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Abstract

In this thesis, ultracold, quantum degenerate, strongly interacting Fermi gases
are created and studied. The experiments are carried out with a two-component,
harmonically trapped Fermi gas of 6Li atoms in the vicinity of a broad magnetic
Feshbach resonance at 832.2 Gauss, which allows for precisely tuning the inter-
particle interactions.

The main focus of this thesis is the experimental investigation of short-range
two-body correlations in the Bardeen–Cooper–Schrieffer to Bose-Einstein con-
densate (BCS-BEC) crossover. In the crossover at low temperatures, the Fermi
gas undergoes a transition from a state of weakly bound Cooper pairs to a state
of tightly bound molecules. Thereby, the short-range pair correlations change
markedly. To probe these correlations, we employ a recently proposed photoex-
citation scheme, where fermion pairs are transferred to an excited molecular
state. The efficiency of the photoexcitation process yields Tan’s contact parame-
ter. This parameter is not only a measure for short-range two-body correlations
but also a fundamental quantity for describing various properties of strongly
interacting Fermi gases. The experimental results provide a comprehensive map
of the contact parameter in the entire phase diagram of the BCS-BEC crossover
for various temperatures and interacting strengths. This complements previous
work of ours in which we experimentally determined the pair fraction on the
BEC side above the critical temperature for superfluidity.

A second topic of this thesis is the test of a new scheme for the holographic
detection of single atoms in optical lattices which was recently proposed by us.
In the experimental test setup, the atoms are imitated by holes in an opaque
mask. Our results indicate that already a small number of scattered photons is
sufficient to accurately detect occupied lattice sites. This suggests holographic
imaging scheme might be a suitable method for non-destructive single atom
imaging. This project was supervised by me and carried out as the master’s
thesis of Sebastian Kölle.

On the technological side, I present the implementation and major improve-
ments on our robust all-solid-state laser system at 671 nm. This laser system
features a stable output power of more than one watt and a narrow linewidth of
about 250kHz. It is therefore well suited for laser cooling of lithium atoms and
has been successfully used in our experiments for almost one and a half years.
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Zusammenfassung

In dieser Arbeit werden quantenentartete, stark wechselwirkende Fermi-Gase
erzeugt und untersucht. Die Experimente werden mit einem ultrakalten atom-
aren Gas aus fermionischen 6Li-Atomen in zwei Spinzuständen durchgeführt,
das sich in einer harmonischen Falle befindet. Dabei arbeiten wir in der Nähe
einer breiten magnetischen Feshbach-Resonanz bei 832.2 Gauß, die eine präzise
Kontrolle über die Wechselwirkung zwischen den Teilchen ermöglicht.

Der Schwerpunkt dieser Dissertation ist die experimentelle Untersuchung von
kurzreichweitigen Zweikörper-Korrelationen im Bardeen-Cooper-Schrieffer-Bose-
Einstein-Condensate (BCS-BEC) Übergang. Bei diesem Übergang wechselt das
Fermi-Gas bei niedrigen Temperaturen von einem Zustand schwach gebun-
dener Cooper-Paare zu einem Zustand fest gebundener Moleküle. Dabei än-
dern sich die kurzreichweitigen Paarkorrelationen maßgeblich. Um diese Ko-
rrelationen zu untersuchen, verwenden wir ein kürzlich vorgeschlagenes An-
regungsschema, bei dem Fermionenpaare durch Photonen in einen angeregten
Molekülzustand überführt werden. Aus der Effizienz des Photoanregungs-
prozesses erhalten wir den Tan Contact Parameter. Diese Größe ist nicht
nur ein Maß für Zweikörper-Korrelationen, sondern auch eine grundlegende
Größe zur Beschreibung zahlreicher Eigenschaften von stark wechselwirkenden
Fermi-Gasen. Unsere Messungen decken einen großen Bereich von Wechsel-
wirkungsstärken und Temperaturen ab, wodurch wir den Tan Contact Param-
eter im gesamten Phasenraum des BCS-BEC-Übergangs erhalten. Dies ergänzt
frühere Arbeiten von uns, in denen wir den Paaranteil auf der BEC-Seite ober-
halb der kritischen Temperatur bestimmt haben.

Ein zweites Thema der Arbeit ist der Test eines kürzlich von uns vorgeschla-
genen Schemas zur holographischen Abbildung einzelner Atome in optischen
Gittern. Im experimentellen Versuchsaufbau werden die Atome von Löchern in
einer lichtundurchlässigen Maske nachgeahmt. Unsere Ergebnisse deuten da-
rauf hin, dass bereits eine kleine Anzahl gestreuter Photonen für die Erkennung
besetzter Gitterplätze ausreicht. Dies könnte die Methode zu einem geeigneten
Werkzeug für die zerstörungsfreie Einzelatomabbildung machen. Dieses Pro-
jekt wurde von mir betreut und im Rahmen einer Masterarbeit von Sebastian
Kölle durchgeführt.

Auf der technologischen Seite stelle ich die Implementierung und wesentliche
Verbesserungen unseres Eigenbau-Festkörperlasersystems bei 671 nm vor. Die-
ses Lasersystem verfügt über eine stabile Ausgangsleistung von mehr als einem
Watt und über eine schmale Linienbreite von etwa 250 kHz. Es ist damit die
für die Laserkühlung von Lithiumatomen geeignet und wird seit fast eineinhalb
Jahren erfolgreich in unseren Experimenten verwendet.
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Chapter 1

Introduction

Understanding correlations and interactions between elementary particles and
complex entities is a cornerstone of scientific progress. Of particular importance
are pair correlations in fermionic systems, since fermions - such as electrons,
protons and neutrons - form the basis of all matter. At temperatures approaching
absolute zero, correlations in these systems become especially pronounced and
play a central role in phenomena such as superfluidity and superconductivity
[1–5]. In this context, ultracold quantum gases have proven to be a powerful and
highly controllable platform for studying such fundamental physics [6–8]. The
preparation and investigation of these quantum systems has opened up new
avenues of research which has been recognized with three Nobel Prizes over the
last years in 1997, 2001 and 2012.
In our experiments in Ulm, we investigate ultracold, quantum degenerate gases
of fermionic 6Li atoms in two hyperfine states. These atomic ensembles are
brought into the strongly interacting regime by enhancing the scattering between
the atoms using a magnetic Feshbach resonance [9]. This has significant effects
on the short-range pair correlations which strongly effect the physical properties
of the system [10–12]. The investigation of these correlations is the main focus
of my thesis. In addition to two first-author publications on this topic [13, 14],
I contributed to preliminary work as a third author [15, 16]. Moreover, I have
worked on two further topics. The first involves testing a new optical imaging
method for atoms in an optical lattice [17]. In the test setup, the atoms are
imitated by submicron holes in an opaque mask. This work was conducted
within the master’s thesis of Sebastian Kölle, which I supervised. The second
topic is more technological in nature. I significantly improved and implemented
a self-built solid-state laser system into our experimental setup. This system has
now been successfully used for laser cooling in our laboratory for almost one
and a half years.
In the following, I will briefly discuss the different topics of my thesis and
provide additional background information.

Pair correlations in ultracold Fermi gases
Pair correlations are a fundamental concept across all fields of physics, describ-
ing the statistical relationships between pairs of particles or complex entities.
In nuclear physics, they describe the microscopic behaviour of elementary par-
ticles, such as the bonding interactions within the atomic nucleus. In cold
chemistry, they are essential for explaining reaction dynamics and molecular
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interactions [18] and enable a deeper insight into various physical and chemical
processes. Even in astrophysics, at the other end of the length scale, pair cor-
relations characterize the relations between celestial bodies such as planets or
stars in solar systems, binary stars or galaxies.
In this context, ultracold quantum gases offer a unique platform to study pair
correlations in a highly controllable environment [7, 8, 19]. These atomic or
molecular gases are cooled to temperatures near absolute zero, where the wave
functions of individual particles start to spatially overlap forming a quantum
many-body system [20–22]. This results in phenomena like superfluidity and
superconductivity [1–5]. By means of Feshbach resonances, the effective interac-
tion between the particles can be precisely tuned, allowing to investigate a large
range of pairing interactions [9]. A particularly interesting type of system in
this regard is the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein Condensate
(BEC) crossover in ultracold Fermi gases. In the crossover, the superfluid state of
the Fermi gas smoothly transitions from a state of weakly bound Cooper pairs, as
present in superconductors, to a state of tightly bound molecules, characteristic
for a Bose-Einstein condensate [23]. In this context, pair correlations describe
the relations between fermions of opposite spin, including their spatial and mo-
mentum distributions. Spatial correlations thereby quantify the probability of
finding interacting pairs of particles at a certain distance from each other.
In the BCS regime, the weak attraction between fermions leads to the forma-
tion of Cooper pairs that condense into a coherent superfluid state with pair
sizes much larger than the interparticle spacing [2, 3]. Crossing the Feshbach
resonance, the nature of the pairs fundamentally changes, as the pairs become
more localized and eventually form tightly bound molecules in the BEC regime
[9, 20]. This continuous evolution is accompanied by significant changes in the
pair correlations [16]. These microscopic correlations also manifest in macro-
scopic properties of the Fermi gas. This is demonstrated in measurements of the
density distribution shown in Figure 1.1. A detailed explanation is given in the
figure caption.
In recent years, various groups have used experimental techniques such as radio-
frequency spectroscopy [26] and Bragg spectroscopy [27] to probe pairing and
pair correlations in ultracold Fermi gases. In addition, theoretical approaches
have been employed to study these correlations. These include mean-field the-
ories, quantum Monte Carlo simulations and other advanced computational
methods [28–30]. All these efforts have provided insights into the pair correla-
tions in certain regions of the BCS-BEC crossover phase space. What has been
missing so far is a comprehensive picture of the pair correlations in the entire
crossover at various interaction strengths and temperatures.
With our studies, we contribute to closing this gap by precisely measuring the
short-range two-body correlations in BCS-BEC crossover. For this, we work with
a spin-balanced, ultracold, harmonically-trapped Fermi gas of 6Li atoms. This
atomic species features a broad magnetic Feshbach resonance at 832.2 Gauss,
which allows for precisely tuning the interparticle interactions and correlations.
We measure the short-range two-body correlations using a novel method based
on photoexcitation of atom pairs as recently proposed by Wang et al. [31]. In this
scheme, two atoms at close range are transferred to an excited, tightly-bound
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Interaction parameter (kFas)-1

0

Temperature

Molecular BEC

BCS superfluid Unitary Fermi liquid

Figure 1.1: Density distributions of a harmonically trapped, strongly interacting
Fermi gas in the BCS-BEC crossover. The fundamental change of
the microscopic pair correlations with temperature and interaction
strength is also evident in the density distribution of the macroscopic
atom cloud, especially in the superfluid state for T → 0. For an in-
teraction parameter of (kFas)

−1 > 0, corresponding to an effective
repulsive interaction, fermions of opposite spin form tightly bound
molecules. At low temperatures, these condense into a molecular
Bose-Einstein condensate, where the energetic ground state of the gas
is macroscopically populated. In a harmonic trapping potential, the
corresponding ground state wave function has a small spatial exten-
sion. Consequently, the macroscopic atomic cloud is characterized by
a small spatial extension and a high density. For effective attractive
interactions ((kFas)−1 < 0) and low temperatures, pairs of fermions
form Cooper pairs at the surface of the Fermi sea resulting in a BCS
type superfluid. The majority of the atomic cloud however still re-
sembles an almost ideal degenerate Fermi gas. Such a gas has a large
spatial extension due to the Fermi pressure, which arises from the
Pauli exclusion principle [24, 25]. As the temperature increases, the
thermal energy of the atoms becomes larger than the associated bind-
ing energies. As a consequence, both Cooper pairs and molecules
break up and the density distribution becomes insensitive to the in-
teraction parameter. For more details, see Chapters 2 and 9.

molecular state using photoexcitation. The photon thereby ensures energy con-
servation. Strong short-range correlations, associated with a scenario in which
the atoms are initially already paired closely together, consequently lead to
an efficient photoexcitation process. The rate at which we transfer pairs of
atoms into the tightly-bound molecular state is therefore a direct measure of the
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present short-range two-body correlations. These correlations are quantified
by a parameter called Tan’s contact. This parameter plays a significant role in
the description of strongly interacting Fermi gases, as it appears in countless
thermodynamic relations that describe such a gas [10–12, 32, 33]. With our mea-
surements, we obtain a continuous map of Tan’s contact in the entire BCS-BEC
crossover. This complements previous work of ours in which we experimentally
determined the fraction of paired fermions on the BEC side above the critical
temperature for superfluidity [15].

Single-site detection of atoms in optical lattices
In recent years, the investigation of ultracold atoms in optical lattices has led
to numerous breakthroughs in fundamental research [34–36]. Beyond their ap-
plications in quantum simulation and information processing [37, 38], atoms in
optical lattices provide a versatile platform for studying fundamental aspects
of many-body and condensed matter physics, particularly in the examination
of tailored solid-state-like systems [39–42]. Fermionic atoms in optical lattices
are thereby utilized to mimic the behaviour of electrons in solids, as both are
fermions and obey the Pauli exclusion principle [25]. The large lattice constants
of optical lattices and the ability to tune the interparticle interactions offer a
major advantage over research in solids. Especially the magnetic Feshbach res-
onance in lithium-6 enables a precise control of the on-site interaction [9, 43].
For all studies, a spin resolved detection of the atomic distribution at the level
of individual lattice sites is highly advantageous. However, these imaging tech-
niques are particularly challenging for light elements such as lithium because of
the high recoil energy. This energy is inversely proportional to the atomic mass
and limits the number of photons that can be scattered before the atoms are
heated and ejected from the lattice. Therefore, the aim is to develop detection
systems that only require a small number of scattered photons per atom. A great
variety of such methods has already been developed. This includes established
techniques such as phase contrast imaging [44, 45] and intensity-based defocus-
contrast imaging [46, 47], but also more recently developed methods such as
dark-field Faraday rotation imaging [48] and shadow-graph imaging [49].
We have recently proposed a novel approach for the detection of atoms in a 2D
optical lattice based on off-axis holography [50]. In this scheme, a laser beam of
low intensity illuminates the atoms in the lattice and is subsequently scattered.
The scattered light is collimated by an objective and superimposed with a co-
herent reference beam. This beam acts an amplifier for the weak atomic signals.
From the resulting interference pattern, one can obtain valuable information
about the occupied lattice sites. This has very recently been employed for imag-
ing large atomic clouds of 107 sodium atoms [51]. We now test our proposal for
the situation of atoms in an optical lattice [17]. In order to create a reproducible
and low-noise test environment, the atoms in our setup are imitated by submi-
cron holes in an opaque mask. This enables a precise testing of the proposed
scheme under various aspects with well-defined lattice configurations. Our re-
sults indicate, that already a few hundred photons scattered per atom could be
sufficient to reliably identify occupied lattice sites [17].
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Solid state laser sources
The invention of lasers has revolutionized numerous scientific fields and paved
the way for the area of ultracold quantum gases [52–55]. Methods of laser cooling
and trapping have achieved the necessary reductions of the atomic phase space
densities to reach quantum degeneracy [56, 57]. In this context, lasers are
used for manipulating the electronic states of the atoms by means of optical
transitions. Among various laser types, those using solid-state gain media are
particularly powerful and widespread [58]. A notable example are optical fibers
and laser crystals doped with neodymium ions (Nd3+) which feature strong
optical transitions around 1064nm and 1342nm [59]. The transition at 1064nm
is used in commercial lasers and green laser pointers, where the green light
at 532nm is generated via subsequent second harmonic generation. However,
the optical transition at 1342nm is also of great importance, especially for the
preparation of ultracold lithium gases. By second harmonic generation, this
wavelength can be converted to 671nm which coincidentally matches the lithium
D-line transitions, making it suitable for laser cooling and imaging of lithium
atoms [60–63].
In contrast to laser diodes at 660nm, 780nm or 405nm, which are commercially
used for reading from and writing to CD, DVD and BluRay discs [64], the
particular wavelength of 671nm is known for the difficulties to manufacture
high power long-lived laser diodes because of the fragile semiconductor material
systems [60]. Therefore, solid-state lasers at 671nm increase the longevity of the
experimental apparatuses and the achievable optical powers required for cooling
lithium atoms to quantum degeneracy.
Over the course of the last years, we set up an all solid-state laser system capable
of generating more than one watt of optical power at 671nm [65, 66]. The
system is based on a model of the Salomon group in Paris [61–63]. Within
this thesis, I significantly improved the stability and linewidth of our laser
system and integrated it into the experimental setup. For this, I also carried
out extensive numerical simulations of the laser system, which were crucial
for understanding and solving the existing problems. The system now reliably
provides the necessary optical power for laser cooling and forms the basis for
all our experiments.

