Emergence of chaotic scattering in ultracold lanthanides.

Phys. Rev. X 5, 041029 arxiv preprint 1506.05221

www.erbium.a

A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with :

Dy group in Stuttgart: T. Maier, H. Kadau, M. Schmitt, M. Wenzel, I. Ferrier-Barbut, T. Pfau Theory group in Temple/Maryland: C. Makrides, A. Petrov, and S. Kotochigova, E. Tiesinga.

iversitä

innsbruck

www.erbium.at

 Toward non-alkali atoms, the quest for atomic richness and the case of magnetic atoms.

Specificity of scattering of ultracold lanthanides

Random Matrix Theory: Complex systems, dense spectra and chaos

 Chaos in Feshbach resonances of Lanthanides: First Erbium study and beyond, describing lanthanides chaoticity.

 Towards a theoretical understanding of the origin of chaos in lanthanides scattering

Experimental achievement of BEC

1																	18
1																	2
H																	He
	2											13	14	15	16	17	4.005
3	4											5	6	7	8	9	10
Li 1995	Be beryllium											B boron	C carbon	N nitrogen	O oxygen	F fluorine	Ne neon
[0.958; 0.997]	9.012											[10.80; 10.83]	[12.00; 12.02]	[14.00; 14.01]	[15.99; 16.00]	19.00	20.18
Na	Ma												Si	D	S		
	magnesium	0		-	0	7	0	0	40		40	aluminium	silicon	phosphorus	sulfur	chlorine	argon
22.99	24.31	3	4	5	6	/	8	9	10	11	12	26.98	[28.08; 28.09]	30.97	[32.05; 32.08]	[35.44; 35.46]	39.95
19	20	21 C o	22 T :		24 C m	25	26 Г а		28	29	30	31	32	33	34	35 Dr	36
		SC scandium	titanium	V vanadium		IVIN manganese	re iron	cobalt	nickel				Ge	AS arsenic	Se selenium	bromine	krypton
	2009	44.96	47.87	50.94	2004	54.94	55.85	58.93	58.69	63.55	65.38(2)	69.72	72.63	74.92	78.96(3)	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Хе
1995	2.01019 87.62	901 91 91 91 91 91 91 91 91 91 91 91 91 91	91.22	92.91	95.96(2)	tecnnetium	rutnenium 101.1	102.9	106.4	107.9	112.4	114.8	tin 118.7	antimony 121.8	127.6	126.9	xenon 131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
2002	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
87	88	89-103	104	105	106	100.2	108	102.2	110	111	112	[204.3, 204.4]	114	203.0	116		
Fr	Ra	actinoids	Rf	Db	Sa	Bh	Hs	Mt	Ds	Ra	Cn		FI		Lv		
francium	radium	dounoido	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
			1									-					,
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		ianthanum 138.9	140.1	140.9	neodymium 144.2	promethium	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	2004 Lf 1 162.5	noimium 164.9	2042	thulium 168.9	173.1	lutetium 175.0]
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103]
		Ac actinium	Th thorium	Pa protactinium	U uranium	Np neptunium	Pu plutonium	Am americium	Cm curium	Bk berkelium	californium	ES einsteinium	Fm fermium	Md mendelevium	No nobelium	Lr lawrencium	
			232.0	231.0	238.0	,											

www.erbium.at

The different condensed atoms

Bose-Einstein condensates

More laser cooled species: Ho and Tm

Strongly dipolar systems

Review articles: M.A. Baranov, Phys. Rep. 464, 71 (2008); T. Lahaye et al., Rep. Prog. Phys. 72, 126401 (2009); M.A. Baranov, & al. Chem. Rev., 2012, 112 (9) (2012)

www.erbium.at

 Toward non-alkali atoms, the quest for atomic richness and the case of magnetic atoms.

Specificity of scattering of ultracold lanthanides (Ln)

Random Matrix Theory: Complex systems, dense spectra and chaos

 Chaos in Feshbach resonances of Lanthanides: First Erbium study and beyond, describing lanthanides chaoticity.

 Towards a theoretical understanding of the origin of chaos in lanthanides scattering

Specific structure of Ln atoms

laser-cooled members Lanthanide (Ln) family

64	65	66	67	68	69	70
Gd	Tb	Dy	Ho	Er	Tm	Yb
157.25	158.93	162.50	164.93	167.26	168.93	173.04
curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
Cm	Bk	Cf	Es	Fm	Md	No
[247]	[247]	[251]	[252]	[257]	[258]	[259]

partially filled 4f electron shell, submerged below a filled 6s shell.

