

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Three-atomic clusters within the framework of Faddeev equations

E.A. Kolganova

Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

WE-Heraeus Seminar on Few-body physics "Few-body Physics: Advances and Prospects in Theory and Experiment"

April 18 – 20, 2016, Bad Honnef, Germany

Potential models: $V(r) = 4 \varepsilon \left| \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right|$ -<u>Lennard - Jones</u> [1]: ε – scales the energy and σ – the length scale; -<u>Tang</u>-Toennies [2]: $V(R) = V_{rep} + V_{att} = A e^{-bR} - \sum_{n=1}^{N} f_{2n}(bR) \frac{C_{2n}}{R^{2n}}$ where A and b parameters, the C_{2n} are the dispersion coefficient, $f_{2n}(bR)$ - the damping function, Tang - Toennies which is given by the following expression: - Aziz Lennard - Jones $f_{2n}(x) = 1 - e^{-x} \sum_{k=0}^{2n} \frac{x^{-k}}{k!}$ 5 0 V(r) [K] -5 $-\underline{\text{Aziz}}$ [3]: $V(x) = \varepsilon V_b(\zeta)$ where $\zeta = x/r_m$, and term $V_b(\zeta)$ has the form: -10 $V_b(\zeta) = A \exp(-\alpha \zeta + \beta \zeta^2) -\left[\frac{c_6}{\zeta^6} + \frac{c_8}{\zeta^8} + \frac{c_{10}}{\zeta^{10}}\right] F(\zeta)$ -15 -20 at that x is expressed in the same length units 3 5 4 6 r [Å] as r_m (for this case they are angstroms).

Function $F(\zeta)$ is given by the expression:

$$F(\zeta) = \begin{cases} exp[-(D/\zeta - 1)^2], & \text{if } \zeta \leq D, \\ 1, & \text{if } \zeta > D. \end{cases}$$

 D.M. Leither, J.D. Doll, R.M.Whitnell // J.Chem.Phys. 94, 6644 - 6659 (1991)
 K.T. Tang and J.P. Toennies // J.Chem.Phys. 118, 4976 - 4983,(2003)
 R.A. Aziz and M.J. Slaman // J. Chem. Phys. 94, 8047 - 8053 (1991); D.A. Barrow, M.J. Slaman, R.A. Aziz // J. Chem. Phys. 91, 6348-6358 (1989); R.A. Aziz // J. Chem. Phys. 99, 4518 - 4525 (1993)

С ₆	C ₈	C ₁₀	A	b , a.u. ⁻¹
1,461	14,11	183,6	41,96	2,523
6,383	90,34	1536	199,5	2,458
64,30	1623	49060	748,3	2,031
129,6	4187	155500	832,4	1,865
285,9	12810	619800	951,8	1,681
420,6	19260	1067000	5565,0	1,824
	C ₆ 1,461 6,383 64,30 129,6 285,9 420,6	C ₆ C ₈ 1,461 14,11 6,383 90,34 64,30 1623 129,6 4187 285,9 12810 420,6 19260	C6C8C101,46114,11183,66,38390,34153664,30162349060129,64187155500285,912810619800420,6192601067000	C6C8C10A1,46114,11183,641,966,38390,341536199,564,30162349060748,3129,64187155500832,4285,912810619800951,8420,61926010670005565,0

Tang-Toennies model [1]:

4

$$V(R) = V_{rep} + V_{att} = A e^{-bR} - \sum_{n=3}^{N} f_{2n}(bR) \frac{C_{2n}}{R^{2n}}$$

where A and b parameters, the C_{2n} are the dispersion coefficient, $f_{2n}(bR)$ - the damping function, which is given by the following expression:

$$f_{2n}(x) = 1 - e^{-x} \sum_{k=0}^{2n} \frac{x^{-k}}{k!}$$

[1] K.T. Tang and J.P. Toennies // J. Chem. Phys. 118, 4976-4983,(2003)

[1] F.Luo et. al.// J. Chem. Phys. 98 (1993) 9687.
[4] Y.Tanaka,K.Yoshino //J.Chem.Phys.57 (1972) 2964.
[2] W.Schöllkopf et. al.// Science.266 (1994) 1345.
[5] A.Wüest, F.Merkt//J.Chem.Phys.118 (2003) 8807.
[3] R.Grisenti et. al. // Phys. Rev. Lett. 85 (2000) 2284.
[6] W.Cencek et.al. // J.Chem.Phys., 136(2012) 224303.

