The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture

Juris Ulmanis, Stephan Häfner, Rico Pires, Eva Kuhnle, and Matthias Weidemüller

http://physi.uni-heidelberg.de/Forschung/QD

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

University of Excellence

Center for Quantum Dynamics

University of Science and Technology of China

HEFEI NATIONAL LABORATORY FOR PHYSICAL SCIENCES AT THE MICROSCALE

Physikalisches Institut

Efimov's scenario

ENERGY LEVELS ARISING FROM RESONANT TWO-BODY FORCES IN A THREE-BODY SYSTEM

V. EFIMOV

A.F.Ioffe Physico-Technical Institute, Leningrad, USSR

Received 20 October 1970

Resonant two-body forces are shown to give rise to a series of levels in three-particle systems. The number of such levels may be very large. Possibility of the existence of such levels in systems of three α -particles (¹²C nucleus) and three nucleons (³H) is discussed.

Phys. Lett. B 33, 563-564 (1970)

universal trimers with relevance for nuclear physics molecular physics atomic physics

Efimov's scenario

 $a \rightarrow \pm \infty \qquad a \gg r_0$ $\lambda = 22.7$

effective 1/R² potential

- infinite number of bound states
- discrete scaling symmetry

 $\psi_n(R) = \psi_{n-1}(\lambda R)$

$$E_n = \lambda^{-2} E_{n-1}$$

Experimental observation in ultracold gases

Universal insights from few-body land

Chris H. Greene

Physics Today **63**, 40 (2010)

NATURE|Vol 440|16 March 2006

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer¹, M. Mark¹, P. Waldburger¹, J. G. Danzl¹, C. Chin^{1,2}, B. Engeser¹, A. D. Lange¹, K. Pilch¹, A. Jaakkola¹, H.-C. Nägerl¹ & R. Grimm^{1,3}

Recent experiments

NATURE Vol 440 16 March 2006

25

20

15

10

5

0 L

-1.5

\$

Recombination length (1,000a₀)

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer¹, M. Mark¹, P. Waldburger¹, J. G. Danzl¹, C. Chin^{1,2}, B. Engeser¹, A. D. Lange¹, K. Pilch¹, A. Jaakkola¹, H.-C. Nägerl¹ & R. Grimm^{1,3}

2

1.5

0.5

0

0

0.2

0.5

0.4

Recombination length

-0.5

(1,000a₀)

More experiments at (homo- and heteronuclear):

0

Scattering length (1,000a₀)

Aarhus, Chicago, ENS, Heidelberg, Houston, JILA, LENS, Pennsylvania, Ramat-Gan, Tokio, Tübingen ...

Enhancing observability of Efimov's scenario

Equal masses

22.7

Finite intraparticle scattering lengths

Short-range effects

Finite intraspecies scattering lengths

Heteronuclear Efimov scenario

Initial concept with vdW potentials: Wang et al., Phys. Rev. Lett. 109 243201 (2012)

Mixing Li and Cs at nK temperatures

Tuning scattering length in Li-Cs

Feshbach resonances:

coupled-channels calculations by Eberhard Tiemann

Repp *et al.,* Phys. Rev. A **87**, 010701(R) (2013); see also: Tung *et al., ibid.,* 010702(R) Pires *et al.,* Phys. Rev. A **90**, 012710 (2014)

Three-body loss rate coefficient

Rate equations:

$$\dot{n}_{CS} = -L_1^{CS} n_{CS} - 2L_3 n_{Li} n_{CS}^2 - 2L_3^{LiLiCS} n_{Li}^2 n_{CS} - L_3^{CS} n_{CS}^3$$
$$\dot{n}_{Li} = -L_1^{Li} n_{Li} - L_3 n_{Li} n_{CS}^2 - 2L_3^{LiLiCS} n_{Li}^2 n_{CS} - L_3^{Li} n_{Li}^3$$

Assumptions:

- Fermionic Li
 - \rightarrow suppression of L_3^{LiLiCs} and L_3^{Li}
- constant temperature

•
$$L_3^{Cs} \rightarrow \text{constant}$$

Successive Efimov resonances

R. Pires *et al.*, PRL **112**, 250404 (2014); see also: S. Tung *et al.* (Chin group), PRL **113**, 240402 (2014) *Single Efimov resonance in Li-Rb:* R.A.W. Mayer *et al.*, PRL **115**, 043201 (2015)

Tuning scattering length in Li-Cs

Mapping $a_{LiCs}(B)$ and $a_{Cs}(B)$

Cs-Cs interactions (Grimm group): Berninger et al., Phys. Rev. A 87, 032517 (2013)

Li-Cs interactions (our work):

Repp et al., Phys. Rev. A 87, 010701(R) (2013) Pires et al., Phys Rev. A 90, 012710 (2014) Ulmanis et al., New J. Phys. 17, 055009 (2015)

Li-Cs interactions (Chicago):