Outline
This thesis is organized as follows.
In Chapter 2, I give an introduction to the most important theoretical aspects
relevant for this thesis. Initially, the statistical properties of Fermi, Bose and com-
posite Bose gases are introduced. Subsequently, I present the basic principles
of scattering theory and magnetic Feshbach resonances as a tool to manipulate
the scattering process. A focus is put on the properties of 6Li, especially in
the high magnetic field near the broad Feshbach resonance. Following this, I
describe the BCS-BEC crossover of a strongly interacting Fermi gas. The chap-
ter concludes with the introduction of Tan’s contact, which is a measure for
short-range two-body correlations.
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In Chapter 3, the technical realization of the experimental apparatus is detailed.
This includes the vacuum system, the experimental control unit, the coil systems,
laser sources, and all other devices needed for preparing, manipulating and
probing the degenerate Fermi gases. This includes our realization of a repulsive
optical ring potential, which we aim to use in the future to create and study
homogeneous Fermi gases.

In Chapter 4, I explain the experimental steps required to produce a degenerate
Fermi gas, putting the focus on the physics behind the atom gas preparation.
This includes standard cooling methods such as laser cooling, molasses cooling
as well as evaporative cooling. Additionally, the experimental methods for
imaging the atoms and exciting atom pairs are detailed.

In Chapter 5, I present our realization of a high power solid-state laser system
at 671nm. This system provides the light for laser cooling and thereby sets the
basis for all our measurements.

In Chapter 6, our experimental work on measuring Tan’s contact in our strongly
interacting Fermi gas is presented. Within this work, short-range two-body
correlations are quite precisely measured using a novel photoexcitation scheme.

In Chapter 7, I present our experimental methods and theoretical approaches
for studying Tan’s contact in the BCS-BEC crossover. This extends the work
presented in Chapter 6 and gives further details on the experimental methods
and calibration techniques as well as an overview over theoretical calculation
for Tan’s contact using various approaches.

In Chapter 8, I report on our work on holographic imaging of submicron light
scatterers. This work extends our recently proposed imaging scheme for atoms
in optical lattices and suggests that atoms can be imaged with high fidelity with
only a few photons scattered per atom.

In Chapter 9, I introduce different approaches for theoretically describing a
strongly interacting Fermi gas in the BCS-BEC crossover. These approaches have
been implemented and used as a theoretical extension of our measurements and
for deepening our understanding of the physics in the crossover.

In Chapter 10, the work conducted within this thesis is briefly summarized. In
addition, an outlook on possible future experiments and suggestions for the
extension of ongoing work is presented.
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Chapter 2

Ultracold quantum gases

In the experiments described in this thesis, a strongly interacting two-component
Fermi gas of lithium-6 atoms is created and studied. Using forced evaporative
cooling and a broad magnetic Feshbach resonance, we can control both the
temperature and the interparticle interaction of the fermions. This allows for ex-
perimentally realizing and studying all kinds of different normal and superfluid
gas phases, including a BCS type superfluid, a resonantly interacting Fermi gas
and a Bose-Einstein condensate of diatomic molecules. Across the phase space
of the Fermi gas, its short-range particle correlations change fundamentally.
These correlations can be described by a quantity called Tan’s contact.
The following chapter provides an overview of the properties of strongly inter-
acting Fermi gases. This includes the underlying particle statistics of fermions
and bosons, their scattering properties at ultracold temperatures and the excep-
tionally broad Feshbach resonance of lithium-6. In addition, the phase space of
a strongly interacting Fermi gas, the so-called BCS-BEC crossover, is introduced
and an overview about the pair correlations and Tan’s contact is given. The
information presented is taken from several textbooks, reviews, and research
articles.

2.1 Particle statistics and distribution functions
All particles can be classified as either fermions or bosons, distinguished by
the symmetry of their wave functions upon particle exchange and their spin.
Fermions have anti-symmetric wave functions and half-integer spin, while bosons
have symmetric wave functions and integer spin. Unlike bosons, which can oc-
cupy the same quantum state without restriction, two identical fermions cannot
occupy the same quantum state [19, 21]. This fundamental difference gives rise
to distinct distribution functions for fermions and bosons, which particularly
differ at low temperatures.
Fermions follow the Fermi-Dirac distribution where the mean occupation num-
ber of a given quantum state with energy ϵi at temperature T is given by [43]

ni,F =
1

e(ϵi−µ)/kBT + 1
(2.1)

where µ is the chemical potential and kB the Boltzmann constant. One directly
sees, that ni,F cannot exceed 1. This is also expressed in the Pauli principle which
states that two (identical) fermions cannot occupy the same quantum state [25].
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In contrast, bosons obey the Bose-Einstein distribution

ni,B =
1

e(ϵi−µ)/kBT − 1
(2.2)

which can be larger than one and even diverge at small temperatures, when
the chemical potential µ approaches the energy of the ground state ϵ0 [21, 67].
This essentially leads to the phenomenon of Bose-Einstein condensation, the
macroscopic occupation of the ground state (see Section 2.1.2 for more details)
[67]. The chemical potential is usually fixed by the constraint, that the sum over
the occupation numbers of all states must equal the total particle number N ,
i.e.

∑
i ni,F/B = N [21]. As an example for illustrating the different occupation

probabilities, figure 2.1 shows the occupation of the energy levels of a one-
dimensional harmonic oscillator potential by fermions and bosons, respectively.

}  ω

Fermions Bosons

ħ

fF(E)

E

0       1

EF

T = 0 T > 0

fB(E)

ET   TC T >TC

Figure 2.1: Occupation of the energy levels of a (1D) quantum harmonic oscillator
potential by fermions of two spin components (left) and indistinguish-
able bosons (right). The blue line in the distribution functions indi-
cates the occupation at T = 0 for fermions and T ≳ TC for bosons,
while the red line illustrates the situation T > 0 for fermions and
T > TC for bosons. Here, TC indicates the critical temperature for
Bose-Einstein condensation, for more details see Section 2.1.2

In the following, we consider fermions and bosons with kinetic energiesEkin = p2

2m

in an external trapping potential V (r). Here p is their momentum, r their po-
sition and m their mass. In the framework of the local density approximation
(LDA), the atomic gas can be considered to consist of locally homogeneous clus-
ters. The LDA is valid, when the density varies smoothly compared to the
characteristic length scales of the system, such as the Fermi wavelength [21,
68, 69]. Within this semi-classical approximation, the probability of finding a
fermion/boson with momentum p at position r is then given by

fF (p, r) =
1

e(
p2

2m
+V (r)−µ)/kBT + 1

fB(p, r) =
1

e(
p2

2m
+V (r)−µ)/kBT − 1

. (2.3)

In the experiments presented in this thesis, the trapping potentials for the atoms
are harmonic to a good approximation in all three spatial directions with trap
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frequencies ωi. In this case the trapping potential is

V (r) = V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (2.4)

In this thesis, the LDA in which the gas is assumed to be locally homoge-
neous is often used to describe atomic gases in any external trapping potentials.
Moreover, I also realized an optical box-like potential which can provide a ho-
mogeneous confinement for the atoms in future studies (see Section 3.6.2). For
this reason, the following sections are devoted to fermions and bosons in both
harmonic and homogeneous potentials.

2.1.1 Fermions
In the following section, we consider fermions of only one spin component. This
represents an ideal Fermi gas, where the individual fermions do not interact with
each other at ultracold temperatures due to the Pauli principle [43].

Fermi energy, Fermi temperature and Fermi momentum

At zero temperature, each state of the harmonic trapping potential up to the
Fermi energyEF is occupied by a single fermion. Above the energyEF no states
are occupied. In this limit, the chemical potential is equal to the Fermi energy
and fF (p, r) can written as a step function [21]

fF(p, r) =

{
0 for p2

2m
+V(r) > EF

1 for p2

2m
+V(r) < EF

. (2.5)

The total number of fermions N is then

N =
1

h3

∫ ∫
dp dr fF(p, r) =

E3
F

6(ℏω̄)3
↔ EF = ℏω̄(6N)1/3 (2.6)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trap frequencies and h =

2π × ℏ is the Planck constant. With the Fermi energy EF one can associate a
corresponding Fermi temperature

TF = EF/kB = ℏω̄(6N)1/3/kB (2.7)

and a Fermi (angular) momentum kF which is given by

kF =
√

2mEF/ℏ =
√

2mω̄/ℏ(6N)1/6 (2.8)

and refers to the peak Fermi momentum in the center of the harmonic trap.
In the experiments carried out in this thesis, typical atom numbers and trap
frequencies are N = 105 − 106 and ωi ≈ 2π × 100 Hz. Therefore, the Fermi
temperature is on the order of one micro kelvin and the corresponding Fermi
momentum is ≈ 3µm−1.
In a homogeneous Fermi gas, the density n = N/V is uniform in the volume V
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that the gas occupies. Here, the total number of fermions at zero temperature is

N =
1

h3

∫ ∫
dp dr fF(p, r) =

V

6π2

(
2mEhom

F

ℏ2

)3/2

. (2.9)

The local Fermi energy Ehom
F , Fermi temperature T hom

F and Fermi momentum
khomF are then

Ehom
F =

ℏ2

2m
(6π2n)2/3, (2.10)

T hom
F =

ℏ2

2mkB
(6π2n)2/3 (2.11)

and
khomF = (6π2n)1/3. (2.12)

Density distributions

In our experiments, we obtain valuable information about the Fermi gas by
measuring its real-space density distribution. For non-interacting fermions the
distribution within the LDA is obtained by integrating fF (p, r) over momentum
space

nF (r) =
1

h3

∫
dp fF (p, r) =

1

h3

∫
dp

1

exp
[
( p2

2m
+ V (r)− µ)/kBT

]
+ 1

. (2.13)

We can experimentally realize atom clouds at various temperatures, from (quasi)
degenerate Fermi gases at 0 ≲ T ≲ 1TF to thermal classical gases for T ≫
TF . They differ fundamentally in their thermodynamical properties and pair
correlations. This also reflects in the respective density distributions.

At zero temperature, where µ = EF , the integration in Equation (2.13) yields

nF,T=0(r) =
8N

π2RTF,xRTF,yRTF,z

(
1− x2

R2
TF,x

− y2

R2
TF,y

− z2

R2
TF,z

)3/2

(2.14)

which holds for x2i < R2
TF,i where RTF,i =

√
2EF

mω2
i

are the Thomas-Fermi radii.
Outside the Thomas-Fermi radii, the density is zero.

At finite temperatures, the integration in (2.13) yields

nF,T (r) = − 1

λ3dB
Li3/2

(
−e(µ−V (r))/kBT

)
(2.15)

where λdB = h√
2πmkBT

is the thermal de Broglie wavelength and Lis(z) is the
polylogarithm of order s and argument z. It results from the integration of
the Fermi-Dirac/Bose-Einstein distribution function and is defined by a series
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expansion as

Lis(z) =
∞∑

k=1

zk

ks
(2.16)

or by an integral representation as Lis(z) = Γ(s)−1
∫∞
0

dt ts−1(et/z−1)−1 for s > 0
and z ≤ 1, where Γ(s) is the Gamma function [21]. A plot of the polylogarithm
functions Li3/2(z) and Li3(z) is shown in Figure 2.2.

2.6124

1.2021

s

Figure 2.2: Polylogarithm functions Li3/2(z) and Li3(z). The functions arise from
the integration of the Fermi-Dirac and Bose-Einstein distribution func-
tion and are therefore closely related to the density and momentum
distributions of fermions and bosons.

In the limit of high temperatures, where T ≫ TF , the, argument of the poly-
logarithm in Equation (2.15), the so-called fugacity z = e(µ−V (r))/kBT , becomes a
small quantity 0 < z ≪ 1 [70]. In this limit, the polylogarithm is linear in its
argument Li3/2(−z) ≈ −z. Therefore, the density distribution nF,T (r) becomes
a classical Boltzmann distribution

nF,T (r) ≈
1

λ3dB
e(µ−V (r))/kBT (2.17)

=
1

λ3dB
e(µ/kBT )e

− x2

σ2
x
− y2

σ2
y
− z2

σ2
z (2.18)

which, for a harmonic trapping potential, results in a Gaussian distribution of
the density with widths σi =

√
2kBT
mω2

i
.

Figure 2.3 shows calculated density distributions of a harmonically trapped
Fermi gas at various temperatures. The calculations are based on equations
(2.13), (2.15) and (2.18). For T/TF > 1, the classical and quantum statistical
calculations yield almost identical results. Notably, the calculations based on
Fermi statistics (solid lines) show a slightly lower peak density and a broader
width compared to the classical calculations (dashed lines) at the same temper-
atures. This is a consequence of the Pauli exclusion principle, which prevents
two fermions from occupying the same quantum state. Consequently, the same
number of fermions must occupy more and higher energy levels. As higher en-
ergy levels in a harmonic oscillator have spatially more extended wave functions,
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the resulting density distribution for a fixed particle number extends further and
becomes more dilute. This phenomenon is also known as Fermi pressure [24].

-2       -1        0         1        2
0

1

0

1T/TF = 0       µ0/EF = 1
T/TF = 0.3      µ0/EF = 0.71
T/TF = 0.57      µ0/EF = 0
T/TF = 0.57      µ0/EF = -0.05
T/TF = 1           µ0/EF = -1.77
T/TF = 1       µ0/EF = -1.79

a)                                           b)

-2       -1        0         1        2
,x ,x

T/TF = 0       µ0/EF = 1
T/TF = 0.3      µ0/EF = 0.71
T/TF = 0.57      µ0/EF = 0
T/TF = 0.57      µ0/EF = -0.05
T/TF = 1           µ0/EF = -1.77
T/TF = 1       µ0/EF = -1.79

Figure 2.3: Calculated density distributions and central chemical potentials µ0
of a harmonically trapped Fermi gas at various temperatures. The
solid lines are calculations based on Equation (2.15), which accounts
for Fermi statistics, while the dashed lines correspond to calcula-
tions based on classical Maxwell-Boltzmann statistics which result in
a Gaussian distribution given by Equation (2.18). a) Shows the central
(3D) densities along the x-axis at y = z = 0 normalized to the central
density n(0, 0, 0) at T = 0. b) Shows the (1D) line densities along the
x-axis, calculated from the 3D density by integration over y and z:
nx(x) =

∫ ∫
dy dz n(x, y, z). These distributions are also normalized

by the central line density nx,0(0) at T = 0.

The relations discussed above only truly hold for non-interacting Fermi gases,
e.g. spin-polarized Fermi gases where only one spin component is present.
Most of our experiments are carried out with two-component Fermi gas, where
fermions of opposite spin can interact with each other via elastic scattering (see
2.2). In this scenario weak interactions can be treated by a so-called mean-field
approach. More details on this are given in Chapter 9.

2.1.2 Bosons
In our two-component Fermi gas, we can produce Feshbach molecules in the
vicinity of the Feshbach resonance. These molecules are composed of two
fermions of opposite spin and show Bose statistics, when their binding energy
is larger than the thermal energy and the interaction energy. For this reason, the
following section provides an overview over bosons and their thermodynamical
properties.

Density distributions

As bosons obey the Bose-Einstein statistics, the probability of finding a boson
with momentum p at position r is given by the Bose-Einstein distribution func-
tion fB(p, r) in Equation (2.3). As in the previous section, the real space density
distribution nB(r) is acquired by integrating fB(p, r) in momentum space.
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At finite temperatures, one finds within the LDA

nB(r) =
1

h3

∫
dp fB(p, r) = +

1

λ3dB
Li3/2

(
+e(µ−V (r))/kBT

)
. (2.19)

In the high temperature limit, the fugacity z = e(µ−V (r))/kBT is again a small
parameter, such that the density distribution

nB,T (r) ≈
1

λ3dB
e(µ−V (r))/kBT (2.20)

=
1

λ3dB
e(µ/kBT )e

− x2

σ2
x
− y2

σ2
y
− z2

σ2
z (2.21)

again turns into a classical Gaussian distribution for bosons in a harmonic trap-
ping potential. Again, these relations for the density distributions only hold for
non-interacting bosons. In presence of interparticle interactions, they have to be
modified. One approach for this is described in Chapter 9.

Bose-Einstein condensation

From (2.19) one can find the total atom number N =
∫
drnB(r) by integration.