-	-				
level	He ₂ (K)	Ne ₂ (K)	Ar ₂ (K)	Kr ₂ (K)	Xe ₂ (K)
0	0,001309	24,1316	121,5004	184,7897	267,1759
1		4,2777	83,7284	153,1110	238,6889
2		0,02215	54,0021	124,8287	212,0169
3			31,8334	99,8756	187,1428
4			16,5115	78,1658	164,0472
5			7,0383	59,5926	142,7075
6			2,1227	44,0234	123,0977
7			0,2823	31,2940	105,1879
8				21,2031	88,9437
9				13,5088	74,3252
10	1			7,9285	61,2863
11				4,1441	49,7742
12	0			1,8129	39,7280
13	- нене			0,5801	31,0784
14	NeNe		read and the second sec	0,09122	23,7471
15 _1	00 - 0.50			0,0001393	17,6446
16 _V					12,6781
17	-				8,7381
18		KrKr			5,7122
19 -2	00 –		-		3,4831
20	-		-		1,9286
21	Ł				0,9256
22 -3		<u> </u>	<u> </u>		0,3511
23		4 [[A] 5	0 7		0,08371
24					0,004802

Spectra of homogeneous rare gas dimers (TT potentials):

Atom He Ne Kr Xe Rn Ar E_n (K) 1.30960 3.442 9.886 0.034 0.1414 0.2749 <R> Å 51.784 4.041 4.093 13.3545 He 9.8008 8.7300 $< R^{2} > {}^{1/2} Å$ 70.618 4.138 4.137 15.0955 10.4618 9.1502 E_n(K) 0.02215 0.6890 0.2628 1.0192 0.1821 <R> Å Ne 11.8246 6.8575 8.5512 7.2220 9.9060 $< R^{2} > ^{1/2} Å$ 13.0404 6.9949 8.7115 7.3383 10.1317 E_n (K) 0.2823 0.0311 0.0262 0.0010 <R> Å 9.6011 14.8778 16.2743 32.7279 Ar $< R^{2} > ^{1/2} Å$ 9.7904 15.3308 16.7389 35.6998 0.0001 0.02957 0.0006 E_n (K) <R> Å Kr 16.6931 36.4596 53.3392 HeHe $< R^{2} > ^{1/2} Å$ 62.4463 17.0551 39.1313 -10 V [K] E_n (K) 0.009926 0.004802 HeNe <R> Å Xe 24.4651 22.0605 -20 $< R^{2} > {}^{1/2} Å$ HeAr: 25.2103 22.5518 -30 E_n (K) 0.001673 HeKr r[Å] 5 3 6 4 <R> Å 31.1108 Rn $< R^{2} > {}^{1/2} Å$ 32.0870

Weakest states of heterogeneous rare gas dimers:

TABLE. Weakest state energy of the heterogeneous rare gases dimers (in K), average distance and mean root square radius (both in Å).

Kleinkathöfer, Tang, Toennies, Yiu model [2,3]

$$V(r) = A \exp(-b_1 r - b_2 r^2) - \sum_{n=3}^{8} f_{2n}(b'(r), r) \frac{C_{2n}}{r^{2n}},$$

 $b'(r) = b_1 + 2b_2r$

<u>Tang – Toennies model</u> [1]:

$$V(R) = V_{rep} + V_{att} = A e^{-bR} - \sum_{n=3}^{N} f_{2n}(bR) \frac{C_{2n}}{R^{2n}}$$

where A and b parameters, the C_{2n} are the dispersion coefficient, $f_{2n}(bR)$ - the damping function, which is given by the following expression:

$$f_{2n}(x) = 1 - e^{-x} \sum_{k=0}^{2n} \frac{x^{-k}}{k!}$$

[1] K.T. Tang and J.P. Toennies // J. Chem. Phys. **118**, 4976-4983,(2003)
[2] U. Klenkathöfer, K.T. Tang, J.P. Toennies, C.I.Yiu // Chem.Phys.Lett. **249**, 257-263 (1996)

[3] U. Klenkathöfer, M. Lewerenz, M.Mladenoc // Phys.Rev.Lett. 83, 47&7-4720 (1999)

Dimer	E (mK)	Dimer	E (mK)
⁴ He ⁴ He	1,3096 ^a	⁴ He ²³ Na	28.97
⁴ He ⁴ He	$1,728^{b,c}$	⁴ He ³⁹ K	11.20 ^c
⁴ He ⁶ Li	1,512	⁴ He ⁸⁵ Rb	10.27 ^c
⁴ He ⁷ Li	5,617	⁴ He ¹³³ Cs	4.945 ^c

a potential model LM2M2

^b potential model from M. Jeziorska *et al.*, J. Chem. Phys. **127**, 124303 (2007)
 ^c data taken from H.Suno and B.D.Esry, Phys. Rev. A **80**, 062702 (2009)

