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Quantum physics is the uncontested and best-confirmed theory of nature, and yet a number 
of essential questions still need to be solved:  
Why do we find a unitary and linear evolution in quantum mechanics and its relativistic 
extensions but not in the macroscopic world we live in? What defines the cut between 
coherent superpositions of quantum states and the classical world view where irreversible 
measurements pick one of potentially many mutually exclusive possibilities? How can 
measurement play the trick if it is a quantum interaction itself?  What is the role of complexity 
or gravity in the quantum-to-classical transition? 
These questions have been guiding our research in prototypical test of the quantum nature of 
matter, which can be regarded as modern extensions of the double slit experiment with 
massive particles. 
Starting from the demonstration of diffraction of hot fullerenes at nanomechanical1 and 
optical2 nanostructures, we have generalized this experiment to full-fledged matter-wave 
interferometry with mesoscopic objects in different experimental configurations with 
nanomechanical 3, 4, phase gratings5 and purely optical photo-depletion gratings6.   
We were able to demonstrate the de Broglie wave nature of complex many body systems such 
as molecular clusters7, macromolecules8 and biomolecules9, even with molecules more 
massive than 10’000 amu, composed of more than 800 atoms10. In all these experiments, 
quantum mechanics was well confirmed and always clearly distinct from a classical world 
view.  
We show that one can measure internal particle properties, such as structural 
conformations11,  electronic12, magnetic and optical13 properties, while molecules are being 
quantum delocalized and even at internal microcanonical temperatures of up to 1000 K. The 
experiments illustrate that quantum superposition states of momentum and position can be 
realized and visualized even for complex bodies that we would commonly associate with the 
classical world, for instance when we eat them9.  
If all this can be done, what prevents the appearance of Schrödinger cat states in our everyday 
lives? Is there a limit in mass, or complexity? This is a valid experimental question that 
deserves attention, independent of any theory. Models provide additional motivation:  
Decoherence theory14, 15 offers a perfectly valid explanation for the absence of quantum 
phenomena in a world that is still highly quantum and entangled by unavoidable interactions 
between a subsystem and its environment. However, decoherence theory does not address 
the philosophical question whether quantum superpositions may break under any 
circumstances at any time.   
Testing for objective wave function collapse in real space, either spontaneously16, 17 or 
mediated by gravity18, 19 has been the goal of models20 that extend the Schrödinger equation 
by non-linear. While many versions of such models have already been constrained by non-
quantum experiments21, genuine quantum experiments in the regime of 107-1012 amu appear 
important and necessary to test these models, definitely.  The future realization of quantum 
superposition states in this mass range could also shed light on models that combined 
quantum mechanics and gravity theory, such as the Schrödinger Newton equation22. 
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Even before this is realized, various additional effects of gravity do enter quantum 
interference experiments: gravitational free fall constrains the coherent evolution and 
observation time for un-trapped quantum systems. Gravity can also imprint large phase shifts 
on matter-waves whose partial components probe different heights in the Earth’s 
gravitational field. It has been considered whether high-mass interference might be sensitive 
to gravitational waves23  or dark matter24 or unconventional tests of the weak equivalence 
principle25. Some of these phenomena will be briefly revisited to point to the state of the art 
and future research directions in the lab, in drop towers and on satellites26. 
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