N coupled dipoles: from Anderson localization to Dicke subradiance

Robin KAISER

INLN, Nice, France

614. WE-Heraeus-Seminar on “Few-body physics: Advances and prospects in Theory and Experiment” 17 – 20 April 2016 at the Physikzentrum Bad Honnef (Germany)
Dicke vs Anderson

plasma physics / pattern formation

astrophysics
(self-oscillations, random lasing, Lévy flight of photons)

Nature Photonics 8, 321 (2014)

Nature Physics 9, 357 (2013)
Multiple Scattering of Light in Atomic samples: Disorder vs cooperative effects

Andersen Localization

Multiple Scattering

“Local”

Interferences

“Global”

Dicke States
The case for Anderson ...

coherence of photons
Wave propagation in disordered media:

< 1958: on average: interferences washed out: random walk / diffusion
 Light: radiation trapping in stars
 Electrons: metal (Drude model)

1958: P.W. Anderson: vanishing diffusion for strong disorder!

Solid State Physics:
 Metal-Insulator Transitions for electrons

Light Scattering:
 Semiconductor powder, White Paint, Atoms

Matter Waves:
 BEC in Disordered Potential, Kicked Rotator

Acoustics:
 Aluminium Beads

NMR:
 Nuclear Spins
Anderson Localization of non interacting waves in 1, 2 and 3D

Scaling theory of localization: Abrahams et al., PRL 42, 673 (1979)

\[g : \text{dimensionless conductance} \]

\[\beta(g) = \frac{\partial \ln g}{\partial \ln L} \]

In 3D: threshold for disorder

Ioffe-Regel criterion: \(k\ell = 1 \)

No microscopic theory

self consistent theory of localization,
numerical simulations of toy systems
Anderson Localization of Light in 3D: phase transition \Rightarrow strong scattering required

Semi-conductor powder

- D. Wiersma et al., Nature 1997
- T. v. der Beek et al., PRB 85 115401 (2012)

White Paint

- C. Aegerter et al., EPL 2006
- F. Scheffold et al., Nat. Photon. 7, 934 (2013)

\Rightarrow Not observed so far
Building up a refractive index « ab initio »
(from individual atoms)

\[E_0 \]

\[\dot{\beta}_j(t) = -\frac{i}{2} \Omega e^{ik_0 \cdot r_j} + \left(i \Delta - \frac{\Gamma}{2} \right) \beta_j(t) - \frac{\Gamma}{2} \sum_{m \neq j}^N \beta_m \frac{\exp (ik_0 |r_j - r_m|)}{ik_0 |r_j - r_m|} \]

\[E_{sc}(r) = -\frac{\hbar \Gamma}{2d} \sum_{j=1}^N \beta_j \frac{e^{ik_0 |r - r_j|}}{k_0 |r - r_j|} \]

\[\beta_i : \text{amplitude of dipole } i \]
Spherical gaussian cloud: emission diagram

Cloud of atoms

Far field emission diagram

Refractive index (mean field)

Incoherent model (particles trajectories, scattering in ‘empty modes’)

Mesoscopic physics: Weak localization (waves beyond mean field)

S. Bromley et al., Nat. Comm. 7, 11039 (2016)
Weak Localisation = precursor of strong Localisation?

Coherence after resonant scattering with atoms!

See also:
M. Havey’s group

Theory:

- no “exact” solution
- diagrammatic approach

\[
\begin{align*}
R & \approx L = + + + \ldots \\
C & = + + \ldots
\end{align*}
\]

Excellent agreement
(no free parameter)

Towards strong localization of light: dense atomic clouds

Dipole Trap (Havey, Browaeys)

\[k \ell \approx 1000 \]

\[k \ell \approx 3 \]

\[k \ell < 1 \]

Ioffe-Regel: \[k \ell \approx 1 \]

\[N = 10^8 \quad N = 10^7 \]

Dynamical Breakdown

Weak Localization of Light

Strong Localization of Light

BEC

Strong Localization + BEC

\[n \text{ [cm}^{-3}] \]

\[10^10 \quad 10^{12} \quad 10^{14} \quad 10^{16} \quad 10^{18} \quad 10^{20} \]
Theory: Effective Hamiltonian

\[H_{\text{eff}} = \left(\hbar \omega_0 - i \frac{\hbar \Gamma_0}{2} \right) \sum_i S_i^z + \frac{\hbar \Gamma_0}{2} \sum_{i \neq j} V_{ij} S_i^+ S_j^- \]

Diagonal: On site energy

\[V_{ij} = \beta_{ij} - i \gamma_{ij} \]
\[\beta_{ij} = \frac{3}{2} \left[-p \frac{\cos k_0 r_{ij}}{k_0 r_{ij}} + q \left(\frac{\cos k_0 r_{ij}}{(k_0 r_{ij})^3} + \frac{\sin k_0 r_{ij}}{(k_0 r_{ij})^2} \right) \right] \]
\[\gamma_{ij} = \frac{3}{2} \left[p \frac{\sin k_0 r_{ij}}{k_0 r_{ij}} - q \left(\frac{\sin k_0 r_{ij}}{(k_0 r_{ij})^3} - \frac{\cos k_0 r_{ij}}{(k_0 r_{ij})^2} \right) \right] \]