Dimer	E (K)	Dimer	E (K)
⁴ He ⁴ He	0.0013	⁴ He ⁸⁴ Kr	11.540
⁴ He ²⁰ Ne	3,442	⁴ He ¹³¹ Xe	11.978
⁴ He ⁴⁰ Ar	9,886	⁴ He ²²² Rn	13.224

[1] K.T. Tang and J.P. Toennies // J. Chem. Phys. **118**, 4976-4983,(2003)
[2] U. Klenkathöfer, K.T. Tang, J.P. Toennies, C.I.Yiu // Chem.Phys.Lett. **249**, 257-263 (1996)

[3] U. Klenkathöfer, M. Lewerenz, M.Mladenoc // Phys.Rev.Lett. 83, 4797-4720 (1999)

N.Tariq, N.A.Taisan, V.Singh, and J.D. Weinstein, Phys. Rev .Lett. **110**, 153201 (2013).

^a potential model LM2M2

^b potential model from M. Jeziorska et al., J. Chem. Phys. 127, 124303 (2007)

^c data taken from H.Suno and B.D.Esry, Phys. Rev. A 80, 062702 (2009)

U. Klenkathöfer, K.T. Tang, J.P. Toennies, C.I.Yiu // Chem.Phys.Lett.
 249, 257-263 (1996)
 U. Klenkathöfer, M. Lewerenz, M.Mladenoc // Phys.Rev.Lett. 83, 4717-4720 (1999)

10

Three – Body Systems

Faddeev Equations: Algebraic scheme

Three-body, theory formalism

Let us deal with Hamiltonian of the form

$$H = H_0 + V \quad \text{with} \quad V = V_1 + V_2 + V_3$$

We consider the bound-state problem

$$H\Psi = E\Psi$$

where E does not belong to the spectrum of H_0 . Thus $G_0(E) = (H_0 - E)^{-1}$ is well defined. Equation $H\Psi = E\Psi$ is equivalent to the Lippman-Schwinger eq.

$$\Psi = -G_0(E)V\Psi \equiv -G_0(E)\sum_{\alpha=1}^3 V_\alpha \Psi$$

Further we introduce the vectors

$$\Phi_{\alpha} = -G_0(E)V_{\alpha}\Psi$$

So, we have

$$\sum_{\alpha=1}^{3} \Phi_{\alpha} \equiv \Psi$$

Faddeev Equations: Algebraic scheme

Three-body, theory formalism

Equation $H\Psi = E\Psi$ is equivalent to the Lippman-Schwinger eq.

$$\Psi = -G_0(E)V\Psi \equiv -G_0(E)\sum_{\alpha=1}^{3}V_{\alpha}\Psi$$

We introduce the vectors

$$\Phi_{\alpha} = -G_0(E)V_{\alpha}\Psi \quad Definition of the Faddeev components$$
$$\sum_{\alpha=1}^{3} \Phi_{\alpha} \equiv \Psi$$

and note,

Meanwhile, applying $(H_0 - E)$ to both sides of vectors definition one obtains

$$(H_0 - E)\Phi_{\alpha} = -V_{\alpha}\Psi \equiv -V_{\alpha}\sum_{\beta=1}^{3}\Phi_{\beta}$$

Or, after transfer of $\ \Phi_{lpha}$ from r.h.s. to l.h.s.:

$$(H_0 + V_\alpha - E)\Phi_\alpha = -V_\alpha \sum_{\beta \neq \alpha} \Phi_\beta$$
 Faddeev equations

In the form $\Phi_{\alpha} = -(H_0 + V_{\alpha} - E)^{-1} V_{\alpha} \sum_{\beta \neq \alpha} \Phi_{\beta}$ they were Introduced by L.D.Faddeev in 1960

Faddeev Equations

Three-body, theory formalism

$$(H_0 + V_\alpha - E)\Phi_\alpha = -V_\alpha \sum_{\beta \neq \alpha} \Phi_\beta$$

can be written in the matrix form

$$\begin{pmatrix} H_0 + V_1 & V_1 & V_1 \\ V_2 & H_0 + V_2 & V_2 \\ V_3 & V_3 & H_0 + V_3 \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix} = E \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix}$$

Even the number of equation became tripled, in many respects these equations are more convenient then the initial equation

$$H\Psi = E\Psi$$

In case of a three-body problem this is especially true in the scattering case since the Faddeev operator decouples two-body channels

