lindblad; Gorini, Kossakowski, Sudarshan, 1976)

Motivate from Quantum Field Theory

• Consider model with two fields ψ and ϕ : $H_{\text{full}} = H^{\psi} + H^{\phi} + H_{\text{int}}$

$$H_{\text{int}} = \frac{1}{4}g \int_{\boldsymbol{r}} \left(\psi^{\dagger 2}(\boldsymbol{r})\phi^{2}(\boldsymbol{r}) + \psi^{2}(\boldsymbol{r})\phi^{\dagger 2}(\boldsymbol{r}) \right)$$

• Reaction $\psi\psi \rightarrow \phi\phi$ has large energy release E_{deep}

 \implies process is effectively local and instantaneous

• Leading contribution in g

• Effect of high-energy ϕ particles on low-energy ψ particles is local

• Effective Field Theory without explicit ϕ dof

$$H - iK = H^{\psi} + T(2E_0^{\psi}, 0) \int_{\boldsymbol{r}} (\psi^{\dagger}(\boldsymbol{r})\psi(\boldsymbol{r}))^2$$

Optical theorem

2

Im
$$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right) = \int d\Pi \left(\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right) \times \left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \end{array} \right)^*$$

Replacement for internal ϕ particles in correlation functions

 $g \phi^2(\mathbf{r}, t) \to T(2E_0^{\psi}, 0) \psi^2(\mathbf{r}, t), \qquad g \phi^{\dagger 2}(\mathbf{r}, t) \to T^*(2E_0^{\psi}, 0) \psi^{\dagger 2}(\mathbf{r}, t)$

 Only imaginary part of T physically relevant, real part renormalized away Derive effective density matrix for low-energy particles

$$\rho(t) \equiv \operatorname{Tr}_{\phi}\left(\rho_{\mathrm{full}}(t)\right) = \sum_{m=0}^{\infty} \int_{\boldsymbol{y}_{1}...\boldsymbol{y}_{m}} {}_{\phi} \langle \boldsymbol{y}_{1}...\boldsymbol{y}_{m} | \rho_{\mathrm{full}}(t) | \boldsymbol{y}_{1}...\boldsymbol{y}_{m} \rangle_{\phi}$$

Evolution of effective density matrix

$$i\hbar\partial_t \rho = \operatorname{Tr}_{\phi} \left(H_{\text{full}} \,\rho_{\text{full}} - \rho_{\text{full}} \,H_{\text{full}} \right)$$

Four different contributions from interaction term

$$\operatorname{Tr}_{\phi}\left[\left(g\int_{\boldsymbol{r}}\psi^{\dagger 2}(\boldsymbol{r})\phi^{2}(\boldsymbol{r})\right)\rho_{\mathrm{full}}\right]\longrightarrow T(E_{0}^{\psi},0)\int_{\boldsymbol{r}}(\psi^{\dagger}(\boldsymbol{r})\psi(\boldsymbol{r}))^{2}\rho$$

• Analog for other three contributions $\operatorname{Tr}_{\phi}[\rho_{\mathrm{full}}(g \int_{\boldsymbol{r}} \phi^{\dagger 2}(\boldsymbol{r})\psi^{2}(\boldsymbol{r}))], \operatorname{Tr}_{\phi}[(g \int_{\boldsymbol{r}} \phi^{\dagger 2}(\boldsymbol{r})\psi^{2}(\boldsymbol{r}))\rho_{\mathrm{full}}], \ldots$

Open EFT

Evolution equation for effective density matrix

$$i\hbar\partial_t\rho = \left[H,\rho\right] - i\mathrm{Im}\,T\int_{\boldsymbol{r}} \left[(\psi^{\dagger}\psi(\boldsymbol{r}))^2\,\rho + \rho\,(\psi^{\dagger}\psi(\boldsymbol{r}))^2 - 2\,\psi(\boldsymbol{r})^2\,\rho\,\psi^{\dagger 2}(\boldsymbol{r})\right]$$

 \Rightarrow Lindblad form

General Hamiltonian with a loss term

$$H_{\text{eff}} = H - iK, \qquad K = \sum_{i} \gamma_i \int d^3 r \, \Phi_i^{\dagger} \Phi_i$$