- Open System
- Reminiscent of Anderson Hamiltonian
- Heisenberg model with global coupling
- Long range hopping
- No decoherence (coupling to phonons, ...)
« Life time » of photons in the system (motivated by experimental approaches)

Photon Escape Rate = Spectrum \{ \text{Im} (H_{\text{eff}}) \}

size : a = L/\ell

disorder parameter W=1/k\ell

See also F. Pinheiro et al. 2004
Photon Escape Rates

\[C(a, W) = 1 - 2 \int_{1}^{\infty} P(\Gamma) d\Gamma \]

Measure of long lived photons

Single parameter scaling
\[\frac{N}{N_{\perp}} \]

cooperative effects dominate over disorder!
no phase transition observed with \(P(\Gamma) \)

Dicke > Anderson

E. Akkermans, A. Gero, RK, PRL, 101, 103602 (2008)
Eigenvalues

Beyond Photon escape times:

Cloud of Atoms = Large Molecule (with 10^{10} atoms)

‘dilute’ molecule

‘dense’ molecule

molecular spectrum?

SHENG LI AND ERIC J. HELLER.

FIG. 4. (a) Total cross section as a function of energy for a system of seven identical scatterers randomly placed on a plane. Each scatterer is the same as used in Fig. 1. The positions of the scatterers are shown in (b).

proximity resonances

doorway states

giant oscillator strength
Eigenvalues for N coupled dipoles

Important near field terms for high densities
Eigenvalues

\[e^{i k r / k r} \]

\[\Gamma_{at} \sim b_0 \Gamma_0 \]
cooperative superradiance

\[\Gamma_{at} = 2 \Gamma_0 \]
superradiant pairs

\[\Gamma_{at} \sim \Gamma_0 / b_0 \]
cooperative subradiance

\[\Gamma_{at} \sim E^{-2/3} \]
subradiant pairs

- vectorial model
- scalar model

\[e^{i k r} \left(1/k r + 1/k r^2 + 1/k r^3 \right) \]
Eigenvalues: some statistics

No level repulsion

Phase rigidity
Resonance Overlap (« Thouless »)

\[g = \left\langle \frac{1}{\left\langle 1/|\Gamma|\right\rangle \Delta E} \right\rangle \]

Scaling function \(\beta(g) \)

NO ANDERSON LOCALISATION FOR VECTORIAL LIGHT IN 3D

Skipetrov & Sokolov, PRL 112, 023905 (2014)
LOCALISATION in 2D

\[\frac{d\hat{\delta}_j^{(0)}}{dt} = -\frac{\Gamma_0}{2} \hat{\delta}_l^{(0)} - \frac{\Gamma_0}{2} \sum_{l=1}^{N} H_0(kr_{jl})\hat{\delta}_l^{(0)}, \]

Spatially extended mode (vectorial case)

\[\frac{d\hat{\delta}_j^{(\pm 1)}}{dt} = -\frac{\Gamma_1}{2} \hat{\delta}_j^{(\pm 1)} - \frac{\Gamma_1}{2} \sum_{l \neq j} [H_0(kr_{jl})\hat{\delta}_l^{(\pm 1)} + e^{2i\phi_{jl}} H_2(kr_{jl})\hat{\delta}_l^{(\mp 1)}] \]

Spatially localized mode (scalar case)
Mode profiles

Spatially localized mode (scalar case)

Spatially extended mode (vectorial case)

Mode width NOT correlated to localisation length: temporal vs spatial localisation

Spatial and temporal localization of light in two dimensions

C. E. Máximo,¹ N. Piovella,² Ph. W. Courteille,¹ R. Kaiser,³ and R. Bachelard¹,⁸

PHYSICAL REVIEW A 92, 062702 (2015)
The case for Dicke …

coherence of atoms
1954 : Dicke super- and subradiant states

Fig. 1. Energy level diagram of an n-molecule gas, each molecule having 2 nondegenerate energy levels. Spontaneous radiation rates are indicated. $E_m = mE$.