Three-body, theory formalism

In describing the three-body system we use the standard Jacobi coordinates [4] $x_{\alpha}, y_{\alpha}, \alpha = 1, 2, 3$, expressed in terms of the position vectors of the particles $r_i \in \mathbb{R}^3$ and their masses m_i ,

$$\boldsymbol{x}_{\alpha} = \left[\frac{2m_{\beta}m_{\gamma}}{m_{\beta} + m_{\gamma}}\right]^{1/2} (\boldsymbol{r}_{\beta} - \boldsymbol{r}_{\gamma})$$
$$\boldsymbol{y}_{\alpha} = \left[\frac{2m_{\alpha}(m_{\beta} + m_{\gamma})}{m_{\alpha} + m_{\beta} + m_{\gamma}}\right]^{1/2} \left(\boldsymbol{r}_{\alpha} - \frac{m_{\beta}\boldsymbol{r}_{\beta} + m_{\gamma}\boldsymbol{r}_{\gamma}}{m_{\beta} + m_{\gamma}}\right)$$

where (α, β, γ) stands for a cyclic permutation of the indices (1, 2, 3). The coordinates x_{α}, y_{α} fix the six-dimensional vector $X \equiv (x_{\alpha}, y_{\alpha}) \in \mathbb{R}^{6}$. The vectors x_{β}, y_{β} corresponding to the same point X as the pair x_{α}, y_{α} are obtained using the transformations

$$x_eta = c_{etalpha} x_lpha + s_{etalpha} y_lpha \qquad y_eta = -s_{etalpha} x_lpha + c_{etalpha} y_lpha$$

where the coefficients $c_{\beta\alpha}$ and $s_{\beta\alpha}$ fulfil the conditions $-1 < c_{\beta\alpha} < +1$ and $s_{\beta\alpha}^2 = 1 - c_{\beta\alpha}^2$ with $c_{\alpha\beta} = c_{\beta\alpha}$, $s_{\alpha\beta} = -s_{\beta\alpha}$, $\beta \neq \alpha$ and depend only on the particle masses [4]. For equal masses $c_{\beta\alpha} = -\frac{1}{2}$.

[4] - L.D.Faddeev, S.P.Merkuriev, 1993, Quantum scattering theory for several particles

When the total angular momentum L of the system is fixed, the three-body dynamics is constrained onto three-dimensional internal space [5], which can be parametrized by coordinates

$$x_{\alpha} = |\mathbf{x}_{\alpha}|, \ y_{\alpha} = |\mathbf{y}_{\alpha}|, \ z_{\alpha} = \cos\theta_{\alpha} = (\hat{\mathbf{x}}_{\alpha}, \hat{\mathbf{y}}_{\alpha})$$

For zero angular momentum the Faddeev equations in internal space are given by the set of three coupled three-dimensional equations

$$(H_{0} + V_{\alpha} - E)F_{\alpha}(x_{\alpha}, y_{\alpha}, z_{\alpha}) = -V_{\alpha}\sum_{\beta \neq \alpha}F_{\beta}(x_{\beta}, y_{\beta}, z_{\beta})$$

$$x_{\beta} = \sqrt{c_{\beta\alpha}^{2} x_{\alpha}^{2} + s_{\beta\alpha}^{2} y_{\alpha}^{2} + 2c_{\beta\alpha}s_{\beta\alpha}x_{\alpha}y_{\alpha}z_{\alpha}}$$

$$H_{0} = -\frac{\partial^{2}}{\partial x_{\alpha}^{2}} - \frac{\partial^{2}}{\partial y_{\alpha}^{2}} - (\frac{1}{x_{\alpha}^{2}} + \frac{1}{y_{\alpha}^{2}})\frac{\partial}{\partial z_{\alpha}}(1 - z_{\alpha})^{2}\frac{\partial}{\partial z_{\alpha}}$$

$$x_{\beta}y_{\beta}z_{\beta} = \sqrt{(c_{\beta\alpha}^{2} - s_{\beta\alpha}^{2})x_{\alpha}y_{\alpha}z_{\alpha}} - c_{\beta\alpha}s_{\beta\alpha}(x_{\alpha}^{2} - y_{\alpha}^{2})}$$
or in hyperspherical coordinates
$$\rho = \sqrt{x_{\alpha}^{2} + y_{\alpha}^{2}}, \tan \theta_{\alpha} = y_{\alpha} / x_{\alpha}, \eta_{\alpha} = (\hat{x}_{\alpha}, \hat{y}_{\alpha})$$

$$(H_{0} + V_{\alpha} - E)\Phi_{\alpha}(\rho, \vartheta_{\alpha}, \eta_{\alpha}) = -V_{\alpha} \sum_{\beta \neq \alpha} \Phi_{\beta}(\rho, \vartheta_{\beta}, \eta_{\beta})$$
$$\Phi(x, y, \eta) = \psi_{d}(x) \exp(ipy)a_{0}(\eta; E) + \frac{\exp(i\sqrt{E}\rho)}{\rho}A(\vartheta, \eta; E)$$