For a harmonic trapping potential, the result is

N =

(
kBT

ℏω̄

)3

Li3
(
eµ/kBT

)
. (2.22)

At a fixed temperature T and trap frequencies ωi, this number has an upper limit
of

Nth =

(
kBT

ℏω̄

)3

Li3 (1) =

(
kBT

ℏω̄

)3

ζ(3) ≈
(
kBT

ℏω̄

)3

× 1.2021 (2.23)

where ζ(. . . ) is the Riemann zeta function. Adding more atoms or further
reducing the temperature below

TC =
ℏω̄
kB

(
N

ζ(3)

)1/3

≈ 0.94
ℏω̄
kB

(N)1/3 (2.24)

leads to Bose-Einstein condensation, where the bosons start to macroscopically
occupy the ground state of the harmonic trapping potential [21]. The total atom
number N is then the sum of the atom number in the ground state N0 and the
thermal, non-condensed atom number Nth. For a non-interacting Bose-Einstein
condensate, the condensate fraction in the harmonic trapping potential is given
by

N0

N
=
N −Nth

N
= 1− Nth

N
= 1−

(
T

TC

)3

. (2.25)
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Bose-Einstein condensation first happens in the center of the harmonic trap,
when locally the critical density

nC =
1

λ3dB
Li3/2(1) =

1

λ3dB
ζ(3/2) ≈ 2.61

λ3dB
= 2.61

(2πmkBT )
2/3

h3
(2.26)

is reached (see Eq. (2.19)). The total density n = n0 + nC is then the sum of
the condensate density n0 and the (limited) thermal density nC . Locally the
condensate fraction n0/n is then given by

n0

n
= 1−

(
T

T hom
C

)2/3

. (2.27)

The density distribution of the condensate in the case of non-interacting bosons
is given by the square of the ground state wave function of the harmonic trap-
ping potential times the number of condensed atoms n0 ∼ N0|Ψ0|2. At small
(repulsive) interactions, as present in our experiments, the Bose-Einstein con-
densate can be described by the time-independent Gross-Pitaevskii equation
(GPE)

µΨ(r) =

(
− ℏ2

2m
∇2 + V (r) + g|Ψ(r)|2

)
Ψ(r). (2.28)

where g = 4πℏ2
m
aB is the coupling constant and aB the scattering length of the

bosons. The nonlinear term |Ψ(r)|2 in the GPE is essentially the density n0 of
the condensate. The particle interaction g|Ψ(r)|2 = gn0 is therefore treated in
the mean-field approximation. Equation (2.28) can be further simplified by the
Thomas-Fermi approximation, where the small kinetic term − ℏ2

2m
∇2Ψ(r) is ne-

glected.
The density distribution therefore simply becomes a flipped version of the ex-
ternal trapping potential

n0(r) =
µ− V (r)

g
for µ− V (r) > 0, and n0 = 0 else. (2.29)

This can be understood in such a way that the condensed bosons push themselves
into the external potential through their repulsive interaction and thus simply
take on its form. By introducing the Thomas-Fermi radii for condensed bosons
RTB,i =

√
2µ
mω2

i
, the condensate density distribution in the harmonic trapping

potential is given by

n0(r) =
15N0

8πRTB,xRTB,yRTB,z

(
1− x2

R2
TB,x

− y2

R2
TB,y

− z2

R2
TB,z

)
(2.30)

for x2i < R2
TB,i.

For temperatures 0 < T < TC , a Bose gas consists of a condensed and a non-
condensed, normal phase. As their densities follow different distribution func-
tions (see equations (2.19) and (2.30) respectively), the total density distribution
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of the atom cloud shows a characteristic bimodal feature, as also shown in figure
1.1. It clearly indicates that the condensed atoms with high density accumulate
in the center of the trap while the thermal atoms ones surround them. However,
the bimodal feature is only strongly pronounced for non-interacting bosons. For
strong repulsive interactions, it can become almost invisible. Further details on
this can be found in Chapter 9.

2.1.3 Composite Bosons
As mentioned in the previous sections, we are able to produce Feshbach mole-
cules in the vicinity of the Feshbach resonance. These are composite bosons and
consist of two fermions with opposite spin.
In the BEC regime of weak interactions, large binding energies and small temper-
atures, these molecules essentially behave as bosons and can therefore condense
as a molecular Bose-Einstein condensate (mBEC) below a certain critical tem-
perature TC . For a harmonic trapping potential, the critical temperature from
Equation (2.24) can be expressed in terms of the (trap) Fermi temperature defined
in (2.7) as

TC
TF

=

ℏω̄
kB

(
N
ζ(3)

)1/3

ℏω̄
kB
(6N)1/3

≈ 0.5176. (2.31)

For a homogeneous gas, one can combine equations (2.26) and (2.11) to find the
homogeneous critical temperature

T hom
C

T hom
F

=

(
(2π)3/2

6π2 × ζ(3/2)

)2/3

≈ 0.218. (2.32)

This is also the local critical temperature expressed in the local Fermi temperature
at which the condensation in the center of the harmonic trap starts. It should
be noted that the thermal de Broglie wavelength of dimers is by a factor

√
2

smaller than that of atoms they consist of, as their mass is twice as large. These
critical temperatures for harmonically trapped and homogeneous Fermi gases
only hold in the true BEC limit of very weak to no (repulsive) interactions. For
stronger repulsive interactions (closer to the Feshbach resonance, see 2.4.3) the
critical temperature is lowered [71]. This can be understood simply by the fact
that the repulsive interaction prevents the gas from reaching the critical density.
A detailed quantitative analysis can be found in Section 9.2.

2.2 Elastic scattering
The interaction between two atoms at distance r can be described by a central
scattering potential Vsc(r). At distances of a few ten Bohr radii a0, the atoms
interact with the van der Waals potential −C6/r

6 which arises from temporary
fluctuations in the electron distribution around the two atoms [72]. These fluc-
tuations create temporary dipoles resulting in a weak attraction. Here C6 is a
coefficient, which depends on the atomic species. At shorter distances of a few
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Bohr radii a0, the electron distributions around the atoms strongly repel each
other [72].
The resulting interatomic potentials can become quite complex (see Figure 4.13)
and including these potentials into the description of an atom cloud of ≈ 106

atoms would be quite challenging. However, in our experiments the atom clouds
are dilute and ultracold which significantly simplifies the problem. While the
interatomic potential for 6Li has a range of r0 = (mC6/ℏ2)1/4 ≈ 62.5 a0 with
C6 = 1.333 × 10−76 Jm6 [73], the interparticle distance at typical densities of
n ∼ 1019/m3 is approximatelyn−1/3 ∼ 10 000 a0. Secondly, the thermal de Broglie
wavelength of our ultracold atoms is on the order of λdB = h/

√
2πmkBT ∼ 1µm

for T ∼ 100nK. As a consequence, the scattering atoms do not feel the details
of the short-range interaction potential and the entire collision can be effectively
described by a single parameter, the scattering length.

To derive this quantity, we consider a two-body scattering process of two
atoms at positions r1 and r2 with an interaction potential Vsc(|r1 − r2|) only
depending on their distance. This problem can be separated into the center of
mass (R = (r1 + r2)/2) and the relative coordinate frame (r = r1 − r2) of the
two atoms. In relative coordinates, the problem becomes a simple one-body
problem. The solution of the corresponding Schrödinger equation

(
− ℏ2

2mr

∇2 + Vsc(r)

)
Ψk(r) = EkΨk(r) (2.33)

far outside the range r0 of the scattering potential can be expressed as the sum
of the incident plane wave and the scattered wave function

Ψk(r) ∼ eikr + f(k,Θ)
eikr

r
(2.34)

where mr = m/2 is the reduced mass and f(k,Θ) the scattering amplitude.
f(k,Θ) depends on the angle of the collision θ and on the wave number k. The
wave number k does not change in magnitude in the collision process due to the
collision being elastic.
The total scattering cross section σ(k) is obtained by integrating f(k,Θ) over the
solid angle Ω

σ(k) =

∫

Ω

dΩ |f(k,Θ)|2. (2.35)

In the scattering process, different partial waves scatter differently and there-
fore acquire different scattering phase shifts δl. Here, l = 0, 1, 2, ... denote the
different angular momenta. Using a partial wave expansion of the scattering
wave function, the scattering amplitude f(k,Θ) and thus the cross section σ(k)
for distinguishable particles are given by

f(k,Θ) =
1

2ik

∞∑

l=0

(2l + 1)(e2iδl − 1)Pl(cosΘ) (2.36)
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and

σ(k) =
∞∑

l=0

σl(k) =
4π

k2

∞∑

l=0

(2l + 1) sin2(δl). (2.37)

For small collision energies (k → 0) scattering in higher partial waves is sup-
pressed by the repulsive centrifugal barrier1 ∼ ℏ2l(l+1)/(2mrr

2). One can show
that δl ∼ k2l+1 [75], so σl(k) drops as k4l for k → 0. For this reason, only s-wave
scattering (where l = 0) becomes relevant at low temperatures.
By defining the s-wave scattering length

as = − lim
k≪1/r0

tan δ0(k)

k2
, (2.38)

the scattering cross section for s-wave scattering is given by

σ0 = 4πa2s (2.39)

for non-identical particles. For identical bosons, one obtains σ0 = 8πa2s while for
identical fermions σ0 = 0 in agreement with the Pauli principle.
The relation (2.39) only holds for finite scattering lengths as ≪ 1/k. For large
scattering lengths as ≳ k one finds the result [19, 21]

σ0(k) =
4πa2s

1 + k2a2s
(2.40)

which recovers σ0 = 4πa2s for a2s ≪ 1/k2 and σu = 4π/k2 for a2s ≫ 1/k2. For s-
wave collisions σu = 4π/k2 is the largest possible cross section, which is obtained
when sin2(δ0) = 1. This is the so-called unitary limit.

2.3 Feshbach resonances
In the previous chapter, the s-wave scattering length was essentially a constant
determined by the interaction potential Vsc(r). Unfortunately, the scattering
potential cannot be manipulated easily to tune the scattering properties. For this
purpose, magnetic Feshbach resonances have proven to be powerful instrument
to manipulate particle interactions during collisions.
The principle of a magnetic Feshbach resonance can be well described by a two-
channel model [9]. For this, we consider the interaction potential Vsc(r) (the
open channel) of the two colliding atoms colliding in an s-wave with collision
energyEc ≲ 0 and a second interaction potential belonging to a different internal
quantum state. The second interaction potential represents a so-called closed
channel if its energetic asymptote2 lies above the collision energy Ec (see figure
2.4 a)). A magnetic Feshbach resonance can occur, when a bound-state of the
closed channel is energetically tuned into degeneracy with the collision energy
Ec of the two colliding particles. This can be achieved, when the open and
closed channel potentials have different magnetic moments µm,1 and µm,2. Their

1For 6Li the barrier for l = 1 has a height of ≈ kB × 7 mK [74].
2The asymptote refers to the potential energy of a scattering potential Vsc(r) for r → ∞
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relative energy ∆E then shifts by ∆E = (µm,2 − µm,1) × B = ∆µm × B. If
there is a coupling (e.g. hyperfine coupling) between the closed and open
channel, the scattering wave function is affected by the bound state of the closed
channel potential which leads to a change of the scattering phase shift and
thus the scattering length as. When the bound state is energetically above the
scattering state, as < 0 and the interaction is considered attractive. If it lies
below, as > 0 and the interaction is repulsive. In the magnetic vicinity of the
Feshbach resonance, the s-wave scattering length can be written as

as(B) = abg

(
1− ∆B

B −B0

)
. (2.41)

Here, abg is the background scattering length, ∆B is the width and B0 the
position of the Feshbach resonance (see figure 2.4 b)). The width of the resonance
is determined by the strength of the coupling between the bound state and
the scattering state and depends on the internal states of the closed and open
channel. At the position of the Feshbach resonance B0 the scattering length
diverges and changes sign. For repulsive interaction, when the bound state of
the closed channel is energetically below the scattering state, Feshbach dimers
of binding energy

Eb =
ℏ2

ma2s
(2.42)

can form.
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Figure 2.4: a) Two-channel model of a magnetic Feshbach resonance. Two atoms
with collision energy Ec > 0 collide in an open-channel potential. A
magnetic Feshbach resonance occurs, when a bound state of a closed
channel is magnetically tuned to degeneracy with the collision energy,
thereby strongly modifying the phase shift and scattering length. b)
Scattering length as as a function of the magnetic field B in the vicin-
ity of a magnetic Feshbach resonance at a field of B0. abg is the
background scattering length and ∆B the width of the resonance.
The relation between as and B is given by Equation (2.41).
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2.4 Lithium-6 and its broad Feshbach resonance
In our experiments, we cool, trap, manipulate and image clouds of neutral
lithium-6 atoms. Most of these steps rely on electronically exciting the atoms,
while manipulating their electronic states and scattering properties with external
magnetic fields. For this reason, the following sections provide an overview of
the electronic structure of lithium-6, its response to external magnetic fields
and the origin of its exceptionally broad Feshbach resonance, which essentially
enables us to precisely study the different interaction regimes.

2.4.1 Atomic structure
Like all Alkali metals, 6Li has a single unpaired valence electron in its outer
shell, the 2S orbital. Therefore, it has a total electron spin of S = 1/2. Its nucleus
consists of three neutrons and three protons that combine to a total nuclear spin
of I = 1. As a consequence, the total spin of a 6Li atom is half-integer valued,
which makes it a fermion3.
For the electronic ground state, the orbital angular momentum is L = 0. There-
fore, the total electronic angular momentum is J = 1/2. We label this state
22S1/2. Due to the hyperfine coupling, the interaction between the nuclear spin
and the electronic angular momenta, this state splits into two manifolds with
total atomic angular momenta F = 1/2 and F = 3/2. At zero magnetic field,
they are energetically separated by the hyperfine splitting ∆E = h× 228.2 MHz
[76].
For the first electronically excited states, the orbital angular momentum is L = 1.
Therefore, the possible total electronic angular momenta are J = 1/2 and J = 3/2.
The two resulting states, the 2P states, are labelled 22P1/2 and 22P3/2 and ener-
getically split by h× 10.053 GHz [76].
The hyperfine interaction further splits the 22P1/2 state into two manifolds with
F = 1/2 and F = 3/2 which are separated by ∆E = h× 26.1 MHz in the absence
of an external magnetic field.
The 22P3/2 state has J = 3/2 and therefore splits into three hyperfine states with
F = 5/2, F = 3/2 and F = 1/2, where F = 1/2 is the energetically highest and
F = 5/2 the energetically lowest state of this manifold. Their energy separation
is only h× 4.4 MHz in zero magnetic field. For this reason, these states are not
optically resolved, as the linewidth of the 2P states is Γ = 5.87 MHz [77].
The corresponding term scheme of 6Li in the magnetic zero field is shown in
Figure 2.5. The 2P states can by optically accessed from the 22S1/2 ground state
by dipole transitions of frequency ν ≈ 447THz, or λ = c/ν = 671nm. The corre-
sponding transitions are called the D1 and D2 lines, which have a characteristic
red color, see figure 4.2.

3In contrast, 7Li has an additional neutron in its core, resulting in I = 3/2 which makes it
bosonic.
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Figure 2.5: Term scheme of 6Li showing the fine and hyperfine splittings of the
lowest energy states in the absence of an external magnetic field. The
origin of the different fine and hyperfine splittings is explained in
the text in Section 2.4.1 Most of our experiments are performed with
optical transitions from the hyperfine states of the 22S1/2 ground state
to the hyperfine states of the 22P3/2 excited state. Values taken from
[76].

2.4.2 6Li in the magnetic high field
The majority of our experiments are carried out at high magnetic fields, in the
vicinity of the broad Feshbach resonance. When applying an external magnetic
field, the F = 1/2 and F = 3/2 states of the 22S1/2 ground state split into a total of
six states according to their magnetic quantum numbersmF = ±1/2 for F = 1/2
and mF = ±3/2,±1/2 for F = 3/2.
For fields < 15G the atoms are in the Zeeman regime. Here, J and I are coupled
due to the hyperfine coupling and F = J + I is a good quantum number. In this
regime the energy splitting of the hyperfine states increases linearly with the
magnetic field.
For stronger fields ≫ 100G, the magnetic moments of the electron and the nu-
cleus decouple and couple individually to the external magnetic field. This
regime is the Paschen-Back regime where F is no longer a good quantum num-
ber and the atoms have to be described by I and J (note that J = S, because
L = 0 in the electronic ground state). The three states with mJ = −1/2 (and
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mI = 1, 0,−1), the so-called high-field-seeking states, linearly shift down in en-
ergy with approx h × 1.4 MHz/G while the three states with mJ = +1/2 shift
up with ≈ h × 1.4 MHz/G. We label these six states |1⟩ - |6⟩ where |1⟩ is the
energetically lowest and |6⟩ the energetically highest state. The energy of these
states as a function of the magnetic field is shown in Figure 2.6.
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Figure 2.6: Zeeman splitting of the 22S1/2 ground state of 6Li in the magnetic
field range from 0 to ≈ 1000 Gauss. For a field ≲ 15 G the atoms are
in the Zeeman regime. For higher fields they enter the Paschen-Back
regime.

In our experiments, we typically work with a spin-balanced mixture of atoms,
where half of the atoms is in state |1⟩ and the other half is in state |2⟩. These states
have a narrow magnetic Feshbach resonance at 543.3 G and an exceptionally
broad resonance at 832.2 G [78]. The origin of this broad resonance is explained
in the following section.

2.4.3 The broad Feshbach resonance of 6Li
We carry out our experiments with a balanced mixture of atoms in two lowest
Zeeman states |1⟩ and |2⟩. When these atoms scatter off each other, they feel
different interaction potentials depending on the relative orientation of their
electronic spin. The orientation can either be anti-parallel (singlet) or parallel
(triplet).

