From few-body to many-body systems

Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen

"Few-Body Physics:

Advances and Prospects in Theory and Experiment"

614. WE-Heraeus-Seminar, Bad Honnef

April 19, 2016

radiation technology

Binding Energies of Oxygen Isotopes

Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)

/ university of groningen

 ^{23}O

 ^{23}O

 ^{23}O

23O

Ground-state energies

FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N³LO and N²LOoptimized NN interaction and (c) the NN+3N-full Hamiltonian with $\Lambda_{3N} = 400 \text{ MeV/c}$ and $\Lambda_{3N} = 350 \text{ MeV/c}$. The boxes represent the spread of the results from $\alpha = 0.04 \text{ fm}^4$ to $\alpha = 0.08 \text{ fm}^4$, and the tip points into the direction of smaller values of α . Also shown are the contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ $\hbar\Omega = 24 \text{ MeV}$ and 3N interactions with $E_{3max} = 18$ in NO2B approximation and full inclusion of the 3N interaction in CCSD up to $E_{3max} = 12$. Experimental binding energies [32] are shown as black bars.

S. Binder et al., Phys. Lett. B 736, 119 (2014),

Model differences (not ab-initio)

Nuclear and astrophysics meet

Energy of the 2⁺

N=28 magic number in Calcium

v university of groningen

Medium heavy elements

Spectroscopic factors for neutron-proton asymmetric nuclei

Figure from Alexandra Gade, Phys. Rev. C 77, 044306 (2008)

university of groningen

radiation technology

Main Physics Goals in Nuclear Structure

physics interest:

- matter distributions (halo, skin...)
- single-particle structure evolution (new magic numbers, new shell gaps, spetroscopic factors)
- NN correlations, pairing and clusterization phenomena
- new collective modes (different deformations for p and n, giant resonance strength)
- parameters of the nuclear equation of state
- in-medium interactions in asymmetric and low-density matter
- astrophysical r and rp processes, understanding of supernovae

Complementarity of NUSTAR experiments

	Super-FRS	HISPEC/DESPEC	LASPEC	MATS	R3B	ILIMA	SHE	ELISe	EXL
Masses		Q-values, isomers		dressed ions,	unbound nuclei	bare ions,	precision		
				highest precision		mapping study	mass of SHEs		
Half-lives	psns-range	dressed ions,			resonance width,	bare ions,	µsdays		
		μSS			decay up to 100ns	msyears			
Matter radii	interaction x-				interaction x-				matter densitiy
	section				section				distribution
Charge radii	charge-changing		mean square		charge-changing			charge density	
	cross sections		radii		cross sections			distribution	
Single-	high resolution,	high-resolution	magnetic	evolution of shell	quasi-free	evolution of	shell structure		low momentum
particle	angular	particle and γ-ray	moments,	str., pairing int.,	knockout, short-	shell closures,	of SHEs		transfers
structure	momentum	spectroscopy	nucl. spins	valence nucl.	range and tensor	pairing corr.			
Collective		electromag.	quadrupole	halo structure	dipole response	changes in		electromag.	monopole
behavior		transitions	moments			deformation		transitions	resonance
EoS					polarizability,			neutron skin 🗲	neturon skin,
					neutron skin				Compressibility
Exotic	bound mesons,								
Systems	hypernuclei,								
	nucleon res.								

Giant Resonances

Collective oscillations of all neutrons and all protons in a nucleus in phase (isoscalar) or out of phase (isovector)

Kinematics for inverse reaction for ⁵⁶Ni

Setup @ ESR ring

Schematic view of MAYA active target detector

university of groningen

Multipole Decomposition Analysis (MDA)

Summary of all Ni isotopes for ISGMR

L=0, T=0 (ISGMR)

Reaction	Gaussi	an fitting	MDA		
	E*	FWHM	E*	Width (rms)	
	[MeV]	[MeV]	[MeV]	[MeV]	
⁵⁶ Ni(α,α') ⁵⁶ Ni* (this work)	19.1±0.5	2.0±0.3	18.4±1.8	2.0±1.2	
⁵⁶ Ni(d,d') ⁵⁶ Ni*	19.5±0.3	5.2	19.3±0.5	2.3	
⁵⁸ Ni(α, α') ⁵⁸ Ni*	18.43 ± 0.15	$7.41 {\pm} 0.13$	$ 19.2^{+0.44}_{-0.19}$	$4.89\substack{+1.05 \\ -0.31}$	
58 Ni(α, α') 58 Ni*	_	-	$\mid 19.9^{+0.7}_{-0.8}$	-	
60 Ni(α, α') 60 Ni*	17.62 ± 0.15	$7.55 {\pm} 0.13$	$ 18.04^{+0.35}_{-0.23}$	$4.5\substack{+0.97 \\ -0.22}$	
⁶⁸ Ni(α,α') ⁶⁸ Ni*	21.1±1.9	$1.3{\pm}1.0$	23.4	6.5	
			/ university of	/ kvi - center for advance	

S. Bagchi et al., Phys. Lett. B751, 371 (2015)

radiation technology

Monopole mode in ⁵⁸Ni and ⁵⁶Ni: ring vs. active target

Charge-separation capability for different Energies

What are the highlights of NUSTAR Phase 1 program?

- Understanding the 3rd r-process peak by means of comprehensive measurements of masses, lifetimes, neutron branchings, dipole strength, and level structure along the N=126 isotones;
- Equation of State (EoS) of asymmetric matter by means of measuring the dipole polarizability and neutron skin thicknesses of tin isotopes with N larger than 82 (in combination with the results of the first highlight);
- Exotic hypernuclei with very large N/Z asymmetry.

Phase 1 Physics with R3B setup: Dipole strength Distributions in heavy neutron-rich nuclei

• core vs. neutron skins & halos \rightarrow density / asymmetry

S. Bacca et al. PRL **89** (2002) 052502 PRC **69** (2004) 057001

• access to EoS (e.g. neutron star) & low lying E1 strength (r-process)

Conclusions

♦ Many-body theories have come a long way. These days, they can work with chiral nuclear forces as well. 3NF should be better understood though. New reaction theories based on the recent developments should now be worked on.

Conclusions

- ♦ Many-body theories have come a long way. These days, they can work with chiral nuclear forces as well. 3NF should be better understood though. New reaction theories based on these new developments should now be worked on.
- ♦Light hadron scattering can be used at low momentum transfers to probe fundamental properties of nuclei such as density distributions, compressibility and in general collective properties, beta-decay rates etc. Equation of state of asymmetric matter is highly desired.

Conclusions

- ♦ Many-body theories have come a long way. These days, they can work with chiral nuclear forces as well. 3NF should be better understood though. New reaction theories based on these new developments should now be worked on.
- ♦Light hadron scattering can be used at low momentum transfers to probe fundamental properties of nuclei such as density distributions, compressibility and in general collective properties, beta-decay rates etc. Equation of state of asymmetric matter is highly desired.
- ♦NOTE: I could only show a small subset of all nuclear-structure activities around the world.

Thank you!

/ university of groningen