[5] - V.V.Kostrykin, A.A.Kvitsinsky, S.P.Merkuriev, Few-Body Syst. 6 (1989) 97

E (mK)	present	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	[19]
$ \mathbf{E}_{4_{He_3}} $	126.50	126.499	126.499	126.41	126.2	126.39	125.9	126.40	126.40	125.9
$ \mathbf{E}^*_{^4He_3} $	2.277	2.2784	2.2779	2.271		2.268	2.282	2.265	2.271	2.28

Table 3. Calculations for binding energies of the trimer ⁴He₃ with LM2M2 potential in mK.

- [11] V. ROUDNEV, M. CAVAGNERO J. Phys. B 45,025101 (2012).
- [12] E. HIYAMA, M. KAMIMURA, Phys. Rev. A 85, 062505 (2012); Phys. Rev. A 85, 022502 (2012).
- [13] V. A. ROUDNEV, S. L. YAKOVLEV, S. A. SOFIANOS, Few-Body Systems 37, 179 (2005).
- [14] M. SALCI et al., Int. J. Quant. Chem. 107, 464 (2007).
- [15] R. LAZAUSKAS, J. CARBONELL, Phys. Rev. A 73, 062717 (2006).
- [16] E. A. KOLGANOVA, A. K. MOTOVILOV, W.SANDHAS, Few-Body Syst. 51, 249 (2011).
- [17] A. KIEVSKY et al., Few-Body Systems 51, 259 (2011).
- [18] A. DELTUVA, Few-Body Systems 56, 897 (2015).
- [19] A. K. MOTOVILOV, W.SANDHAS, S. A. SOFIANOS AND E. A. KOLGANOVA, Eur. J. Phys. D 13, 33 (2001).

1.7

 $^{4}He_{3}$

Three-Body Efimov States

Measurements:

$$|E_{1ES}^* - \varepsilon_d| = 0.98 \pm 0.2 \mathrm{mK}$$

Kunitski M. et. al. // Science 348 (2015) 551.

$$\varepsilon_d = -1.1_{-0.2}^{+0.3} \,\mathrm{mK} \qquad l_{sc} = 104_{-18}^{+8} \,\mathrm{\AA}^{0}$$

Grisenti R. et. al. // Phys. Rev. Lett. 85 (2000) 2284.

Calculations:

 $|E_{1ES}^* - \varepsilon_d| = 0.972 \text{mK}$ $\varepsilon_d = -1.3035 \text{mK}$ $l_{sc} = 100.23 \text{ Å}$ $E_{GS} = -126.507 \text{mK}$ $E_{1ES}^* = -2.276 \text{mK}$

Kolganova E.A., Motovilov A.K., Sandhas W. al. // *Few-Body Systems* **51** (2011) 249.

A Dependence of the binding energies of the ground (GS) and first excited (1ST) states of the He trimer on the scattering length calculated by scaling He-He potential. B and C Structure of the excited and ground states of ${}^{4}He_{3}$

TABLE I: Dimer energy ε_d , bond length $\langle R \rangle$, ⁴He⁻⁴He scattering length $\ell_{sc}^{(1+1)}$ energy of excited state of trimer E_{1ES}^* and difference $|E_{1ES}^* - \varepsilon_d|$ for the different potentials, as compared to the experimental values of Ref. [1] and [2].

	ε_d (mK)	$\ell_{\rm sc}^{(1+1)}$ (Å)	$<\!R\!>^a$ (Å)	E^*_{1ES} (mK)	$ E_{1ES}^* - \varepsilon_d \pmod{mK}$
HFDHE2	-0.830	124.65	-	1.67	0.84
HFD-B	-1.685	88.50	46.46	2.74	1.05
LM2M2	-1.303	100.23	51.84	2.27	0.97
TTY	-1.309^{b}	100.01	51.65	2.28	0.97
PCKLJS [3]	-1.615	90.42	47.09	2.65	1.03
SAPT96 [3]	-1.744		45.45	2.80	1.06
CCSAPT07 [3]	-1.564		47.78	2.59	1.02
Jeziorska [4]	-1.728	87.53		2.78	1.06
Exp. [1]	$1.1^{+0.3}_{-0.2}$	104^{+8}_{-18}	52^{+4}_{-4}		0.98±0.2 [2]

^aResults from Ref. [5].