In the Zeeman regime at low magnetic fields, the electronic and the nuclear
spin are still coupled due to the hyperfine coupling. Therefore, the scattering
state |1⟩|2⟩ is a superposition of singlet and triplet states.
Entering the Paschen-Back regime, the scattering potential is predominantly
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Figure 2.7: a) Zeeman energies of different atom-atom scattering channels with
total spin projectionMF = 0. The energies are obtained by adding the
respective Zeeman energies of the two separated atom channels (see
Fig. 2.6). At 543.5G and 832.2G the energy of the |1⟩|2⟩ scattering state
energetically crosses the energies of the most-weakly bound molecular
states of the singlet potentialX1Σ+

g with vibrational quantum number
ν = 38 and molecular quantum numbers I = 2, MI = 0 and I =
0, MI = 0. These molecular bound states couple to the scattering
state and cause the narrow and broad Feshbach resonance. The figure
is recreated from Ref. [9], calculations of the molecular bound state
energies have been provided by Jinglun Li. b) Singlet and triplet
potentials for 6Li. The energy of the atoms colliding in |1⟩|2⟩ can be
magnetically tuned into resonance with the most-weakly bound state
ν = 38 of the singlet potential. The energy of this state (dashed blue
line) is depicted exaggeratedly low with respect to the depth of the
singlet and triplet potentials for illustrative reasons. Potential energy
curves are taken from Ref. [79].

determined by the electronic state, which is mS = −1/2 for both atoms. Conse-
quently, the scattering state has almost pure triplet character at high magnetic
fields. For this reason, the off-resonant background scattering length smoothly
transitions from a linear combination of the singlet and triplet background
scattering lengths aSi and aTr at low magnetic fields to the pure triplet scatter-
ing length aTr at high fields. These scattering lengths are aSi = 45.154 a0 and
aTr = −2113 a0 [80]. The reason for the extraordinary large (negative) scattering
length of the triplet potential is a virtual bound state just a few hundred kHz
above fits energetic asymptote.
While the energy of the two colliding atoms linearly shifts down with ≈ −2.8

MHz/G at high magnetic fields due to the triplet nature of the scattering state
(see Fig 2.7), the energy of the singlet molecular potential X1Σ+

g is insensitive
to magnetic fields. This potential has two (most-weakly) bound states with
ν = 38, I = 2, MI = 0 and ν = 38, I = 0, MI = 0 approximately 1.321 GHz



2.4. Lithium-6 and its broad Feshbach resonance 23

543.5 G 832.2 G

|1> |2>
|1> |3>
|2> |3>

Figure 2.8: Magnetic field dependence of the s-wave scattering lengths for two
colliding 6Li atoms in the |1⟩|2⟩, |1⟩|3⟩ or |2⟩|3⟩ scattering states. All
these mixtures experience exceptionally broad Feshbach resonances
around ≈ 700-800 G. The figure is based on data from the supplemen-
tal material of [78].

and 1.308 GHz below its threshold [80]. At 543.5 G and 832.2 G these states
couple to and energetically cross the scattering state |1⟩|2⟩ of the two colliding
atoms, causing a narrow and a broad Feshbach resonance [80]. For B < 832.2
G the bound state of the singlet potential X1Σ+

g with ν = 38, I = 0, MI = 0
lies energetically below the collision energy. This state strongly mixes with the
scattering state which allows the colliding atoms to form Feshbach molecules
(see Section 2.5.3 for more details). Using the parametrization from Equation
(2.41), the broad Feshbach resonance can be characterized by B0 = 832.18 G,
∆B = 262.3 and abg = −1582 a0 [78]. The magnetic field dependent s-wave
scattering lengths for atoms in the scattering states |1⟩|2⟩, |1⟩|3⟩ and |2⟩|3⟩ are
shown in figure 2.8.
At 527.32 G, the s-wave scattering length as is zero, hence the two spin compo-
nents |1⟩ and |2⟩ do not interact with each other as in an ideal non-interacting
Fermi gas. For higher fields, as becomes large and positive and diverges to +∞
at the resonance at 832.2 G. Above the resonance, the scattering length as is large
and negative and slowly approaches the background scattering length of the
triplet potential aTr = −2113 a0. The broad Feshbach resonance therefore allows
for precisely tuning the interaction between the atoms in the two spin states,
which allows us to realize and study fundamentally different gas phases.
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2.5 The BCS-BEC crossover
The interactions between fermions of opposite spin are characterized by the
so-called coupling constant or interaction parameter (kFas)

−1. This parameter
is dimensionless and essentially the ratio between the interparticle distance (as
kF ∼ n1/3) and their scattering length as. Thus, the smaller |kFas|−1 the stronger
the interactions. Together with the temperature T of the gas in units of the
Fermi temperature TF , these two parameters fully parameterize a spin-balanced
two-component Fermi gas [8, 81].
In our experiments, which we carry out with a balanced mixture of fermions
in the two lowest hyperfine state |1⟩ and |2⟩, we have almost full control over
both parameters. Using the broad Feshbach resonance at 832.2 G we can tune as
and thus the coupling (kFas)

−1. And by forced evaporative cooling (see Section
4.4.1 for more details), we can set the temperature T/TF of the gas. This allows
for experimentally realizing and studying all kinds of different superfluid and
normal gas phases that are present in such a Fermi gas. These phases are
illustrated in figure 2.9 and introduced in the following.

2.5.1 BCS regime
The Fermi gas is in the Bardeen-Cooper-Schrieffer (BCS) regime, when the inter-
action parameter (kFas)−1 ≪ −1, i.e. when the interactions between the atoms
are weak and attractive.
In this regime, the atoms are in the normal thermal state when the chemical
potential µ ≪ EF (see also figure 2.10). The atoms then obey Fermi statistics
and the gas state is well described by the Fermi liquid theory [84, 85]. When
the temperature is lowered, the chemical potential µ approaches the Fermi en-
ergy EF and a Fermi sea starts to form where each quantum state up to EF is
occupied by one single fermion [8, 21, 22, 43]. Below the critical temperature
TC , the small attractive interactions allow for the formation of Cooper pairs at
the surface of the Fermi sea, as predicted by the BCS theory and very recently
also directly observed in mesoscopic ultracold Fermi gases [86]. Cooper pairs
consist of two fermions of different spin (in our case the |1⟩ and |2⟩ states) and
opposite momentum. For a homogeneous Fermi gas, the transition temperature
TC for Cooper pairs to form exponentially drops with (kFas)

−1 in the BCS limit.
From a simple mean-field approach one finds [19, 21]

T hom
C,MF =

8eγ

πe2
exp

(
− π

2kF |as|

)
× T hom

F

≈ 0.614 exp

(
− π

2kF |as|

)
× T hom

F (2.43)
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Figure 2.9: Phase diagram of a spin-balanced Fermi gas in the BCS-BEC crossover.
The red and blue circles represent fermions of the two spin compo-
nents and illustrate the different phases present in the crossover. The
thin blue line marks the critical temperature for superfluidity TC for
a harmonically trapped Fermi gas, taken from [82]. Below the criti-
cal temperature, the gas is in a superfluid state. The superfluid state
smoothly transitions from a BCS type superfluid in the BCS regime
at (kFas)−1 ≪ −1 to a Bose-Einstein condensate of molecules in the
BEC regime at (kFas)−1 ≫ 1. In between where (kFas)

−1, we find
the resonantly interacting unitary Fermi liquid. Above TC the gas is
in a normal (thermal) state. On the BEC side, the gas is in thermal
equilibrium with unpaired fermions and diatomic molecules. The
purple curve, taken from [83], marks T ∗, the temperature at which
50% of the atoms are paired. Remarkably, this curve continues on
the BCS side. This is a consequence of pair formation driven by the
strong interparticle interactions in the vicinity of the Feshbach reso-
nance. For more information, see text. T ∗ gradually approaches TC
for (kFas)−1 → −∞.

while a more sophisticated calculation yields [22, 87]

T hom
C =

eγ

π

(
2

e

)7/3

exp

(
− π

2kF |as|

)
× T hom

F

≈ 0.277 exp

(
− π

2kF |as|

)
× T hom

F . (2.44)
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Here γ ≈ 0.5772 is Euler’s constant. For a harmonically trapped Fermi gas,
TC is shown in Figure 2.9. It is approximately TC = 0.02 (0.05, 0.08)TF for
interaction parameters (kFas)

−1 = −2 (−1.5, −1) [16]. In our experiments, the
lowest temperatures we can achieve on the BCS side are ≈ 0.03 − 0.04TF . For
this reason, we can study the BCS superfluid phase up to (kFas)

−1 ≈ −1.75. In
the deep BCS limit, the formation of (Cooper) pairs goes hand in hand with the
transition to the superfluid state. In contrast, pairs on the BEC side, which are
present there as molecules, can also exist above TC (see Section 2.5.3). These two
different pairing phenomena smoothly merge into each other in the BCS-BEC
crossover. In the vicinity of the Feshbach resonance, the concept of preformed
pairs emerges, where pairing arises from many-body effects due to the strong
interparticle interactions [15, 83]. These pairs already form above the superfluid
transition temperature but do not yet condense into a superfluid state. Therefore,
on the BCS side, pairing occurs even above TC , but the pairs are more diffuse
and exhibit strong correlations only at very low temperatures [16]. To describe
this phenomenon, a temperature T ∗, also called the pair-breaking temperature,
is introduced. On the BEC side, it coincides with the temperature at which
50% of the atoms are paired to Feshbach molecules. For (kFas)

−1 → −∞ the
pair-breaking temperature T ∗ gradually approaches the critical temperature TC .

2.5.2 Unitarity
At the position of the Feshbach resonance, the scattering length as diverges to
infinity and effectively drops out of the description of the gas properties [8]. In
this regime, the thermodynamical properties of the resonantly interacting Fermi
gas are universal and only depend on kF (or the density n or Fermi energy EF

since EF ∝ k2F ∝ n2/3) and T/TF [21, 88].

At zero temperature , where also T/TF drops out, there must therefore be a
direct and universal relation between all thermodynamical properties and kF
(n, EF ) only. For example, the chemical potential µ of the homogeneous gas is
related to the Fermi energy Ehom

F via [19]

µ = ξ Ehom
F (2.45)

where ξ is the Bertsch parameter. Due to the universality, the precise determi-
nation of the Bertsch parameter has been an ongoing subject for both theoretical
and experimental studies. While early estimations for ξ vary widely (0.32(13)
[89], 0.44 [90], 0.74(7) [91]), more recent experiments and Monte Carlo simula-
tions seem to come to an agreement on ξ = 0.367 [92, 93]. The Bertsch parameter
does not only play a role in describing homogeneous Fermi gases at unitarity.
For the harmonically trapped gas one finds [19]

µ0 =
√
ξ EF ≈ 0.61EF (2.46)
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for the central chemical potential µ0. From this, the zero-temperature density
distribution

nU,T=0(r) =
8N

π2RU,xRU,yRU,z

(
1− x2

R2
U,x

− y2

R2
U,y

− z2

R2
U,z

)3/2

(2.47)

of the unitary Fermi gas in a harmonic trapping potential can be simply de-
duced from the density distribution of an ideal Fermi gas (2.14) by rescaling the
Thomas-Fermi radii RU,i = ξ1/4RTF,i ≈ 0.78RTF,i [19]. As RU,i < RTF,i, one can
see that the unitary Fermi gas has effectively attractive interactions.

At finite temperatures, the equation of state (EoS) has been determined ex-
perimentally [88] for a unitary homogeneous Fermi gas. The results of these
measurements were functions of µ and T to rescale all thermodynamical ob-
servables of an ideal Fermi gas to the scenario of a resonantly interacting Fermi
gas. Moreover, a sharp kink in the compressibility and the specific heat has been
observed at TC ≈ 0.167(13), indicating the onset of superfluidity [88].
For temperatures above ≈ TF , the unitary, resonantly interacting Fermi gas is
almost thermal and therefore shows similar properties as a thermal ideal Fermi
gas despite the large interparticle interactions [70, 88]. This can be seen e.g. in
figure 2.10 where the chemical potentials for both a unitary and an ideal Fermi
gas are shown as a function of temperature T/TF .
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Figure 2.10: Central chemical potential µ0/EF for a harmonically trapped Fermi
gas without interactions (blue) and resonant interactions (red). The
result for the resonantly interacting, unitary Fermi gas was obtained
from the equation of state measurements [88]. The ideal Fermi gas is
characterized by an interaction parameter of (kFas)−1 → −∞, while
the unitary Fermi gas has (kFas)−1 = 0. The temperature-dependent
chemical potential on the BCS side, where (kFas)

−1 < 0, therefore
lies between these two extremes.
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2.5.3 BEC regime
In the BEC regime, the interparticle interactions are effectively repulsive and
the most weakly bound state of the X1Σ+

g singlet potential, with a vibrational
quantum number ν = 38, lies energetically below the scattering state (see Figure
2.7). This state strongly couples to the scattering state [80], enabling the forma-
tion of diatomic Feshbach molecules via exothermic three-body collisions. In
these collisions, two fermions of different spin form a molecule while the third
atom assures momentum and energy conservation. At low temperatures, the
collision between two unpaired fermions of different spin is characterized by
the scattering length as. For the collision between two dimers or a dimer and
an unpaired fermion, the scattering lengths are given by add = 0.6 as [94, 95]
and aad = 1.18 as [8] respectively. In the vicinity of the Feshbach resonance, the
binding energy of the dimers is given by [9]

Eb =
ℏ2

2mra2s
=

ℏ2

ma2s
(2.48)

where mr = m/2 is the reduced mass and m is the mass of each of the two
atoms that form the dimer. Further away from the resonance for smaller as, the
expression for the binding energy has to be modified [96]

Eb =
ℏ2

m(as − ā)2

(
1 + 0.9179

ā

as − ā
− 0.9468

ā2

(as − ā)2

)
(2.49)

to take into account the finite range r0 = (mC6/ℏ2)1/4 of the molecular potential.
The quantity ā = 2π

Γ( 1
4
)2
r0 ≈ 0.478 r0 = 29.9 a0 can be regarded as a mean scatter-

ing length and Γ(. . . ) is the gamma function.
In contrast to the BCS regime, where the sudden formation of Cooper pairs
goes hand in hand with the transition to the superfluid phase at TC , pairing
on the BEC side already occurs well above TC with the formation of Feshbach
molecules. These molecules are in a thermal equilibrium with the unpaired
atoms [97], and their chemical potentials are related via [19, 98]

µB = 2µ+ Eb (2.50)

where µB denotes the chemical potential of the dimers and µ the chemical po-
tential of the unpaired atoms. This relation quantitatively represents the pairing
of two atoms to form a diatomic molecule with the release of binding energyEb.
As the chemical potential changes with temperature T and the binding energy
changes with scattering length as, the fraction of diatomic molecules (the pair
fraction) consequently also depends on T and as. It indeed turns out, that the
pair fraction is a function of the dimensionless quantities T/TF and (kFas)

−1

only [15, 16]. Qualitatively speaking, the molecules break up when their ther-
mal energy T × kB becomes larger than the binding energy Eb. So, for fixed
interaction parameter (kFas)−1 the pair fraction drops when the temperature of
the atom cloud is increased. On the other hand, at fixed temperature the pair
fraction increases when (kFas)

−1 ∝ √
Eb is increased. In earlier measurements,
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we mapped out the pair fraction on the BEC side of a harmonically trapped
Fermi gas as a function of (kFas)−1 and T/TF (see Section 4.7 and References [15,
99] for more details).
At low temperatures T ≲ 0.5TF in the BEC regime where (kFas)

−1 > 1, es-
sentially all atoms of a two-component spin-balanced Fermi gas are paired to
molecules [15, 16]. These molecules can be regarded as bosons, since their bind-
ing energy sets the largest energy scale of the gas, compared to the interaction
energy and the thermal energy. Below the critical temperature, the molecules
undergo Bose-Einstein condensation and form a molecular Bose-Einstein con-
densate (mBEC) [19]. For (kFas)

−1 the critical temperature for a harmonically
trapped Fermi gas is TC ≈ 0.518TF and the ratio of condensed molecules to the
total number is given by N0/N = 1 − (T/TC)

3 (see Section 2.1.2). Approaching
the Feshbach resonance, the critical temperature decreases. The reason for this
is are increasing repulsive interactions that prevent the gas from reaching the
critical density required for condensation [71]. More details on pairing and the
effects of the interparticle interactions on the BEC side are given in Chapter 9.