Lindblad equation

$$i\hbar\partial_t\rho = [H,\rho] - i\sum_i \gamma_i \int d^3r \left(\Phi_i^{\dagger}\Phi_i\rho + \rho\Phi_i^{\dagger}\Phi_i - 2\Phi_i\rho\Phi_i^{\dagger}\right)$$

• Open EFT (Burgess et al., 2015)

• Fermionic atoms with a loss channel \Rightarrow a complex

$$K = (4\pi\hbar^2/m) \operatorname{Im}(1/a) \int d^3r \,\Phi^{\dagger}\Phi, \qquad \Phi = 4\pi a \,\psi_2 \psi_1$$

• Particle losses: $\langle N \rangle = \operatorname{Tr}(\rho N)$

$$\frac{d}{dt}\langle N_1\rangle = \frac{d}{dt}\langle N_2\rangle = -\frac{\hbar}{2\pi m} \mathrm{Im}(1/a) \int d^3r \left\langle \Phi^{\dagger}\Phi \right\rangle$$

where $\mathcal{C} = \left< \Phi^\dagger \Phi \right>$ contact operator

Note: regularization required

 \Rightarrow precise form of contact operator depends on regularization scheme

• Universal relations involving the contact: $C = \int d^3r C(\mathbf{r})$

measures number of pairs at short distances (S. Tan, 2005-2008)

e.g. adiabatic relation

$$\frac{d}{da^{-1}}E = -\frac{\hbar^2}{4\pi m} \ C$$

also RF spectroscopy, photoassociation, ...

- Here: inelastic loss rate for mixture of atom species $\sigma = 1, 2$
- Inelastic short-distance processes parameterized by complex scattering length

$$\frac{d}{dt}N_{\sigma} = -\frac{\hbar}{2\pi m} \operatorname{Im}(1/a) C$$

(Tan, 2008; Braaten, Platter, 2008)

Incorrect field-theoretical derivation implied corrections

(Braaten, HWH, 2013)

Application 1: low-density gas of atoms

$$\frac{d}{dt}n_1 = \frac{d}{dt}n_2 = -K_2 n_1 n_2 = -\frac{\hbar}{2\pi m} \operatorname{Im}(1/a) \mathcal{C}_{AA}$$

where
$$C_{AA} = 8\lambda_T^3 \int_0^\infty dk \, \frac{k^2 e^{-\beta\hbar^2 k^2/(2\mu)}}{|-1/a - ik|^2} \, n_1 n_2$$

Application 2: low-density gas of dimers

$$\frac{d}{dt}n_D = -\Gamma_D n_D = -\frac{\hbar}{2\pi m} \operatorname{Im}(1/a) \mathcal{C}_D$$

where $\mathcal{C}_D = \frac{8\pi \operatorname{Re}(a)}{|a|^2} n_D$

Universal relation

$$K_2(T=0) = \frac{2\pi |a|^4}{\operatorname{Re}(a)} \Gamma_D$$

(for real *a* derived by Köhler, Tiesinga, Julienne, 2005)

2-body Losses and the Contact

- Experimental test using atoms with inelastic spin relaxation channel
- Previous experiment in ⁸⁵Rb: only molecular decay

(Thompson, Hodby, Wieman, PRL **94** (2005) 020401; Köhler, Tiesinga, Julienne, ibid. 020402)

Problem: 3-body contact important?
 → use equal mass fermions

Summary and Outlook

- Universality: Effective field theory for large scattering length
 - Discrete scale invariance, universal correlations,...
- Applications in atomic, nuclear, and particle physics
 - Cold atoms close to Feshbach resonance
 - Few-body nuclei
 - Hadronic molecules: $X(3872), \ldots$

Summary and Outlook

- Universality: Effective field theory for large scattering length
 - Discrete scale invariance, universal correlations,...
- Applications in atomic, nuclear, and particle physics
 - Cold atoms close to Feshbach resonance
 - Few-body nuclei
 - Hadronic molecules: $X(3872), \ldots$
- Open Effective Field Theory and inelastic processes
 - Universal relation for the inelastic loss rate
 - Losses proportional to Im(a) and Tan contact