- [1] GRISENTI R. et al., Phys. Rev. Lett. 85 (2000) 2284.
- [2] KUNITSKI M. et al., Science 348 (2015) 551.
- [3] E. HIYAMA, M. KAMIMURA, Phys. Rev. A 85, 062505 (2012); Phys. Rev. A 85, 022502 (2012).
- [4] H.SUNO, B.D.ESRY, Phys. Rev. A 78, 062701 (2008).
- [5] A. KIEVSKY et al., Few-Body Systems 51, 259 (2011).

$^{4}He_{3}$

For two ⁴He atom the corresponding Faddeev component $F_3(x_3, y_3)$ is invariant under the permutation of the 1 and 2 particles

$$(-\Delta_X - E)F_{\alpha}(\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}) = -V_{\alpha}(\boldsymbol{x}_{\alpha})\Psi^{(\alpha)}(\boldsymbol{x}_{\alpha}, \boldsymbol{y}_{\alpha}), \alpha = 1, 3,$$

where $\Psi^{(1)}(\mathbf{x}_1, \mathbf{y}_1)$ and $\Psi^{(3)}(\mathbf{x}_3, \mathbf{y}_3)$ denote the total wave function in terms of the Faddeev components

R

$$\Psi^{(1)}(\boldsymbol{x}_1, \boldsymbol{y}_1) = F_1(\boldsymbol{x}_1, \boldsymbol{y}_1) +F_1(c_{21}\boldsymbol{x}_1 + s_{21}\boldsymbol{y}_1, -s_{21}\boldsymbol{x}_1 + c_{21}\boldsymbol{y}_1) +F_3(c_{31}\boldsymbol{x}_1 + s_{31}\boldsymbol{y}_1, -s_{31}\boldsymbol{x}_1 + c_{31}\boldsymbol{y}_1)$$

$$\Psi^{(3)}(\mathbf{x}_3, \mathbf{y}_3) = F_3(\mathbf{x}_3, \mathbf{y}_3) +F_1(c_{13}\mathbf{x}_3 + s_{13}\mathbf{y}_3, -s_{13}\mathbf{x}_3 + c_{13}\mathbf{y}_3) +F_1(c_{23}\mathbf{x}_3 + s_{23}\mathbf{y}_3, -s_{23}\mathbf{x}_3 + c_{23}\mathbf{y}_3).$$

Expanding Faddeev components in a series of bispherical harmonics we have

$$F_{\alpha}(\boldsymbol{x},\boldsymbol{y}) = \sum_{l} \frac{f_{l}^{(\alpha)}(x,y)}{xy} \mathscr{Y}_{ll0}(\widehat{x},\widehat{y}), \quad \alpha = 1,3, \qquad x = |\boldsymbol{x}|, \ y = |\boldsymbol{y}|, \ \widehat{x} = \boldsymbol{x}/x, \text{ and } \widehat{y} = \boldsymbol{y}/y.$$

As a results we obtain the partial integro-differential equations

$$\begin{aligned} \left(-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + l(l+1) \left(\frac{1}{x^2} + \frac{1}{y^2} \right) - E \right) f_l^{(\alpha)}(x,y) &= -V_\alpha(x) \psi_l^{(\alpha)}(x,y), \qquad \alpha = 1,3 \\ \psi_l^{(1)}(x,y) &= f_l^{(1)}(x,y) + \sum_{l'} \int_0^1 d\eta \left[h_{(1;ll0)(2;l'l'0)}^0(x,y,\eta) f_{l'}^{(1)}(x_{21}(\eta), y_{21}(\eta)) \right. \\ &+ h_{(1;ll0)(3;l'l'0)}^0(x,y,\eta) f_{l'}^{(3)}(x_{31}(\eta), y_{31}(\eta)) \right], \\ \psi_l^{(3)}(x,y) &= f_l^{(3)}(x,y) + \sum_{l'} \int_0^1 d\eta \left[h_{(3;ll0)(1;l'l'0)}^0(x,y,\eta) f_{l'}^{(1)}(x_{13}(\eta), y_{13}(\eta)) \right. \\ &+ h_{(3;ll0)(2;l'l'0)}^0(x,y,\eta) f_{l'}^{(1)}(x_{23}(\eta), y_{23}(\eta)) \right] \end{aligned}$$