2.6 Particle correlations and Tan’s contact
As outlined in the previous section, the crossover from the BCS to the BEC
regime in a strongly interacting Fermi gas is a highly interesting physical setting.
In the crossover, the superfluid gas state fundamentally changes its physical
character. It transitions from the BCS regime of weak attractive interactions,
where fermions of opposite spin pair up in momentum space to form Cooper
pairs on top a Fermi sea to the weakly repulsive BEC regime, where pairing
takes place in real space when diatomic molecules with bosonic character are
formed. In between lies the unitary regime, where the two-body scattering
length as diverges to ± infinity. The transition from the BCS to the BEC state
happens smoothly and simply by changing the external magnetic field across
the Feshbach resonance. This naturally raises the question of what happens in
the intermediate region, the crossover, and how the physical properties of the
Fermi gas can be quantified there.

2.6.1 Tan relations
In 2008, Shina Tan formulated a set of very fundamental relations for strongly
interacting Fermi gases with two spin components and introduced a new and
central quantity that appears in all these relations - the so-called Tan contact [10–
12]. In a microscopic picture, the contact is a measure for short-range two-body
correlations and quantifies the likelihood of finding two interacting fermions of
opposite spin at very small distance [10, 32, 33]. However, the parameter also
appears in various relations that describe the macroscopic state of the system.
To highlight the importance of the contact parameter for strongly interacting
Fermi gases and to explain how its value can be determined, the relations are
introduced in the following. Note that one often refers to two quantities when
talking about the contact. The first one is the contact density C with dimension
m−4. This is usually used to describe homogeneous systems, where the density
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(and thus the contact) is constant. The other quantity is the total contact of a
system I with dimension m−1. For homogeneous systems the total contact I is
simply I = CV where V is the volume that the system occupies. For inhomo-
geneous (e.g. harmonically trapped) Fermi gases, I is obtained by integration
I =

∫
d3r C(r).

(1) The tail of the momentum distribution for fermions of both spin compo-
nents σ (σ = ↑, ↓) is given by [32, 33]

lim
k→∞

nσ(k) =
C

k4
. (2.51)

So for large momenta k associated with short-range interactions, nσ(k) drops
with 1/k4 and the prefactor is given by the contact density C. The momentum
distribution nσ(k) for a spin-balanced Fermi gas with Nσ atoms per spin state is
normalized such that

∫∞
0

d3k nσ(k/kF )
(2π)3

= Nσ [100]. In the zero-temperature BEC
limit, relation (2.51) agrees well with the momentum distribution obtained from
the Fourier transform of the molecular wave function

Ψ(r) =
1√
2πas

1

r
e−r/as (2.52)

which is4 [101]

n(k) =
4

3π
(khomF as)

3 1

(k2a2s + 1)2
k→∞−−−→ 4(khomF )3

3πas

1

k4
=

4πn

as

1

k4
. (2.53)

From this, one sees that the contact in the BEC limit must be C = 4πn
as

. As the
density of molecules is nd = n/2, each molecule contributes with 8π

as
.

(2) The total energy of a strongly interacting Fermi gas is the sum of the kinetic
energy EK , the interaction energy EI and the potential energy EV and is given
by [33]

E =
∑

σ,k

∫
d3k

(2π)3
ℏ2k2

2m

(
nσ(k)

︸ ︷︷ ︸
kinetic energy EK

− C

k4

)
+

ℏ2CV
4πmas︸ ︷︷ ︸

interaction energy EI

+ EV .

︸ ︷︷ ︸
pot. energy EV

(2.54)

Note that the term −C/k4 is not part of the kinetic energyEK , but belongs to the
interaction energy EI . It has to be subtracted from nσ(k) before the integration,
as otherwise the integral would be ultraviolet divergent [33].

(3) The correlation between the (real space) densities for the two spin states at
points r separated by a distance d is given by [10, 33]

〈
n↑(r+ d/2) n↓(r− d/2)

〉
=
C(r)

16π2

(
1

d2
− 2

asd

)
+O(d0). (2.55)

4The Fourier transform of Ψ(r) yields the momentum space wave function
Ψ(k) = (2π)−3/2

∫
Ψ(r) exp(−ikr) d3r = a

3/2
s (1 + k2a2s)

−2/π, which satisfies
∫
|Ψ(k)|2d3k = 1.

As n(k) ∝ |Ψ(k)|2 one obtains the result from Equation (2.53) after normalization.



2.6. Particle correlations and Tan’s contact 31

The correlation function is closely related to the square of the two-body scatter-
ing wave function5 Ψs(r) ∝ 1

r
(1− r

as
) = 1

r
− 1

as
[102] given by

|Ψs(r)|2 =
1

r2
− 2

asr
+

1

a2s
≈ 1

r2
− 2

asr
. (2.56)

for as ≫ r where the prefactor in Equation (2.55) is proportional to the contact
C.
If one integrates both side of Equation (2.55) over a small sphere with radius rs,
one obtains the number of pairs within the volume of the sphere V = 4

3
πr3s . The

calculation yields [10, 33]
∫∫

sphere

〈
n↑(r+ d/2) n↓(r− d/2)

〉
= N(r) =

r4s
4
C(r) ∝ C(r)V 4/3. (2.57)

which is the microscopic interpretation of the contact explained earlier. For this
relation to hold, rs has to be smaller than the absolute value of the scattering
length |as| but larger than the range of the scattering potential r0 = (mC6/ℏ2)1/4
which is ≈ 62.5 a0 for 6Li. Intuitively, one would expect that the number of
pairs scales with Np(r) ∝ V 2. The determined proportionality Np(r) ∝ V 4/3

results from the strong correlations associated with the large scattering length
and implies that the actual pair density in a small volume is larger than one
would expect. See also Reference [33] for more details.
In addition, the correlation function is naturally linked to the pair fraction of a
Fermi gas. In Reference [16], calculations of the pair correlation function based
on a t-matrix approach were used to determine the fraction of paired fermions
in a spin-balanced Fermi gas in the BCS-BEC crossover. This was achieved by
fitting the spatial profile of the molecular wave function from Equation (2.38)
to the obtained correlation functions. The goodness of fit serves as a measure
of the pair fraction. This fraction was also experimentally determined in recent
work of ours [15]. For more details on this, see Section 4.7.

(4) The adiabatic sweep theorem states, that the change of the systems total
energy E with scattering length as at fixed entropy S and atom number N is
given by [10, 33] (

dE

d(−1/as)

)

S,N

=
ℏ2CV
4πm

=
ℏ2I
4πm

(2.58)

which follows from the energy relation (2.54). Since this relation describes how
the total energy E changes with 1/as (and not as), there is no conflict with con-
vergence at the position of the Feshbach resonance, where as diverges.
In the low temperature BCS limit (as → 0−), the largest scattering length de-
pendent contribution to the systems energy E is the mean-field energy. This
yields a contact C = 16π2a2s(n/2)

2 [11]. The result is essentially the product of
5This wave function is also recovered from the molecular wave function in Equation (2.52)

in the limit of as ≫ r, corresponding to the limit of the binding energy Eb = ℏ2/(ma2s) of a
weakly-bound Feshbach molecule approaching zero.
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the scattering cross sections 4πa2s (see eq. (2.39)) and the densities (n/2) of the
two spin components.

(5) The generalized virial theorem is another Tan relation, which provides an
expression for the total energy [12, 33]

E =
β + 2

2
EV − ℏ2CV

8πmas
(2.59)

of a Fermi gas in an external trapping potential of the shape

V (r) = rβf(r/r) (2.60)

satisfying β > −2, β ̸= 0 and β f(r/r) > 0 where f(r/r) is any smooth
function. For the case of a harmonic potential β = 2 and one obtains E =
2EV − ℏ2CV/8πmas.

(6) The pressure relation for a homogeneous Fermi gas gives an expression for
the pressure P in terms of the total energy E and is given by [12]

P =
2

3
E/V +

ℏ2C
12πmas

. (2.61)

(7) Inelastic two-body losses in a strongly interacting Fermi gas lead to a de-
crease of the atom number N over time t at a rate dN/dt. Due to the presence
of a loss channel, the total energy of the system acquires a small imaginary part
E → E −Ei/2. The time evolution of the Fermi gas can be effectively described
by [31]

exp [−i(E − iEi/2)t/ℏ] (2.62)

such that −dN/dt = −2Im[dE] = Ei/ℏ. Correspondingly, the scattering length
also acquires a small imaginary part [31], due to the collisional loss6. The
collision is then quantified by the complex scattering length

a = as + Im[a]. (2.63)

By taking the imaginary part of the adiabatic sweep theorem (2.58) and using the
mathematical identity Im[1/a] = −Im[a]/|a|2, one obtains a very fundamental
relation between the two-body loss rate of a Fermi gas and the contact [31–33]

−dN

dt
= −2Im[dE] =

ℏ Im[da]

2πm
CV = − ℏ Im[a]

2πm|a|2CV = − ℏ Im[a]

2πm|a|2I (2.64)

where a is now a complex-valued scattering length. For more details, see Ref.
[31]. This relation is qualitatively quite intuitive, because two-body loss naturally
goes hand in hand with two atoms being at close range.

6According to Equation (2.38), the s-wave scattering phase shift δ0 is proportional to the
scattering length as for small as. Therefore, the scattering wave function of the colliding particles
acquires a phase factor ∼ eiδ(k). If as has a small imaginary part, this leads to an exponential
decay of the wave function, which is associated with collisional loss.
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(8) Two more relations were found shortly after, relating the contact also to the
tails of radio frequency (RF) spectra [103, 104] which drop with C/ω3/2 at high
frequency ω and to the lineshape of Bragg spectra [105].

This whole set of relations highlights the importance of the contact parame-
ter for understanding strongly interacting Fermi gases. For this reason, its value
has been investigated experimentally and theoretically in various approaches
over the years. Experimental approaches include measurements of the contact
from the momentum distribution [100, 106], radio frequency (RF) spectroscopy
[100, 107, 108], Bragg spectroscopy [109] and inelastic decay measurements in
an ultracold gas mixture of fermions and a single bosonic impurity [110]. Theo-
retically, efforts for its determination were made using Monte Carlo simulations
[111, 112], calculations based on the Luttinger-Ward formalism [113], large-N
expansions [114], high temperature virial expansions [70, 105] and t-matrix cal-
culations [16], to just name a few examples.
In all these studies, the contact was determined only in specific regions of
the BCS-BEC crossover phase diagram, focusing either on the T/TF = 0 or
(kFas)

−1 = 0 regimes or the high temperature limits where T ≳ TF . Within this
thesis, I quite precisely determined the value of the contact in the entire phase
diagram of the BCS-BEC crossover, using a recently proposed scheme based on
photo-induced two-body loss [31]. It essentially makes use of relation (2.64),
which links the contact to the loss rate of the Fermi gas. More details on this
work are given in Chapters 6 and 7.
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Chapter 3

Experimental setup

To study ultracold, strongly interacting Fermi gases, we cool, trap and manip-
ulate dilute clouds of 6Li atoms. This particular atomic species offers a broad
magnetic Feshbach resonance, allowing for precise control of interparticle in-
teractions. Our experimental design for this follows the setups in Innsbruck
and Heidelberg [115, 116], which have proven to be simple and robust. In the
following sections, I will introduce the current setup in Ulm and describe the
main components of our experiment. These are the ultra-high vacuum system,
the coil systems for the magnetic fields, the experimental control unit, and the
laser systems. Detailed information on the individual components can also be
found in several master’s theses [117–121], in the PhD thesis of Daniel Hoffmann
[99] and in the forthcoming PhD thesis of Thomas Paintner, which is currently
under preparation.

3.1 Vacuum system
All experiments described in this thesis are conducted in an ultra-high vacuum
(UHV) environment at a background pressure of< 10−10 mbar. UHV conditions
are essential for trapping and cooling atoms to reach the quantum degenerate
regime. Without isolation from the ambient environment, a trapped ultracold
atom cloud would become unstable due to collisions with room temperature
ambient gas. At UHV, the lifetime of an ultracold gas can be extended to several
ten seconds, sufficient for performing experiments in the quantum degener-
acy regime. Figure 3.1 depicts our UHV system, which consists of two main
components: the oven chamber and the main experimental chamber.

In the oven chamber, enriched Lithium-6 (consisting of 95 mole percent 6Li and
5 mole percent 7Li) is heated up in an oven (see section 3.2). The melting point
of 6Li is at around 485 K. By heating the lithium to a temperature of 720 K, we
generate a small gas phase above the liquid lithium with a vapor pressure of
≈ 6 × 10−4 mbar [122, 123]. The lithium vapor exits the oven through a small
aperture, creating a constant flux of individual, optically addressable 6Li atoms
that travel towards the main experimental chamber. The oven is attached to a
large titanium sublimation pump, to which an ion getter pump (Agilent VacIon
Plus 40) with a pump volume of 40 l/s is connected (see Fig. 3.1). In the early
stages of the bake-out, both pumps were used. We now only use the ion getter
pump, as it can also maintain a sufficient pressure and we can preserve the
titanium filaments for future bake-outs. Despite the high temperature of the
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MOT chamber

oven

ion getter
pump (40 l/s)

Titanium 
Sublimation pump

gate valve

Zeeman slower

Titanium 
Sublimation pump

gate valve

ion getter
pump (150 l/s)
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(glass cell)
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Figure 3.1: Illustration of our ultra-high vacuum system for creating ultracold,
strongly interacting Fermi gases of 6Li. The setup consists of the oven
chamber (blue labeling) and the main experimental chamber (red
labeling). In the oven, lithium is heated to 720 K to generate lithium
vapor. An ion getter pump with a pump volume of 40 l/s reduces
the oven chamber pressure to 6 × 10−10 mbar. The oven chamber is
connected to the main experimental chamber by a 40 cm long tube
located inside the Zeeman slower (green labeling), which also serves
as a differential pumping stage. The experimental chamber includes
the MOT chamber, the science chamber and an ion getter pump with
a pump volume of 150 l/s. Each chamber is also equipped with a
titanium sublimation pump. Two gate valves allow for isolating the
experimental chamber from other parts of the vacuum system. More
details are given in the text.

oven, we reach a background pressure of ≈ 6× 10−10 mbar in the oven chamber.
With a gate valve, the oven chamber can be isolated from the rest of the vacuum
setup. This enables us to refill the oven without having to bake out the main
chamber experimental afterwards.

The main experimental chamber consists of the spherical octagonal MOT cham-
ber (MCF600-SphOct-F2C8) from Kimball physics, the science chamber, which is
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a glass cell from Hellma Analytics, another titanium sublimation pump and an-
other ion getter pump (Agilent VacIon Plus 150) with a pump volume of 150 l/s
[99]. The main chamber connects to the oven chamber through a ≈ 40 cm long
cylindrical tube located inside the Zeeman slower. The tube acts as a differential
pumping stage and provides a pressure gradient of ≈ 3 orders of magnitude
between oven chamber and main chamber [99]. The ion getter pump in the main
chamber attains a background pressure of < 10−11 mbar. Another gate valve is
connected to the main chamber (right hand side of Figure 3.1). Closing this valve
enables us to change the entrance viewport for the Zeeman slower laser beam
without breaking the vacuum in the main chamber. This must be done every
few years, as the viewport gets coated with lithium over time which absorbs
and gradually blocks the Zeeman slower laser beam. All viewports in our setup
(VPZ38QWAR-LN) are from Torr scientific and have anti-reflective coatings for
671 nm, 1064 nm and 532 nm.
The atoms from the oven initially arrive in the MOT chamber, where we trap
and cool them by means of a magneto-optical trap (MOT, see section 4.2). From
there, we optically transport them to the glass cell (see section 4.4.1), where
all experiments reported in this thesis are carried out. The glass cell not only
provides better optical access for high numerical aperture (high NA) imaging
of the atoms. It also facilitates the application of high magnetic fields, which
are crucial for tuning the interparticle interactions by means of the magnetic
Feshbach resonance at 832.2 G.

3.2 Lithium oven
The starting point for all our experiments is the lithium oven. It contains 4-5
grams of enriched 6Li which is heated to 720 K to provide a sufficient atom flux
into the experimental chamber. In the past, we had severe problems with the
oven design at the time. It was based on the design of the Heidelberg group [116]
and consisted of a cylindrical reservoir (inner diameter 37 mm, inner length 32
mm) and a cylindrical collimation tube (inner diameter 10 mm, inner length 60
mm). A sufficient atom flux was created by heating the reservoir to ≈ 720 K
while keeping the collimation tube cold to prevent leakages at the connection
flange of the collimation tube and the oven chamber. The problem with this
design was that the collimation tube became clogged with lithium over time,
which escaped from the reservoir and solidified. As a result, the oven had to be
changed every 6 months on average. For this reason, a new oven was designed
and implemented at the beginning of this thesis, which still provides sufficient
lithium flux even after 5 years of permanent operation.
The new oven design is illustrated in Figure 3.2. It basically consists of four
parts: the reservoir, the nozzle, the buffer zone and the collimation zone. In
the reservoir, approximately 5 grams of enriched Lithium-6 are heated to 720
K, creating a vapor. The nozzle, which is heated to a higher temperature than
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the reservoir1, ensures the lithium remains in vapor form, preventing any liq-
uid lithium from settling and causing blockages. It also collimates the atomic
beam. For heating the oven, we use a heating wires from Thermocoax made of
an Inconel alloy, which is a nickel-chromium-based superalloy suited for high
temperatures. To prevent heat loss, the reservoir and the nozzle are wrapped
with ceramic wool (from R.A. Schmidt-Feuerfest GmbH) and several layers of
aluminum foil. The entire oven is made of solid steel (AISI 316L), which has a
poor thermal conductivity. We further reduce heat conduction by choosing the
wall between the reservoir and the nozzle to be thin (1 mm). This ensures that
we can keep the nozzle at higher temperatures than the reservoir.

lithium (~5 g)

reservoir nozzle buffer zone collimation tube

720 K
>720 K

heating wires (Inconel alloy)

CF16 flange

Figure 3.2: Design of the current lithium oven. The oven consists of four different
zones. In the reservoir approximately 5 grams of enriched Lithium-6
are heated to 720 K. The nozzle provides collimation of the lithium flux
and is heated to a higher temperature than the reservoir to prevent
liquid lithium from settling there. Liquid lithium that passes the
nozzle can solidify in the large volume of the buffer zone, preventing
it from blocking the exit of the oven. The collimation zone serves both
as a second buffer zone and for further collimating the atomic beam.