+ ground state with vacancies of large m_{ℓ} of the *f*-shell (ℓ =3) *f* orbital basis

Interactions of lanthanides atoms

$$\hat{H}_{\text{rel}} = -\frac{\hbar^2}{2\mu_r} \frac{\mathrm{d}^2}{\mathrm{d}^2 \vec{r}} + \hat{V}(\vec{r}) \left(+ \hat{H}_Z(B) \right)$$

$$\mu_r : \text{reduced mass} \qquad \text{Zeeman energy}$$

Which specific interaction potential $\hat{V}(ec{r})$ for lanthanide atoms?

Dipole-Dipole interaction (DDI):

$$V_{
m dd}(ec{r}) = -rac{C_3}{|r|^3} \left(3\cos^2 heta - 1
ight)$$

Anisotropic van der Waals dispersion:

$$egin{aligned} V_{
m vdW}(ec{r}) &= -rac{C_6}{|r|^6} \ -rac{C_6}{|r|^6} \left(3\cos^2 heta - 1
ight) \end{aligned}$$

Review: Svetlana Kotochigova, Report on progress in physics, 77, 093901 (2014)

Feshbach resonances in Ln

- induced by hyperfine coupling btw electron and nuclear spins.
- ★ perturbative, weak coupling
- ★ isotropic
- ★ few channels are coupled

- ★ anisotropic: bound-states can have $\ell \neq 0$.
- ★ a large number of channels are coupled (large j).
- ★ [Partial wave are not a natural basis]

Feshbach Spectroscopy in Ln

w.en

Feshbach Spectroscopy in Ln

Er: K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012).

Dy: K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, Phys. Rev. A 89, 020701 (2014)

- high # of resonances compared to alkali: several per Gauss.
- Not easy to encompass from the theory side: traditional methods fail...

+ Theory works:

A. Petrov, E. Tiesinga, S. Kotochigova, PRL 109 103002 (2012)

for a review, see Svetlana Kotochigova, Report on progress in physics, 77, 093901 (2014)

Feshbach Spectroscopy in Ln

Er: A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C. Makrides, A. Petrov, and S. Kotochigova, Nature 507, 475 (2014)

extensive high-resolution trap loss spectroscopy measurements: 13 200 points

- Very dense spectra (compare to alkali): ~200 resonances in [0,70]G!!
- Not easy to encompass from the theory side: traditional methods fail...

New Challenge in Scattering Physics

www.erbium.at

 Toward non-alkali atoms, the quest for atomic richness and the case of magnetic atoms.

Specificity of scattering of ultracold lanthanides

Random Matrix Theory: Complex systems, dense spectra and chaos

 Chaos in Feshbach resonances of Lanthanides: First Erbium study and beyond, describing lanthanides chaoticity.

Towards a theoretical understanding the origin of chaos

Handling complex spectra

Wigner (1950):

Can we identify / forecast **global** spectral properties of a system with complex interactions without integrating the microscopic Hamiltonian ? ⇒ statistical approach

a	Ъ	c	d	e	f	
			\equiv		\equiv	Pandom Matrix
\equiv	_					- How to characterize
$ \ge $		\equiv	\equiv	_	_	some properties of
	\equiv		_			systems with
-			È		=	Chanales spectro?ew
		-				statistical properties of
			\equiv			
	-					the energy spectrum
				-		
				-		
						Look at the global
			BUTCHER DOT			LOOK at the global
-						properties of the
		and the second second				spectrum
						opeenann
			-			
-		-				
		-				
			and the second second			
-						
		\equiv				
Poisson.	Primes	n+ Er	Sinai	Zeros Z(s)	Uniform	Bonigas and Giannoni (1984)

1950's Wigner, 1960's Dyson, Mehta, and Gaudin. Originally designed for heavy nuclei

Random Matrix Theory

Can predict global spectrum properties:

Without integrating the real Hamiltonian.

Statistical analysis of a set of random Hamiltonians.

$$\hat{H}_{real} \longrightarrow \begin{cases} \hat{H}_i^{random} = \end{cases}$$

ſ

$$\begin{pmatrix} H_{1,1} & \cdots & H_{1,n} \\ \text{random coupling terms} \\ \text{Gaussian distributed} \\ H_{n,1} & \cdots & H_{n,n} \end{pmatrix}_i \\ i \in [1,N]$$

Condition on the random matrix: Respect the same symmetries as the real H !