$$\begin{split} h_{(\alpha;l\lambda L)(\beta;l'\lambda'L)}^{L}(x,y,\eta) &= \frac{xy}{x_{\beta\alpha}(\eta)y_{\beta\alpha}(\eta)} (-1)^{l+L} \frac{(2\lambda+1)(2l+1)}{2^{\lambda+l}} \left[(2\lambda)!(2l)!(2\lambda'+1)(2l'+1) \right]^{1/2} \\ &\times \sum_{k=0}^{k_{max}} (-1)^{k}(2k+1)P_{k}(\eta) \sum_{\substack{\lambda_{1}+\lambda_{2}=\lambda,\\ l_{1}+l_{2}=l}} \frac{y^{\lambda_{1}+l_{1}}x^{\lambda_{2}+l_{2}}}{[y_{\beta\alpha}(\eta)]^{\lambda}[x_{\beta\alpha}(\eta)]^{l}} (-1)^{\lambda_{1}}c_{\beta\alpha}^{\lambda_{1}+l_{2}}s_{\beta\alpha}^{\lambda_{2}+l_{1}} \\ &\times \left[(2\lambda_{1})!(2l_{1})!(2\lambda_{2})!(2l_{2})! \right]^{-1/2} \sum_{\substack{\lambda''l''\\ \lambda'' l''}} (2\lambda''+1)(2l''+1) \left(\begin{array}{c} \lambda_{1} \ l_{1} \ \lambda''\\ 0 \ 0 \ 0 \end{array} \right) \\ &\times \left\{ \begin{array}{c} \lambda_{2} \ l_{2} \ l''\\ 0 \ 0 \ 0 \end{array} \right) \left(\begin{array}{c} k \ \lambda'' \ \lambda'\\ 0 \ 0 \ 0 \end{array} \right) \left(\begin{array}{c} k \ l'' \ l''\\ 0 \ 0 \ 0 \end{array} \right) \\ &\times \left\{ \begin{array}{c} l' \ \lambda' \ L\\ \lambda'' \ l'' \ k \end{array} \right\} \left\{ \begin{array}{c} \lambda_{1} \ \lambda_{2} \ \lambda\\ \lambda_{1} \ l_{2} \ l\\ \lambda'' \ l''' \ L \end{array} \right\}, \\ k_{max} &= \frac{1}{2}(l+\lambda+l'+\lambda'). \end{split}$$

Here $P_k(\eta)$ is the Legendre polynomial of order k. The standard notation for the 3-*j*, 6-*j*, and 9-*j* Wigner symbols is used. We also use the notation

$$x_{\beta\alpha}(\eta) = \sqrt{c_{\beta\alpha}^2 x^2 + 2c_{\beta\alpha}s_{\beta\alpha}xy\eta + s_{\beta\alpha}^2 y},$$

$$y_{\beta\alpha}(\eta) = \sqrt{s_{\beta\alpha}^2 x - 2c_{\beta\alpha}s_{\beta\alpha}xy\eta + c_{\beta\alpha}^2 y}.$$

The asymptotic boundary condition for a bound state reads as follows

$$f_l^{(\alpha)}(x,y) = \delta_{l0} \psi_d(x) \exp(i\sqrt{E - \varepsilon_d} y) \left[a_0 + o\left(y^{-1/2}\right) \right] \\ + \frac{\exp(i\sqrt{E}\rho)}{\sqrt{\rho}} \left[A_l^{(\alpha)}(\theta) + o\left(\rho^{-1/2}\right) \right]$$

as $\rho = \sqrt{x^2 + y^2} \to \infty$ and/or $y \to \infty$.

The asymptotic boundary condition for the partial-wave Faddeev components of the $(2+1 \rightarrow 2+1; 1+1+1)$ scattering wave function for $\rho \rightarrow \infty$ and/or $y \rightarrow \infty$ reads

$$f_l^{(\alpha)}(x, y, p) = \delta_{l0} \psi_d(x) \left\{ \sin(py) + \exp(ipy) \left[a_0(p) + o\left(y^{-1/2}\right) \right] \right\} \\ + \frac{\exp(i\sqrt{E}\rho)}{\sqrt{\rho}} \left[A_l^{(\alpha)}(E, \theta) + o\left(\rho^{-1/2}\right) \right],$$

where p is the momentum conjugate to the coordinate y, E the scattering energy given by $E = \varepsilon_d + p^2$, and $a_0(p)$ the elastic scattering amplitude. The functions $A_l(E, \theta)$ provide us for E > 0 with the corresponding partial-wave Faddeev breakup amplitudes.

$$\ell_{\rm sc} = -\frac{1}{2} \sqrt{1 + 2\frac{m_{4\rm He}}{m_{\rm X}}} \lim_{p \to 0} \frac{a_0(p)}{p}, \qquad \qquad \delta_0(p) = \frac{1}{2} \,{\rm Im} \, \ln S_0(p).$$

N.Tariq, N.A.Taisan, V.Singh, and J.D. Weinstein, Phys. Rev .Lett. **110**, 153201 (2013).