Any liquid lithium that might pass through the nozzle enters the buffer zone.
The large volume of this zone allows the lithium to cool and solidify without
blocking the oven’s exit. Finally, the collimation zone serves both as a secondary
buffer reservoir and further collimates the atomic beam. The oven is connected
to our vacuum setup with a CF16 flange (outer diameter 1.33" ≈ 3.38 cm). A
technical drawing with all dimensions can be found in Appendix A.1.

3.3 Experimental control system
The heart of our setup is the experimental control system, illustrated in Figure
3.3. It is based on an ADwin-Pro II system from Jäger Computergesteuerte
Messtechnik and a custom-built LabView program.
For an experimental run, an array of time-sorted analog and digital signals is

1Note that the current oven design has only one temperature sensor to measure and regulate
the temperature of the reservoir. We anticipate that the temperature at the nozzle is higher
because we chose the winding density of the heating wires to be higher there.
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Figure 3.3: Experimental control system based on an ADwin-Pro II and a custom-
built and home-made LabView program. For an experimental run,
an array of time-sorted analog and digital commands is generated on
the experimental control computer and sent to a real-time micropro-
cessor (ADwin), which executes the commands by transmitting the
appropriate digital and analog signals to its outputs. From there, the
signals are distributed to the respective devices in the laboratory. To
prevent ground loops and crosstalk between devices, the signals are
partially isolated using optocouplers and isolation amplifiers. The
ADwin further provides real-time signal regulation with separately
programmable MIO (multi input-output) cards and is synchronized
to the electric power grid using a 50 Hz line trigger, such that each
experimental run starts in phase with the main power grid.

generated on the experimental control computer using a home-built LabView
program. The signals are for controlling the devices in the laboratory such as
lasers, coil power supplies, cameras, laser shutters, and frequency synthesizers
for acousto-optical modulators (AOMs) and electro-optical modulators (EOMs).
The graphical user interface of the LabView program allows for easily man-
aging the devices and parameters for each experimental run. It also provides
a graphical visualization of the programmed parameters and supports multi-
dimensional parameter scans, which is the basis for our measurements.
Once an array of commands is prepared, it is transmitted to the ADwin-Pro II
via Ethernet. The ADwin then executes the commands on a 300 MHz processor
(TigerSHARC ADSP-TS101S, T11) by sending the corresponding signals to its
outputs at the exact times. The time resolution for this is 10 µs and mainly
limited by the main processor clock. The output signals (digital, analog) are
generated in module cards that are plugged into the ADwin. From these cards,
the signals are then distributed to the devices in the laboratory with coaxial and
flat ribbon cables.
For the experimental control, we currently use four analog output cards (Pro
II-AOut-8/16-B) with a total of 32 channels, two digital output cards (DIO-32)
with a total of 64 channels, a co-processor card (Pro II-DIO-32-TiCo) with a 32-bit
digital output and two multi-input-output cards (Pro II-MIO-4) with 4 analog
outputs, 8 analog inputs and 8 digital inputs/outputs.
The co-processor DIO-32-TiCo with 32-bit output drives our bus system which
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we use to digitally program direct digital frequency synthesizers (DDS). These
synthesizers generate the frequencies for devices like acousto-optical and electro-
optical modulators and are all synchronized by a common stabilized 300 MHz
clock signal from a signal generator (Hewlett Packard ESG-D2000A).
The co-processors on the MIO cards are programmed as stand-alone real-time
Proportional-Integral-Derivative (PID) regulators and support four individual
control loops per card with a bandwidth to 40 kHz. This enables precise and
dynamic control of critical signal levels, such as the current for the Feshbach
coils (see section 3.5 or the power of the dipole trap laser which we use for the
final step of trapping and cooling the atoms to quantum degeneracy (see section
4.4.1).
To prevent ground loops and crosstalk between devices, all digital signals and
most of the analog signals are isolated using optocouplers and isolation am-
plifiers. For additional stability and synchronization, the ADwin processor is
synchronized with the mains electric power grid using a 50 Hz line trigger. This
synchronization ensures that each experimental run begins in phase with the
power grid, reducing variability and enhancing repeatability of the measure-
ments.

3.4 Laser systems
For cooling, trapping, manipulating and imaging the 6Li atoms, we use a variety
of lasers of all different types [99], including diode lasers, solid-state lasers and
fiber lasers. These laser systems are described in the following.

The master, imaging and cooler/repumper lasers
Laser cooling and imaging of atoms relies on (near) resonantly driving optical
transitions. This requires single-mode lasers with a narrow linewidth2. Addi-
tionally, these lasers must be stabilized to the respective optical transitions.
In our setup, all laser frequencies for cooling and imaging the atoms differ by
less than 1.5 GHz from the frequency of the D2 line of 6Li (see Figure 2.5), even
for imaging at the highest magnetic fields we can currently achieve (≈ 1400G).
To generate these frequencies, we stabilize one laser, the so-called master laser, to
the D2 line of 6Li using saturated absorption spectroscopy [117]. More precisely,
it is stabilized to the transition from the crossover of the |22S1/2,F = 1/2⟩ and
|22S1/2,F = 3/2⟩ states to the 22P3/2 manifold [117], see also Appendix A.2. The
lasers for cooling and imaging the atoms are then stabilized to the master laser
by a frequency offset stabilization scheme3 [124].

2In order to optimally address the atoms, which is crucial for cooling and imaging, the
linewidth of the lasers has so be smaller than the natural linewidth of the involved states. We
cool and image the atoms using optical transitions from the 22S1/2 ground state to the 22P3/2

manifold, which has a natural linewidth of 2π × 5.87 MHz [77].
3A frequency offset stabilization (or frequency offset lock) is based on detecting the frequency

beat of two lasers with a fast photo diode and converting the signal into an appropriate voltage,
which than acts on one laser, to stabilize its frequency relative to the other laser.
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The master laser is a commercial external-cavity diode lasers (ECDL) from Top-
tica Photonics with an output power of ≈ 35 mW and a linewidth of ≈ 150 kHz.

For imaging the atoms, we use another ECDL laser from Toptica Photonics
with an output power of ≈ 15 mW and a linewidth of ≈ 150 kHz. For high field
imaging in the vicinity of the Feshbach resonance, it is (red) detuned from the
master laser by ≈ 1 GHz. For more details on the imaging scheme, see section
4.6.

For laser cooling of 6Li, we require a combined optical power of ≈ 140 mW
on the experimental table at the position of the atoms. This power is divided
as follows: 60 mW for the Zeeman slower beam, 20 mW for both horizontal
MOT beams, and 40 mW for the vertical MOT beam. Each of these beams con-
tains 50% of cooler light (from |22S1/2, F = 3/2⟩ to |22P3/2⟩) and 50% of repumper
light (from |22S1/2, F = 1/2⟩ to |22P3/2⟩) [117, 119], which is required for hav-
ing a closed optical cooling cycle (see Figure 2.5). The frequencies for cooling
and repumping are generated from a single laser using the devices and optics
displayed in the optical table setup in Figure 3.4. Considering losses through
optical fibers, optical isolators and AOMs, this laser has to provide at least 300
mW of optical power. Achieving such a high optical power at a wavelength
of 671 nm is currently not possible with a single laser diode. In the past, we
used the TA Pro system from Toptica Photonics for this purpose. This system
consists of an ECDL with an optical power of approximately 25 mW, which is
subsequently amplified to 400-500 mW by a semiconductor optical amplifier.
However, these semiconductor amplifier chips suffer from bad transversal beam
profiles and short lifetimes of only a few months, especially for the wavelength
of 671 nm. For this reason, we have set up a new solid-state laser system with
high power and narrow linewidth over the course of the last years [65, 66, 125].
The system is based on a laser system design of the Salomon Group in Paris [61–
63] and consists of a home-built 1342nm solid state laser which is subsequently
frequency doubled to 671nm in a home-built enhancement resonant.
Within this thesis, I further improved this laser system, especially optimizing
it for short- and long-term stability and implemented it into the experiment. It
reliably provides the light for laser cooling and therefore sets the basis for all
our experiments. The laser system is in detail described in Chapter 5.

Lasers for optical dipole potentials
For optically trapping and forced evaporative cooling in the optical dipole
trap, we use an ytterbium fiber laser from IPG photonics (YLR-200-LP-AC) with
a wavelength of 1064 nm. This laser has linear polarization, a maximum output
power of 200 W and an almost Gaussian beam quality, indicated by an M2 factor
of < 1.1. For more details on the optical dipole trap, see Section 3.6.1.

For creating optical lattice potentials and tight optical tweezers , we use a single
mode polarization-maintaining 1064nm fiber amplifier (Nufern NUA-1064-PB-
0050-D0) with a maximum output power of 50W [99]. The fiber amplifier is
seeded with a home-built ECDL which has an output power of ≈ 50mW. For
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Figure 3.4: Optical table arrangement for the Master laser, the former cooling
laser (greyed out) and the imaging laser, adapted and updated from
[117]. The setup shows the optics and devices we use for preparing
the light for laser cooling and imaging the atoms. The prepared light
is guided to the experimental table using optical fibers. Although
the former TA Pro cooling system is no longer in use, we still use the
optics and devices by guiding the light from the new laser system
(see Chapter 5) into the former optical path via the fiber labeled "from
solid state laser".
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seeding the fiber amplifier, we use around 15mW of this power. For more details
on the lattice projection, see [99].
Fermionic atoms with tunable interactions in optical lattices are ideal for simu-
lating the physics of electrons in a solid state. This enables the investigation of
fundamental aspects in condensed-matter physics [126]. For this purpose, we
developed a non-destructive holographic imaging scheme for atoms in optical
lattices [17]. This is in detail described in Chapter 8.

In addition, we can realize repulsive potentials for the atoms using a diode
pumped solid state laser (Laser Quantum Opus 532) with a wavelength of 532nm
and a beam diameter of 1.85mm. The maximum specified output power of the
system is 4W. Over time, however, this value has been reduced to 2.8 watts
due to degradation. In previous experiments, this laser was used to confine the
atoms in two dimensions by generating an appropriate optical potential with a
phase plate [99, 127] and to excite sound waves of first and second sound [82].
In future experiments, we plan to use for creating a repulsive box potential for
the atoms, which is discussed in Section 3.6.2. This allows for realizing and
studying homogeneous Fermi gases.

Lasers for spectroscopy
For molecule spectroscopy and spectroscopy on the D1 line, we have two more
home-built ECDL lasers implemented in our setup.

The laser for spectroscopy on the D1 line provides an output power of ≈ 35
mW at a wavelength of 671 nm with a linewidth better than 300kHz.

The laser for molecular spectroscopy and photo-excitation of atom pairs to
tightly bound molecular states has a wavelength of 673.3 nm (corresponding to
a frequency of about 445.250THz, see Figure 4.13) and provides an output power
of 30 mW and a linewidth better than 500kHz. It is subsequently amplified to
≈ 90 mW by means of a semiconductor optical amplifier (BoosTA from Toptica
Photonics).

3.5 Coil systems
Manipulating the electronic states of the 6Li atoms by means of external mag-
netic fields is crucial for laser cooling, trapping and tuning the interparticle
interactions. For this reason, we have various coils implemented in our exper-
imental setup as shown in Figure 3.5 and 3.6. The coils have been set up and
characterized in previous master’s theses [118–120] and are described in the
following. For additional information on their purpose in the experiment, see
Chapter 4.

The Zeeman slower coils

The 6Li atoms leave the oven with mean velocities of ≈ 1600 m/s. To initially
slow them down on their way to the MOT chamber, we expose them to a counter-
propagating laser beam resonant to the D2 line, which applies a scattering force
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Figure 3.5: Top view presentation of the vacuum system showing the imple-
mented coils. These include the nine Zeeman slower coils (blue), the
MOT coils and the offset and Feshbach coils around the MOT chamber
(green). Also shown are the lower Feshbach coils, lower vertical offset
coils and horizontal offset/gradient coils around the glass cell (red).
The upper Feshbach and vertical offset coils are hidden for illustrative
reasons. These are shown in Figure 3.6.

on the atoms. As the atoms decelerate due to photon scattering, they would
experience a Doppler shift that moves them out of resonance with the laser.
To compensate for this shift, we use a configuration of nine coils to produce a
spatially varying magnetic field. This field gradually shifts the atomic energy
levels, keeping the atoms in resonance with the decelerating laser light as they
slow down. This configuration is called a Zeeman slower.
The first eight coils (1-8) are connected in series and driven by the same power
supply, while the last coil (9), closest to the MOT chamber, has a separate power
supply. This final coil has the highest influence on the atoms in the MOT due
to its proximity. By individually controlling it, we can use it for additional
purposes, such as providing extra gradients or shifting the MOT center. The
specifications of the coils are listed in table 3.1.

Table 3.1: Specifications and operation currents of the Zeeman slower coils [99].

Coils Resistance R (Ω) Current I (A) Field per current B/I (G/A)
1-8 11.65(5) 6 92 - 50
9 0.74(2) 5.6 41.4

The MOT coils

A three-dimensional magneto-optical trap consists of six red detuned laser
beams, arranged as counter-propagating pairs along each of the three spatial
directions. This arrangement of laser beams is combined with a magnetic
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quadrupole field. The laser beams apply a velocity-dependent force on the
atoms, which is crucial for laser cooling. In addition, the magnetic field causes
a Zeeman splitting of the atomic levels which, together with the laser beams,
generates a position-dependent force, that ensures the spatial confinement of
the atoms. For more details on the working principle of a MOT, see Section 4.2.
In our setup, the magnetic field is realized by the two coils in anti-Helmholtz
configuration, separated by a distance of 7.2 cm [118]. The other specifications
are shown in table 3.2.

Table 3.2: Specifications and typical operation current of the MOT coils in anti-
Helmholtz configuration. The gradient refers to the gradient in the
center of the MOT. Resistance and gradient values taken from [120].

Resistance R (Ω) Current I (A) Gradient ∆B/I∆xi (G/(A cm))
2.20(2), both 14.1 2.47(2) vertical, 1.27(2) horizontal

The MOT offset coils

To optimize the spatial overlap of the atoms in the MOT and the optical dipole
trap (ODT), we utilize two offset coils, mounted close to the view ports of the
MOT chamber (see Figure 3.5). With these coils, the center of the trapping
potential of the MOT can be shifted horizontally for optimizing the transfer of
the atoms into the ODT. Their properties are listed in table 3.3.

Table 3.3: Specifications and typical operation currents of the offset coils at the
MOT chamber. The terms ’left’ and ’right’ refer to their location as
shown Figure 3.5. Resistance and gradient values taken from [99].

Coil Resistance R (Ω) Current I (A) Gradient ∆B/I∆xi (G/(A cm))
Left coil 0.55(2) 2 ≈ 1.1

Right coil 0.55(2) 6 ≈ 1.1

The Feshbach coils for the MOT chamber

Most of our experiments exploiting the Feshbach resonance, are carried out in
the glass cell. However, we also have Feshbach coils installed around the MOT
chamber. Due to the high currents required to achieve the necessary magnetic
fields of several hundred Gauss, these coils are made of hollow wires with an
inner square cross-section of 2.4 × 2.4mm2 [120]. By circulating cooling water
through the wires, we maintain steady state temperatures below 70◦C during
operation with currents up to 200 A. Table 3.4 lists the coil properties.

Table 3.4: Specifications and typical operation current of the Feshbach coils
around the steel chamber, constructed in Helmholtz configuration.

Resistance R/Ω Current I (A) Field per current B/I (G/A)
0.04(2), both 100-200 5.15
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Figure 3.6: Three quarter view of the coil system around the glass cell/science
chamber (yellow). The coil system includes the vertical offset coils
(blue), the Feshbach coils (green) and the horizontal gradient coils
(violet) and is used for magnetically trapping, levitating and manipu-
lating the scattering properties of the atoms by means of the Feshbach
resonance. Also shown is the high NA objective below the glass cell
(red), which has an NA of 0.6 and a working distance of 8 mm.