Reproduce the correlations of the complex spectrum of a real system !!

1950's Wigner, 1960's Dyson, Mehta, and Gaudin. Originally designed for heavy nuclei

Level correlations & RMT

RMT universality & chaos

\Rightarrow Universality of level correlation functions.

O. Bohigas, M.J. Giannoni, C. Schmit, PRL (1984)

RMT universal applications

Wigner Surmise in Erbium

www.erbium.at

A. Frisch et al. Nature 507, 475 (2014)

www.erbium.at

 Toward non-alkali atoms, the quest for atomic richness and the case of magnetic atoms.

Specificity of scattering of ultracold lanthanides

Random Matrix Theory: Complex systems, dense spectra and chaos

 Chaos in Feshbach resonances of Lanthanides: First Erbium study and beyond, describing lanthanides chaoticity.

Towards a theoretical understanding the origin of chaos

www.erbium.at

A joint effort to better understand the chaotic scattering of Lanthanide atoms.

Er Group (Ferlaino et al.) + Dy Group (Pfau et al.) + Theory Group (Kotochigova/Tiesinga)

Is this generalizable to other atomic species?Thorough comparison of the behavior of 2 Lanthanides: Er and Dy (+isotopes).

What is the origin of chaotic scattering? Effort toward a better theoretical understanding.

From where come some specific behavior? Investigate temperature and magnetic field dependence

Development of more accurate numerical simulations for both species.

New measurements.

Additional extensive high-resolution trap loss spectroscopy measurements:

- Dy 164 @ 600 nK (Pfau group, Stuttgart)
- ◆ Er 168 @ higher T = 1400 nK.
 ◆ Er 167 @ T = 400 nK.

w.er

Density of resonances

www.erbium.at

• Staircase function(B) = number of resonance with $B_{res} < B$.

Derivative: Density of resonances ρ. Deduced from linear fit.

Exact values depend on specific scattering parameters, e.g. **number of channels**!

 \Leftarrow # of Zeeman sub-levels in the ground state.

Fermionic isotope: Hyperfine structure

Dy : larger j than Er

Same order of magnitude:

Similar scattering scheme!

Nearest Neighbour spacing distribution

→ **Brody** distribution: unique parameter $\eta \in [0,1]$. **Empirical**

 $\eta(Er) > \eta(Dy)$ even though $j_{Er} < j_{Dy}$

Correlation as a function of B

w.er

Summary of experimental observations

Lanthanides ⇒ very dense FR spectra.

www.erbium.at

RMT analysis of the resonance correlations: - (partial) levels repulsion - reduced variance // shotnoise

The number of channels affects the number of resonances but no straightforward link: j ⇄ correlation degree

Correlation develops with B T affects the number of resonance but not their correlations

www.erbium.at

 Toward non-alkali atoms, the quest for atomic richness and the case of magnetic atoms.

Specificity of scattering of ultracold lanthanides

Random Matrix Theory: Complex systems, dense spectra nad chaos

 Chaos in Feshbach resonances of Lanthanides: First Erbium study and beyond, describing lanthanides chaoticity.

Towards a theoretical understanding the origin of chaos

Toy model based on RMT

replace by

RMT idea

B=0 Hamiltonian Zeeman energy

- Set of random matrices, extract global properties of spectra and average
- respect symmetry (GOE): n×n real-symmetric matrix, n =500
- respect structure (B-dependence)

Toy model based on RMT

mean spacing of $E_i^{(0)}$: ϵ_d /h =6.4 MHz

Toy model based on RMT

Coupled channel calculations

w.er

Coupled channel calculations

$$\hat{V}_{a}(\vec{R}) = \lambda_{\Delta C_{6}} V_{\Delta C_{6}}(\vec{R}) + \lambda_{\text{MDD}} V_{\text{MDD}}(\vec{R})$$

 Lanthanides show very rich Feshbach resonance spectra with similar global properties for both Dy and Er isotopes

 Correlations of the resonances reveal quantum chaos and manifest by spectral rigidity and level repulsion.

 Explained by anisotropy of the interaction and density stemming from the special electronic structure of Lanthanides