^a potential model LM2M2

^b potential model from M. Jeziorska et al., J. Chem. Phys. 127, 124303 (2007)

^c data taken from H.Suno and B.D.Esry, Phys. Rev. A 80, 062702 (2009)

U. Klenkathöfer, K.T. Tang, J.P. Toennies, C.I.Yiu // Chem.Phys.Lett.
 249, 257-263 (1996)
 U. Klenkathöfer, M. Lewerenz, M.Mladenoc // Phys.Rev.Lett. 83, 4717-4720 (1999)

25

^{6;7}Li⁴He₂

E (mK)	present	[11]	[12]	[12]	[13]	[14]	[15]
He-He potential	LM2M2	LM2M2	Jeziorska	LM2M2	LM2M2	KTTY	
He-Li potental	KTTY	KTTY	KTTY	Cvetko	Cvetko	KTTY	
$ \mathbf{E}_{^{7}Li^{4}He_{2}} $	51.11	78.73	81.29	64.26	73.3	45.7	45.7
$ {\rm E}_{7}^{*}{}_{Li^{4}He_{2}} $	5.618	5.685	5.67	3.01	12.2		2.31
$ \mathbf{E}_{6Li^{4}He_{2}} $	35.45				51.9	31.4	31.4
$ E_{6Li^{4}He_{2}}^{*} $	1.719				7.9		-

Table 3. Calculations for binding energies of the trimer Li⁴He₂ in mK.

- [11] M-S. WU, H-L. HAN, CH-B. LI, AND T-Y. SHI Phys. Rev. A 90,062506 (2014).
- [12] H.SUNO, B.D.ESRY, Phys. Rev. A 80, 062702 (2009).
- [13] I. BACCARELLI, G. DELGADO-BARRIO, F. A. GIANTURCO, T. GONZALEZ- LEZANA, S. MIRET-ARTES, AND P. VILLARREAL, *Europhys. Lett.* 50, 567 (2000).
- [14] J.M. YUAN AND C.D.LIN, J. Phys. B 31, L637 (1998).
- [15] A. DELFINO, T. FEDERICO, L. TOMIO, J. Chem. Phys. 113, 7874 (2000).

⁷Li⁴He₂

 $|E_1^* - \varepsilon_d|$

⁷Li⁴He₂

³H - system

Three-body, theory

Phillips line from the original paper, showing the unexpected linear correlation

A.C. Phillips, Nucl. Phys. A 107, 209 (1968).

⁴He₃

V. Roudnev and M. Cavagnero //J. Phys. B 45, 025101 (2012)

⁴He₃

V.Roudnev, M.Cavagnero Phys.Rev.Lett. **108**, 110402 (2012)

Three-body, theory

$^{4}\text{He}_{2}$ - ^{4}He

$$V(x) = \lambda V_{HFD-B}(x)$$

$$\alpha \equiv a_3 \sqrt{-\mu E_2} \propto 1/\sqrt{E_3/E_2 - 1} \equiv \omega$$

E.A.K, Few-Body Syst. 55, 957 (2014)

V.Roudnev, M.Cavagnero *Phys.Rev.Lett.* **108**, 110402 (2012)

Three-body, theory resonances

Root locus curve of scattering matrix

S-matrix root lines in nnp system

S-matrix root lines in ⁴He₃ system

Solid line - Re(S)=0, tiny dashed line – Im(S)=0

E.A.K, Few-Body Syst. 55, 957 (2014)

Some consequences

• There are correlations between two-body and three-body parameters at the two-body threshold

Similar structure of S-matrix for atomic and nuclear systems

Conclusions

- We employed formalism which is suitable for three-body atomic systems interacted via hard-core potential. This method let us calculate bound states and scattering observables.
- Further experiments with better accuracy are necessary!

Thank you !

- •Olga Klimenko (Dubna Univ.)
- Artem Korobitsin (JINR)
- Alexander Motovilov (JINR)
- Werner Sandhas (PI Bonn Univ.)