The Feshbach coils for the glass cell

All experiments with degenerate, strongly interacting Fermi gases presented
in this thesis are carried out in the glass cell. Both, evaporative cooling and
realizing the different superfluid states in the BCS-BEC crossover exploit the
broad Feshbach resonance at 832.2 Gauss. To achieve these fields, we use a set
of coils, illustrated in Figure 3.5 and 3.6. The Feshbach coils are made of hollow
wires with an inner core cross-section of 4×4mm2. Due to the large inner cross-
section, the coils maintain a steady-state temperature of approximately 30◦C at
a current of 200 A. The other coil properties are listed in table 3.5.

Table 3.5: Specifications of the Feshbach coils around the glass cell, constructed
in Helmholtz configuration.

Resistance R (Ω) Current I (A) Field per current B/I (G/A)
0.03(2), both 70-150 5.79

The vertical offset/gradient coils for the glass cell

The vertical offset/gradient coils around the glass cell, which are in Helmholtz
configuration serve two purposes. First, they provide an additional offset field
of ≈ 225G for the current listed in table 3.6. Secondly, by driving both coils
with different currents, they create a magnetic field gradient along the vertical
direction which we use for levitating the atoms against gravity. The gradient
necessary for this is dB/dz = mg/µB ≈ 1.05G/cm where g = 9.81m/s2 is the
gravitational acceleration. Due to the high currents, these coils are also water
cooled.
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In combination with the Feshbach coils, these coils produce an almost harmonic
confinement in the horizontal plane with a trap frequency of ω = 2π × 21.5Hz
[82].

Table 3.6: Specifications of the vertical gradient/offset coils around the glass cell.
The terms ’upper’ and ’lower’ refer to their location as shown Figure
3.6.

Coil Resistance R (Ω) Current I (A) Field per current B/I (G/A)
Upper 0.004(1) 251.7 1.13
Lower 0.004(1) 153.5

The horizontal offset/gradient coils for the glass cell

The horizontal offset/gradient coils were originally designed to generate a gradi-
ent along the horizontal direction. The primary function was to study fermions
in two-dimensional optical lattices, where the gradient induces tunneling be-
tween lattice sites. In the experiments presented in this thesis, the atoms are
confined in a harmonic potential and the coils are driven in Helmholtz configu-
ration to provide another offset field of ≈ 24G. The coil specifications are listed
in table 3.7.

Table 3.7: Specifications of the horizontal offset/gradient coils around the glass
cell, currently operated in Helmholtz configuration.

Resistance R (Ω) Current I (A) Field per current B/I (G/A)
1.00(2), both 3.95 6.04

3.6 Optical trapping potentials
Charged particles can be efficiently trapped using electric fields due to the strong
Coulomb interaction. This interaction is not present in neutral atoms, which
makes trapping more challenging. For this purpose, optical dipole traps have
proven to be a powerful tool. When atoms are placed in a light field (e.g. a
laser), the oscillating electric field induces an atomic dipole moment that causes
the atoms to interact attractively or repulsively with the driving field [128]. This
mechanism is based on the Autler–Townes effect (or AC Stark effect), that shifts
the energy levels of the atoms proportional intensity of the driving light field. In
our experiment, this field is typically generated by lasers. When the frequency of
the laser ωl is largely detuned from the atomic transition frequency ω0 between
the ground state and the excited state, the resulting potential is given by [128]

U(r) ≈ 3πc2Γ

2ω3
0

I(r)

∆
. (3.1)

Here, ∆ = ωl − ω0 is the detuning and I(r) the intensity distribution of the
laser light. For ωl < ω0 (ωl > ω0) which is called red (blue) detuning, the atoms
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are therefore attracted to (repelled from) the light field. As this mechanism
is independent of the particular sub-levels of the ground state, optical dipole
traps allow for confining the atoms while still providing the possibility to apply
external magnetic fields for manipulating their scattering properties.

3.6.1 Optical dipole trap
For a Gaussian laser beam with powerP propagating along the (axial) z-direction
which is focused to a waist of w0 at x = y = z = 0, the intensity distribution is
given by

I(x, y, z) = I0
w2

0

w(z)2
e−2r2/w(z)2 (3.2)

where r =
√
x2 + y2 and I0 = 2P/πw2

0. The quantity w(z) = w0

√
1 + z/zr is the

beam waist, zR = w2
0π/λl the Rayleigh length and λl the wavelength of the laser.

At z = r = 0 the resulting potential can be approximated by a harmonic trapping
potential with axial and radial trap frequencies ωz = ωax =

√
2U(0)/mz2R and

ωr =
√
4U(0)/(mw2

0) [129].
In our setup, we use a single beam optical dipole trap for trapping, transporting
and forced evaporative cooling of the atoms. The dipole trap utilizes a focused
200W fiber laser with a wavelength of λ = 1064nm (see Section 3.4). Although
the laser is far detuned from the D1 and D2 lines of 6Li at a wavelength of ≈ 671
nm, its high power still provides a ∼ 1 mK deep optical trapping potential for
the atoms when focusing it down to a waist of ≈ 38µm [99], corresponding
to a Rayleigh length of 4.3mm. During evaporative cooling, we subsequently
lower the laser power down to 10−1000mW (see Section 4.4.1) to cool the atoms
down to temperatures of 0.05 − 3TF . Typical optical trap frequencies are then
on the order of ωax,opt = 2π × 0.5− 5Hz and ωr = 2π × 100 − 1000Hz. The
axial confinement of the atomic cloud is therefore almost exclusively caused by
the magnetic field of the Feshbach and offset coils, which together produce a
potential with trap frequency ωax,mag = 2π × 21.5Hz (see previous section).

3.6.2 Repulsive ring potential
All our experiments on pairing and superfluidity in the BCS-BEC crossover were
carried out in a harmonic trapping potential [13, 15, 82, 130]. Although harmon-
ically trapped Fermi gases are a well-defined and intensely studied physical sys-
tem of high interest, homogeneous Fermi gases offer unique advantages and are
gaining increasing interest in the field of ultracold atoms [131, 132]. One of the
main advantages of homogeneous Fermi gases is the ability to study bulk prop-
erties of the system without the disturbing effects of the trapping potential. This
can be particularly useful for exploring phenomena such as phase transitions
and collective excitations in a more uniform and controlled way. Additionally,
homogeneous Fermi gases allow for easier comparison with theoretical mod-
els, as the system can be described by simpler theoretical frameworks without
the complications introduced by the trapping potential. Furthermore, homoge-
neous Fermi gases offer opportunities for exploring exotic phases that may not
be accessible in trapped systems, such as the Fulde-Ferrell-Larkin-Ovchinnikov
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(FFLO) phase [133].
For this purpose, I set up a repulsive ring potential along the lines of [131] and
[132], which basically represents a two-dimensional optical box potential for
the atoms. The optical setup consists of three axicons and two lenses and is
presented in Figure 3.7. Axicons are conical prisms and can, within geometric
optics, be regarded to only split and deflect an incident laser beam. In contrast,
lenses also change the size of the beam by either focusing or diverging it.
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Figure 3.7: Optical setup for generating a ring potential from a Gaussian beam.
The setup consists of three axicons and two lenses, arranged as shown
in the top and bottom panels. The optics and the beam profiles are
cylindrical symmetric in the y-z plane. While the axicons change the
diameter of the ring, the two lenses also affect its width. The resulting
ring has a diameter of ≈ 200µm and a width of 13 µm (FWHM). The
panel in the middle shows measurements of the beam profile at the
marked locations. The beam path was calculated with ray tracing
based on geometric optics. More details are given in the text.
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The optical beam path
Our setup is strongly based on the design of the Quantum Matter Group in
Hamburg [132, 134]. The advantage of this design, compared to design used in
the Zwierlein Group at MIT [131], is that the ring generated by the first axicon is
inverted by the consecutive two axicons, resulting in a sharp inner edge. For this
purpose, we used the same set of axicons. The main difference in our concept
is that we wanted to project the ring structure onto the atoms from a larger
distance. Therefore, we used lenses with different focal lengths and a different
beam path geometry that allows the projection to the position of the atoms from
a distance > 50mm. The purpose of the optical elements is explained in the
following.

The setup starts with a collimated Gaussian beam from a Coherent Verdi V18
laser, which we spatially filter using a 2-meter-long single-mode optical fiber.
The first α = 10◦ axicon transforms the Gaussian beam into a ring beam in the
far field. The ring’s diameter diverges at an angle of arcsin(n sinα)− α ≈ 4.48◦,
where n = 1.46 is the refractive index of fused silica (the material from which
the axicons are made) for λ = 532nm. The width of the ring remains almost
constant and is determined by the initial size of the Gaussian beam. If one
follows the ray traces in Figure 3.7, based on geometric optics, one can see that
the first axicon maps the inner, high intensity part of the Gaussian beam to the
outside of the ring. Consequently, the outside of the Gaussian beam, where
the intensity decreases with exp(−r2), gets mapped to the inside of the ring.
The resulting ring therefore has a sharp outer edge while the intensity towards
the center decreases with exp(−r2). This is also illustrated in the beam profile
measurement shown in the middle panel of Figure 3.7. It represents the exact
opposite of what we aim to achieve. In a box potential, the potential inside the
box must be constant and then sharply increase at the edges. The purpose of
the following optics is therefore to both invert the ring and decrease its diameter
and width. We achieve this as follows:
After the first axicon, a lens with a focal length of f = 300mm reduces the
divergence of the ring’s diameter while slightly focusing its width. The width
therefore reaches a minimum at the lens’s focal point and increases again from
there on. The second 10◦ axicon symmetrically deflects the ring, reducing its
diameter until the ring is inverted4. The third axicon, with an opening angle of
α = 2◦, nearly collimates the ring’s diameter. The width, however, continues to
increase due to the f = 300mm lens.
The final lens, with a focal length of f = 50mm, focuses both the ring’s diameter
and its width. At a distance of 65mm after this lens, the ring has a diameter of
200µm and a width of 13µm (FWHM). The inner part of the ring is now almost
free of residual intensity due to the inversion. This is shown in the right plot of
the middle panel of Figure 3.7 and in Figure 3.8 a).
Figures 3.8 b) and c) show a line cut through the measured intensity distribution
of the ring profile on an linear and logarithmic scale. From these measurements,
one can see that the intensity along the ring is more than a factor of 2000 larger
than the intensity inside. Additionally, the intensity inside is a factor of 10 larger

4Without the f = 300mm lens, this axicon would simply collimate the ring’s diameter. The
ring would then propagate with constant diameter and width, as shown in Figure 3.10
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thqn the background intensity far outside the ring. For further discussion, these
ratios are called height-to-inner and inner-to-background, respectively. This
result is by far superior to the reported ring potential in [132] where a height-to-
inner ratio of ≈ 75 was reported.

Homogeneity
As a rule of thumb, ultracold atoms in thermal equilibrium energetically fill up
their confining potential to about 1/5 of its height [135, 136]. Moreover, their
density distribution is to a first approximation proportional to their confining
potential, see e.g. Chapter 2. For the ratio between the height of the potential
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Figure 3.8: Repulsive ring potential created with the optics shown in Figure 3.7.
All intensity values are given in camera counts per pixel (cpp). a)
False color image of the ring potential taken with a CMOS camera
(PCO Edge 4.2 LT). The color bar indicates the intensity which is
> 40 000 cpp along the ring and ≈ 20 in the center of the ring. The
ring has a diameter of ≈ 200µm. b) Line cut through the intensity
profile along the center in horizontal direction. As the optical dipole
potential is proportional to the intensity (see Equation (3.1)), the in-
tensity distribution provides a sharp box potential for the atoms. c)
Same line cut as in b), plotted on a logarithmic scale. Far outside the
ring for |z| > 400µm, the intensity is approximately 2 cpp and mainly
given by the background noise. In the center of the ring, the average
intensity is 20 cpp, and exceeds 40 000 cpp along the ring.
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and the potential fluctuations inside the ring, we measure a value ≳ 2000. The
expected density variations for the atoms confined inside the ring potential
are therefore on the order of 5/2000 = 0.25%. In Reference [131], the reported
density variations were on the order of 15%, while Ref. [132] reported a standard
deviation of 8.6%. This value in agreement with the reported height-to-inner
ratio of 75, which would result in a fluctuation in the density of 5/75 ≈ 6.6%
under the considerations mentioned above.
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Figure 3.9: Effects of dust on the optics of the ring potential beam path. The
intensity values are given in camera counts per pixel (cpp). The top
left and top right false color images show the measured intensity
distribution of the ring potential on a logarithmic scale (see color bar).
The bottom left and bottom right plots are line profiles of the intensity,
taken along the center of the ring at y = 0. The top and bottom left
images correspond to measurements with dust on the optics, the top
and bottom right ones show the scenario after dust removal. Before
cleaning, the height-to-inner ratio was 100:1 which increased to 2000:1
after dust was removed. The background intensity far outside the ring
is ≈ 10 cpp, see also Figure 3.9 c).

Projecting the ring potential
A main advantage of our setup is the fact, that the potential is created at a rather
large distance of 65mm after the last lens. This allows for projecting the potential
onto the atoms from a larger distance, eliminating the need for high numerical
aperture objectives that require a good optical access to the atoms.

Required optical power
In our experiments, the atom cloud temperatures are on the order of 200nK. For
this reason, the potential height has to be on the order of kB × 1µK. With the
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measured intensity distribution and Equation (3.1), the required power for this
is 300mW. The inner part of the ring would then have a residual potential depth
of kB × 0.5nK.

Effects of dust on the optics
Dust on optical components can significantly degrade performance by scattering
and absorbing light. This can distort the beam profiles, leading to reduced
beam quality and increased noise. When setting up the optical path for the ring
potential, I observed similar detrimental effects.
Due to the significant impact on the ring profile, this issue is briefly discussed
in the following. Even with a small amount of dust on the optics I could only
achieve a height-to-inner ratio of ≈ 100. For such an intensity distribution,
density variations on the order of 5% are expected. This significantly improved
by carefully cleaning all the optics shown in Figure 3.7. After the dust removal,
the height-to-inner ratio increased to ≳ 2000 while the inner-to-background
intensity ratio dropped to 10, as stated earlier. This is also depicted in Figure
3.9.

Further explanation of the beam path
For a better understanding of the optical path, the influence of the axicons and
lenses on the initial Gaussian beam can be viewed independently. For this, the
same optical system depicted in Figure 3.7 is shown in Figure 3.10 with only the
three axicons and in Figure 3.11 with only the two lenses. A ring potential which
is subsequently inverted can also be achieved with only three axicons, as shown
in Figure 3.10. However, to adjust the width of the ring, lenses are required.
Within geometric optics, the position of the focal points is independent5 of the

5This statement only applies approximately, as the axicons with refractive index n ≈ 1.46
additionally increase the optical path length.
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Figure 3.10: Creation of a diverging ring potential with a sharp inner edge us-
ing three axicons. The first axicon transforms the initial Gaussian
beam into a ring with a sharp outer edge which diverges in diameter.
The second axicon collimates the ring. The third axicon now sym-
metrically deflects the ring. The ring consequently converges and is
inverted after the certain distance, creating a ring with a sharp inner
edge. Note that the axicons do not influence the width of the ring.
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axicon positions. For this reason, the width of the ring generated with the setup
in Figure 3.7 has a minimum in the focal points of the setup depicted in Figure
3.11.
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Figure 3.11: Optical beam path without axicons. The Gaussian beam is focused
by the same pair of lenses at the same positions as in Figure 3.7.
In contrast to the setup in Figure 3.7, the three axicons are missing.
As the axicons only deflect the beam, the focal points of the optical
system remain the same.

3.7 Antennas
In our experiments, we typically study balanced mixtures of 6Li in the two
energetically lowest hyperfine states referred to as |1⟩ and |2⟩ (see Figure 2.6). To
drive transitions between the two states, as well as between these states and other
states of the 22S1/2 manifold, we use two radio frequency (RF) antennas and one
microwave (MW) antenna. These are described in the following. In addition,
Figure A.2 shows level scheme with the addressable RF and MW transitions.

To drive transitions between |1⟩ and |2⟩, we use an RF antenna placed at a
distance of ≈ 10 cm from the glass cell [120]. It consists of a copper loop with
an inductance of 0.238µH and a resistance of 25mΩ which is terminated by
an adjustable copper plate capacitor with a capacity of about 20pF [120]. The
antenna has a resonance frequency at ≈ 76.2MHz and a bandwidth of 740kHz.
It can be adjusted by changing the distance of the two copper plates that form
the capacitor. The frequency of 76.2MHz matches the energetic difference of the
states |1⟩ and |2⟩ at a field of ≈ 790G. The emitted RF signal is linearly polarized
perpendicular to the quantization axis of the atoms. Its projection on the atoms
therefore matches the selection rules for the desired transition |1⟩ (mI = 1) ↔
|2⟩ (mI = 0). In our experiments, this antenna is typically used to create the
balanced mixture of atoms in |1⟩ and |2⟩ (see Chapter 4) and also to calibrate the
magnetic field by means of RF spectroscopy.