Tung et al., Phys. Rev. A 87, 010702(R) (2013)

rf association of (universal) LiCs dimers

Reaching lower temperatures

• Compensation of gravitational sag

Observation of three Efimov resonances

J. Ulmanis et al., PRA 93, 022707 (2016)

Zero-range model

zero-range finite temperature model: D. Petrov and F. Werner, PRA 92, 022704 (2015)

• S-Matrix formalism

$$L_3 = 4\pi^2 \cos^3 \phi \frac{\hbar^7}{\mu^4 (k_{\rm B}T)^3} (1 - e^{-4\eta})$$

$$\times \int_{0}^{\infty} \frac{1 - |s_{11}|^2}{\left|1 + (kR_0)^{-2is_0} e^{-2\eta} s_{11}\right|^2} e^{-\hbar^2 k^2 / 2\mu k_{\rm B} T} k dk$$

- Parameters:
 - s_{11} dependent on ka_{LiCs} , ka_{Cs} and mass ratio
 - Scaling factor $\exp(\pi/s_0)$
 - Temperature T
 - Inelasticity parameter $oldsymbol{\eta}$
 - Three-body parameter R_0

Alternative method using optical potentials: M. Mikkelsen et al, J. Phys. B. 48, 085301 (2015)

Comparison with zero-range model

Fit of zero-range theory

- Resonance width $\eta = 0.6 0.8$
- Three-body parameter $R_0 = 125 a_0$
- Absolute loss-rate

J. Ulmanis et al., PRA 93, 022707 (2016)

Comparison with zero-range model

- Consistent description of excited state recombination resonances
- Deviation from universal scaling factor of 4.877
- Non-universal ground state resonance $a_{-}^{(0)}$

Simplistic Born-Oppenheimer picture

Simplistic Born-Oppenheimer picture

Three-body recombination: $\bar{a} < 0$

vdW scaling factors: $\lambda_1 = 5.3 \pm 0.1$ $\lambda_2 = 5.1 \pm 0.2$

Universal zero-range theory:

 $\lambda_1 = 5.08$ $\lambda_2 = 5.18$

Universal van der Waals model: Yujun Wang and Chris Greene Wang et al., Phys. Rev. Lett. 109 243201 (2012)

Three-body recombination: $\bar{a} < 0$

Power laws for XXY and XYZ systems: J. D'Incao and B. Esry, Phys. Rev. Lett. 103, 083202 (2009)

Efimov's universal function

Simplistic Born-Oppenheimer picture

Tuning scattering length in Li-Cs

Mapping $a_{LiCs}(B)$ and $a_{Cs}(B)$

Cs-Cs interactions (Grimm group): Berninger et al., Phys. Rev. A 87, 032517 (2013)

Li-Cs interactions (our work):

Repp et al., Phys. Rev. A 87, 010701(R) (2013) Pires et al., Phys Rev. A 90, 012710 (2014) Ulmanis et al., New J. Phys. 17, 055009 (2015)

Li-Cs interactions (Chicago):

Tung et al., Phys. Rev. A 87, 010702(R) (2013)

Three-body recombination: $\bar{a} > 0$

Efimov spectrum for Li-Cs-Cs

Three-body energy spectrum for attractive Li-Cs interactions ($a_{LiCs} < 0$) Universal van der Waals model: Y. Wang et al., *Phys. Rev. Lett.* 109 243201 (2012)

Calculations with the hyperspherical formalism by Chris Greene and Yujun Wang

Dissappearance of the resonance

Simplistic Born-Oppenheimer picture

Summary

- Heteronuclear Efimov physics with large mass imbalance
- Observation of a series of 3 consecutive heteronuclear Efimov resonances in three-body losses for negative Cs scattering length
- Observation of two Efimov resonances and missing lowest resonance for positive Cs scattering length
- Role of short-range interactions (universal and nonuniversal regimes)
- Influence of the heavy-heavy scattering length

Repp *et al.,* Phys. Rev. A **87**, 010701(R) (2013) Pires *et al.,* PRL **112**, 250404 (2014) Pires *et al.,* Phys. Rev. A **90**, 012710 (2014) Ulmanis *et al.,* New J. Phys.**17**, 055009 (2015) Ulmanis *et al.,* Phys. Rev. A **93**, 022707 (2016) Ulmanis *et al.,* National Science Reviews, in press Ulmanis *et al.,* to be published

Outlook

Li-Cs team

Cooperations

John Bohn (JILA) Chris Greene (Purdue) Dima Petrov (Paris Sud) Tobias Tiecke (Harvard) Eberhard Tiemann (Hannover) Yujun Wang (Kansas) Felix Werner (ENS) €€€: DAAD IMPRS-QD CQD BWS

Stephan Häfner (PhD) Manuel Gerken (master student) Robin Eberhard (bachelor) JU (postdoc)

Former members: Eva Kuhnle (postdoc) Rico Pires (PhD, postdoc) Carmen Renner (Lehramt) Alda Arias (master student) Marc Repp (PhD, postdoc) Arthur Schönhals (master student) Robert Heck (master student)

