

Fakultät für Naturwissenschaften Institut für Quantenphysik

Einladung

zum

Seminar des Instituts für Quantenphysik

Prof. Dr. Sven Ahrens Shanghai Normal University

Relativistic description of spin effects of the diffraction of electrons at standing light waves

Dienstag, den 2. Juli 2019 14:00 Uhr N24/227

Abstract:

The superposition of two counter-propagating laser beams is forming a standing wave of light, which can act as optical grating for traversing particles. This effect has already been discussed in 1933 by Kapitza and Dirac [1] and was demonstrated experimentally by Freimund, Aflatooni and Batelaan [2]. Nowadays, one of the main applications of the Kapitza-Dirac effect is the usage of diffraction for the study of macroscopic quantum objects in interference experiments [3]. Also electron spin effects are considered to be possible in the Kapitza-Dirac effect [4,5], though only for very specific parameters. In my talk, I will present a momentum space description for solving the relativistic quantum dynamics (Dirac equation) of the electron wave packet in a standing light wave. Based on this method I will discuss the possibility of spin effects and also spin-dependent diffraction from numeric and analytic solutions of the theoretical quantum description. At the end I will further discuss considerations about the experimental feasibility of spin-dependent electron diffraction.

[1] Kapitza and Dirac, Math. Proc. Cambridge Philos. Soc. 29, 297 (1933).

[2] Freimund, Aflatooni and Batelaan, Nature 413, 142 (2001).

[3] Arndt, Nairz, Vos-Andreae, Keller, van der Zouw and Zeilinger,

Nature 401, 680 (1999).

[4] Ahrens, Bauke, Keitel and Müller, Phys. Rev. Lett. 109, 043601 (2012).

[5] Dellweg and Müller, Phys. Rev. Lett. 118, 070403 (2017).