

Fakultät für Naturwissenschaften

Institut für Quantenoptik Institut für Quantenphysik

Einladung

zum

Seminar der Institute für Quantenoptik und Quantenphysik

Prof. Dr. Sándor Varró

Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest ELI-ALPS, ELI-HU Nonprofit Ltd., Szeged, Hungary

Regular phase coherent states represented by s-waves

Donnerstag, den 27. April 2017 10:00 Uhr O28/ H21

Abstract:

Recently we have introduced a new regular phase operator, regular phase coherent states, and the associated "R-functions" and quantum phase probability distributions, for describing optical fields. The regular phase coherent states – which we have found as eigenstates of a new 'exponential phase operator' – has turned out to be the natural basis for treating phase-related quantities [1].

In the present talk we analyse new possible physical interpretations of this abstract formalism, by going beyond its original target, and giving closed-form analytic expressions for the regular coherent states in special 'coordinate' representations. First we discuss the coherent superpositions of zero-angular-momentum radial wave functions, i.e. s-waves, of a D-dimensional isotropic oscillator, in which case the 'coordinates' are considered as (monochromatic electric field strength) quadratures. Some applications of these coherent waves in the theory of black-body radiation will be outlined. In our second example, we show that the Hankel transform of such s-waves may also be used as wave-packet profiles for describing the free propagation and expansion of material many-boson systems in real space, where now D is three times the number of particles. In each case the regular phase coherent states correspond to exponential radial localization of the coordinates.

Reference [1] Varro S, Regular phase operator and SU(1,1) coherent states of the harmonic oscillator. *Physica Scripta* 90 (2015) 074053. E-print: arXiv: 1412.3218v2.