First experimental observation of superradiance

Feld et al. 1973

R. Dicke 1954
Single photon excitation / low intensity limit

\[\Gamma_{\text{max}} \sim N \Gamma_0 \]

Subradiant
N-1 metastable states

Extended Volume: \(b_0 = \frac{N_{\text{at}}}{N_{\text{modes}}} \)

Cooperativity without cavity
(also Random lasing)
The quest for Dicke subradiance
Single Photon interference from $N=2$ atoms

Subradiant pairs : $N=2$

Elusive Subradiance (for $N>2$)

Pencil shape excitation

$\tau_{nat}=7\text{ns}$

Forward ‘subradiance echo’

Fragile subradiance

Dicke subradiance for N two level systems (in free space, N>>2) has not yet been observed

- Does not require large spatial densities (near field effect maybe even bad: Gross&Haroche 1982)
- Requires large optical densities in all directions (b₀>>1)
- Exploits the 1/r long range dipole-dipole interaction
Time dependent experiments : coherent scattering

Superradiance = bright state
Subradiance = metastable ‘dark’ states

Inverted system

Temnov, Woggon, PRL 95, 243602 (2005)
Subradiance vs incoherent scattering

- $t_{\text{sub}} \propto b_0$

- $t_{\text{Rad. Trap.}} \propto b(\delta)^2$

- Does not require large spatial densities
- Requires large optical densities

- Random walk of photons (without interference)
- Diffusion equation

- $t_{\text{Anderson}} \propto \exp\{b(\delta)\}$

- Density Threshold?
Experiment

\[N = 10^9 \, ^{87}\text{Rb} \]
\[T = 50 \, \mu\text{K} \]
\[R = 1 \, \text{mm} \]
\[\rho = 10^{11} / \text{cc} \]

\[b_0 = 20 \ldots 100 \]
Average data (on multichannel scalar)

MOT + Dark MOT (50+30 ms)
Data average: 500 000 cycles (1 curve/night)

Subradiance Probe

Calibration

Hybrid photomultiplier

12 pulses of 30μs
Experimental results

Long decay at $b(\delta)<1$ 😊

Increases as b_0 😊
The ‘super’ of ‘single photon Dicke states’

Superradiant

Subradiant
Off-axis Superradiance: physics/1603.07204

Simulations

Exp. Data

Results
Combining Anderson and Dicke Toy Model: Open Disordered System:
A. Biella et al., EPL, 103, 57009 (2013)

3D Anderson model on 10x10x10 lattice hoping (Ω) + disorder (W) + opening (γ)

$$H_0 = \sum_{j=1}^{N} E_j |j\rangle \langle j| + \Omega \sum_{\langle i,j \rangle} (|j\rangle \langle i| + |i\rangle \langle j|)$$

$$(H_{\text{eff}})_{ij} = (H_0)_{ij} - \frac{i}{2} \sum_{c} A_i^c (A_j^c)^* = (H_0)_{ij} - i\frac{\gamma}{2} Q_{i,j}$$

All sites coupled to one single decay channel: $Q_{ij}=1$
Hybrid Subradiant States « decoupled » from outside world
Outlook:

- **Subradiance vs Radiation trapping**

 Radiation trapping for small beam and intermediate regimes: subradiance dominant at long times

- **Towards Anderson of subradiant Dicke states**
Now something new : not even yet in progress

From few (N=2 to N=3) to many body (N>>1)
Few body physics with photons : N=2

Pair physics (1/r³ for near field terms)
Leroy Bernstein (2 atoms)

\[E_n = -\frac{\hbar^2}{MR^2} \left(\frac{n_0 - n}{g} \right)^6 \]

K trap loss
(Salomon group)

PhD A. RIDINGER
Photonic Efimov states

\[E_n = - \frac{\hbar^2}{MR^2_*} \left(\frac{n_0 - n}{g} \right)^6 \]

Three body (M+M=m) vs Pair physics (M+M+photon)

Three-Body Bound States in Atomic Mixtures With Resonant p-Wave Interaction

Maxim A. Efremov,1,2,* Lev Plimak,1,3 Misha Yu. Ivanov,3 and Wolfgang P. Schleich1
3 atoms + 1 photon

Shifted $1/r^3$ potential \Rightarrow shifted eigenstates
($1/r^2$ in 2D)

New lines ($\propto n^3$) to be looked for in experiments
Collaborators

INLN:
G. Labeyrie, D. Wilkowski, C. Miniatura, W. Guerin, M. Fouché
N. Mercadier, Q. Baudouin, L. Bellando, T. Bienaimé, J. Chabé, T. Rouabah,
G.L. Gattobigio, F. Michaud, T. Chanière, V. Guerrara, C. Müller, Y. Bidel,
M. Araujo, S. Kashani, A. Dussaux, A. Eloy

France:
S. Tanzilli, J. Barré, B. Marcos, M. Fanrobert, M. Lintz, F. Bouchet,
D. Delande, R. Carminati, S. Skipetrov, L. Frute-Perez, R. Pierrat, A. Picozzi

International:
E. Akkermans, N. Piovella, L. Celardo, R. Bachelard, P. Courteille, F. Impens
E. Perreira, M. Havey, T. Ackemann,, J. Tabosa, M. Chevrollier, T. Pohl, J. Ott,
T. Menonça, H. Tercas, G. Alvarez, G. Robb, A. Arnold, W. Firth, G.L. Oppo,
J. Ye, A. M. Rey, J. Schachenmayer, J. Stenflo, V. Bagnato,

Thank you for your attention