In addition, we can drive RF transitions between |2⟩ and |3⟩. For this, a similar
antenna with a resonance frequency of ≈ 82.2MHz is implemented [99] close to
the glass cell. The resonance frequency matches the respective energetic splitting
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Figure 3.12: Radio frequency molecule spectroscopy at a magnetic field of 755G,
adapted from [99]. a) The investigated Fermi gas is initially prepared
in a balanced mixture of atoms in states |1⟩ and |2⟩, with some form-
ing Feshbach molecules. A radio frequency pulse transfers atoms
from |2⟩ to |3⟩. The remaining atoms in |2⟩ (bound or unbound) are
then counted using absorption imaging. The RF spectrum shows two
dips: the left dip corresponds to the loss of unbound atoms, while
the right dip shows the loss of atoms bound to Feshbach dimers.
These require a higher RF frequency for transferring them to |3⟩ to
overcome the binding energy, see also [78, 99, 137] for more details.
b) Level scheme with the involved electronic states.

of |2⟩ and |3⟩ in the high magnetic field, as depicted in Figures 3.12 b) and 2.6. In
our experiments, this antenna can be used to measure the binding energy of the
Feshbach molecules by means of RF spectroscopy. Such a spectrum is shown
in Figure 3.12 a) and explained in the figure caption. For more details, see also
References [78, 99, 137].

Transitions between the high-field seeking states |1⟩, |2⟩ and |3⟩ and the low–
field seekers |4⟩, |5⟩ and |6⟩ require microwave frequencies on the order of
2 − 3GHz, as depicted in Figure 2.6. For this, a microwave antenna is imple-
mented in our setup, as described in [99]. With this antenna, transitions with
∆mI = 0 can be driven, e.g. |2⟩ to |5⟩. This enables us to remove atoms from the
trap, as they are now repelled from the potential provided by the magnetic field
of the Feshbach and offset coils.

3.8 Wavemeter based frequency stabilization
Cooling and imaging the atoms requires frequencies close to the D2 transition
of 6Li, as explained in Section 3.4. We generate the necessary frequencies using
a master laser stabilized to a spectroscopy cell. Additional lasers are then sta-
bilized relative to the master laser through frequency offset stabilization [124].
This stabilization scheme, however, is only applicable when the frequency dif-
ference between the two lasers can be detected by a fast photo diode. This
imposes a limit on the possible frequency difference, which is approximately 20
GHz for the fastest photo diodes currently available. To stabilize lasers at other
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frequencies/wavelengths, we use a stabilization scheme based on the commer-
cial wavelength meter WS7-60 from High Finesse. The working principle of this
scheme is described below and depicted in Figure 3.13.

The wavelength meter WS7-60 can determine the frequency of a laser with

Wavemeter lock computerExperiment control 
computer

8 channel
fiber switcher

High Finesse
Wavelength Meter

WS7

DAQ Card
NI USB-6001

USB

Network 

USB

Lasers

analog voltages
for frequency 
control

Single mode
fiber

Other computers in our laboratory

Figure 3.13: Setup of the wavemeter stabilization scheme. A fraction of the laser
power (≈ 1 mW) is guided in optical fibers to a fiber switcher that
connects to a wavelength meter (WS7-60) with a single mode fiber.
The wavelength meter interferometrically measures the wavelength
with a specified relative accuracy of 2 MHz and sends this informa-
tion to the wavemeter lock computer. On this computer, a LabView
program stabilizes the wavelength to a setpoint by sending out a
control voltage to the piezos of the respective lasers. This is done by
a digital to analog converter (NI USB-6001) connected via USB. The
actual and target values for the wavelengths can be read or set from
any computer in our network.

a specified accuracy of better than 2 MHz6. The measurement is based on a
Fizeau interferometer, which generates a laser frequency-dependent interfer-
ence pattern detected by a CMOS sensor. The acquired pattern is compared to
stored interferograms, allowing the determination of the laser frequency with
the stated resolution. The CMOS sensor in our WS7-60 is silicon-based and
can therefore detect wavelengths in the range of 400-1100 nm. To enhance the
number of lasers that can be simultaneously measured, the wavelength meter is

6From our measurements, we estimate a significantly better resolution. This conclusion
is based on comparing a cavity-stabilized laser with a linewidth of less than 10 kHz and a
spectroscopically stabilized laser with a linewidth of about 200 kHz using the wavelength meter.
For the 10kHz laser, the wavelength meter typically shows a single value for the wavelength. For
the broader laser, the wavelength meter displays wavelength values with a standard deviation
corresponding to approximately 200kHz of linewidth. We obtain these readings by directly
accessing the wavelength data from the wlmData.dll file (Dynamic Link Library) via LabView,
which provides a higher resolution (100 kHz) than the High Finesse software (10 MHz).
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connected to an 8-channel fiber switcher by a single mode fiber. This switcher
receives light from up to eight lasers, which is then sequentially transmitted to
the wavelength meter using a multiplexer.
To stabilize a laser, we use a home-built LabView program that reads the wave-
length measurements from the wavelength meter via USB and compares them
to predefined setpoints. The LabView program then employs a PID loop to cal-
culate an appropriate error signal. This signal is converted to an analog signal
on a DAC card (USB-6001 from NI) connected to the same computer via USB.
These analog signals act on the piezos in the respective lasers to stabilize the
wavelength to the setpoint.
The bandwidth and precision of this stabilization technique is limited by the
readout speed and resolution of the wavelength meter. For a single laser, the
determination of the wavelength takes at least 1 ms, assuming proper exposure
of the CMOS sensor7. This limits the bandwidth of the stabilization to 1 kHz.
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Figure 3.14: Spectroscopy signal for a spectroscopy performed with a laser sta-
bilized by the wavemeter lock. The spectroscopy probes the transi-
tion from state |1⟩ ≡ |22S1/2,mJ = −1/2,mI = 1⟩ to |22P3/2,mJ =
−3/2,mI = 1⟩ at a magnetic field of 820 G. The initial state is later
imaged via absorption imaging to count the remaining number of
atoms. From a Lorentzian fit (solid line), we extract a linewidth of
6.2MHz (FWHM).

For eight lasers, the bandwidth for the stabilization therefore reduces to 125 Hz.
As a result, the wavemeter lock cannot compensate for fluctuations on shorter
timescales. Consequently, this stabilization technique is especially suited for
lasers that are already quite stable intrinsically. For our home-built diode lasers,
which have an intrinsic linewidth of 100−200kHz, we typically achieve stabilities
better than 1 MHz on time scales > 10 seconds. This is also evidenced in Figure
3.14 which shows a spectroscopy signal of the |22P3/2,mJ = −3/2⟩ state at high
magnetic field. This state has a natural linewidth of 2π × 5.87MHz. The spec-
trum does not show any significant broadening of the line, even though the laser
is stabilized solely with the wavelength meter lock. As also discussed in Chapter

7This requires about 1 mW of optical power.
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5 and Ref. [138], the convolution of two Lorentzian lineshapes with linewidths
∆ν1 and∆ν2 results in a signal with a total linewidth of∆νres = ∆ν1+∆ν2. From
the known linewidth of the D2 line and our measurement, from which we extract
a linewidth of 6.2 MHz, we can estimate a laser linewidth of around 350kHz.
For a more detailed discussion on the capabilities and limits of the wavelength
meter stabilization, see the forthcoming PhD thesis of Dominik Dorer, which is
currently under preparation.
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Chapter 4

Experimental steps and methods

In Chapter 3, our experimental setup for creating ultracold, strongly interacting
Fermi gases of 6Li was presented, mainly focusing on the technical components
such as the vacuum apparatus, coils, and laser systems. The following chapter
puts the focus on the underlying physics, explaining the necessary experimental
steps and methods for cooling, manipulating, and imaging 6Li atoms. For
this, we follow a typical timeline of an experimental run, beginning with hot
individual 6Li atoms from the oven and ending up approximately 15 seconds
later with a quantum degenerate, strongly interacting Fermi gas in the glass
cell. This timeline together with the involved cooling steps and temperatures is
illustrated in Figure 4.1.

4.1 Laser cooling
Laser cooling relies on the deliberate scattering of photons to reduce the mo-
mentum and thus the temperature of the atoms. Atoms in a continuous light
field of a laser with intensity I and frequency ωl can be effectively modelled as a
two-level system with transition frequency ω0 = 2πc/λ. When the atoms scatter
photons of momentum ℏk = hc/λ, they experience a scattering force given by
[129]

Fsc = ℏk
Γ

2

S0

1 + S0 + 4
(
δ0
Γ

)2 (4.1)

where S0 = I/IS denotes the saturation parameter and

IS =
π

3

ℏΓ
λ3

(4.2)

the saturation intensity. For the D2 line of 6Li where λ = 671nm and Γ =
2π× 5.87MHz [77], the saturation intensity is IS = 2.54mW/cm2. The quantity
δ0 = ωl − ω0 is the detuning. The detuning can be additionally affected by the
Doppler shift δD = kv when atoms move at a velocity v parallel to the laser
beam, and by external magnetic fields due to the Zeeman effect δB = µBgB/ℏ.
These mechanisms are exploited in the Zeeman slower and the magneto-optical
trap (MOT) to decelerate/cool and confine the atoms.
In our experiments, we perform laser cooling on the D2 line of 6Li, from the 22S1/2

to the 22P3/2 manifold. While the 22P3/2 hyperfine states are not resolvable, the
22S1/2 ground state splits up into |22S1/2,F = 1/2⟩ and |22S1/2,F = 3/2⟩ with a
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Zeeman slower Transport Evaporation
720 K ~500 µK ~100 nK~10 mK

MOT

time5 s 750 ms 5 - 6 s

Oven Zeeman slower MOT chamber

Glass cell

Figure 4.1: Illustration of the different cooling steps and their durations in a typ-
ical experimental run. The arrows show the trajectory of the atoms in
the vacuum chamber, while the colors illustrate their temperatures.
The atoms leave the oven with a temperature of T = 720K, corre-
sponding to a mean velocity of

√
8kBT/πm ≈ 1600m/s. The atoms

are decelerated (i.e. cooled) in the Zeeman slower to temperatures of
10 mK and trapped in the MOT which further cools them to ≈ 500µK
[99]. We load the MOT for 5 seconds collecting 5× 108 atoms. Using
an ODT, the atoms are then transported to the glass cell within 750 ms
where evaporative cooling lowers their temperature by another three
orders of magnitude to a few 10 nK. This last cooling step takes 5-6
seconds.

hyperfine splitting of 228.2MHz. For this reason, we need two laser frequencies
to achieve a closed cooling cycle: the cooler and the repumper frequency. The
cooler is (near-) resonant to the |22S1/2,F = 3/2⟩ to |22P3/2⟩ transition, while
the repumper drives the transition from |22S1/2,F = 1/2⟩ to |22P3/2⟩. As the
spontaneous decay from |22P3/2⟩ into both hyperfine ground states is equally
probable [123], we use the same optical power for the cooler and repumper light.

4.2 Zeeman slower
The atoms initially leave the oven with a temperature of around 720K corre-
sponding to a mean thermal velocity of

√
8kBT
πm

≈ 1600m/s. We slow them
down with the Zeeman slower laser beam which is counter-propagating with
respect to the atomic beam and has an optical power of ≈ 60 mW. The beam has
a waist of 2.5 cm at its entrance viewport (see Figure 3.1) and is weakly focused
to a waist of 3mm at the position of the oven. The frequency of the Zeeman
slower laser beam ωl is largely detuned from the atomic transition due to the
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Doppler shift kv. The resonance condition [129]

δ = ωl − ω0 + kv − µBgB/ℏ
!
= 0 (4.3)

is now achieved through the external magnetic field produced by the Zeeman
slower coils. The resulting scattering force, provides an almost constant decel-
eration of 8.4m/s2 [99]. For a constant deceleration, the velocity of the atoms
starting from the first coil at position z = 0 is given by

v(z) = v0

√
1− z

lZS

. (4.4)

where lZS = 47 cm is the length of the Zeeman slower. As the atoms decelerate,
the Doppler shift changes the frequency of the light experienced by the atoms.
This change in velocity is compensated by the external magnetic field which
follows the same functional form

B(z) = B0

√
1− z

lZS

. (4.5)

Our Zeeman slower consists of nine coils, as described in Section 3.5. The coils
produce a magnetic field which is to a good approximation given by Eq. (4.5)
where B0 ≈ 850 G is the (largest) magnetic field of the Zeeman slower in the
center of the first coil at z = 0. The quantization axis due to the coil arrangement
is parallel to propagation direction of the atomic beam. For this reason, we use
circularly polarized laser light.
The atoms leave the Zeeman slower with residual velocities of a 1−10m/s [118],
and a remaining temperature of ≈ 10mK. They then enter the MOT chamber,
where we subsequently trap and cool them.

4.3 Magneto-optical trap
A three-dimensional magneto-optical trap consists of six red detuned laser
beams, arranged as counter-propagating pairs along each of the three spatial
directions. This arrangement of laser beams is combined with a magnetic
quadrupole field, as shown in Figure 4.2 a). It produces a force on the atoms,
which is both position- and velocity dependent. This force can be expanded
around the center of the MOT at xi = 0 and for vi = 0 and is then given by [129]

FMOT,i = mẍi = −αvi − βxi (4.6)

with α = 8ℏk2 δ0
Γ

S0,i

(1+S0,i+4(δ0/Γ)2)2
and β = α

k
gµB

ℏ
dBi

dxi
. Equation (4.6) essentially

represents the equation of motion for a damped harmonic oscillator with spring
constant β and damping coefficient α. Thus, the MOT both confines and slows
the atoms down, i.e. cools them. The smallest possible temperature achievable
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Figure 4.2: Working principle and photograph of a magneto-optical trap. a) Our
magneto-optical trap consists of six pairwise counter-propagating
laser beams with circular polarization in combination with a mag-
netic quadrupole field. This is realized by two coils in anti-Helmholtz
configuration. The polarization of the beams is labeled with respect
to the quantization axis defined by the magnetic field lines (blue).
The resulting force on the atoms in the trap center, provides both
trapping and cooling (see text). b) Photograph of 5 × 108 lithium-6
atoms trapped in the MOT. The atoms are visible, because they scatter
the light from the laser beams. The size of the atom cloud is ≈ 3
millimeters (FWHM).

in a MOT is however not zero, but finite and given by [139]

TD =
ℏΓ
2kB

1 + S0 + 4(δ0/Γ)
2

−4δ0/Γ
, for δ0 < 0 (4.7)

which has a minimum of
TD,min =

ℏΓ
2kB

(4.8)

for S0 ≪ 1 and δ0 = −Γ/2 [129]. This temperature is called the Doppler tempera-
ture [129]. The Doppler cooling limit arises from the balance between the cooling
effect of photon absorption from a counter-propagating laser beam and the heat-
ing effect due to spontaneous emission at rate Γ−1. For laser cooling on the D2

line (2S1/2 → 2P3/2) of 6Li, TD,min has a value of 141µK 1. In the loading phase of
the MOT, we use δ0 ≈ 2π × 47MHz ≈ 8 Γ, S0,i ≈ 4, dB

dx
= dB

dy
= −1

2
dB
dz

≈ 18G/cm
and g = gJ ≃ 1, which this leads to TD ≈ 1mK. This temperature is later low-
ered, when we compress the MOT (see next section).
Our MOT collects atoms which were initially slowed down in the Zeeman slower.
We typically achieve loading rates of ≈ 108 atoms/s. By loading the MOT for 5
seconds, we accumulate around 5 × 108 atoms, which are subsequently cooled
to 1mK [82]. They then form a dilute cloud with a typical size of 3-4 mm which

1Note that cooling on the 2S1/2 → 3P3/2 was also demonstrated [140]. This transition uses
UV light at a wavelength of ≈ 323nm. The 3P3/2 state has a natural linewidth of 2π × 754kHz,
which results in a Doppler cooling limit of TD,min = 18µK.



4.4. Transfer to optical dipole trap 63

is visible to the bare eye, as shown in Figure 4.2 b). The density is on the order of
n ∼ 1016 m−3, which corresponds to a Fermi momentum of kF ∼ 1µm−1 and a
Fermi temperature of ℏ2k2F/(2mkB) ≈ 50nK. As the absolute atom temperature
in the MOT is 1mK, we have T/TF > 20 000 which is still orders of magnitude
away from the quantum degenerate regime where T/TF ≲ 0.5. For this reason,
further cooling steps are necessary.

4.3.1 Compressed MOT
As a first step, we compress the MOT by reducing the detuning of the laser
beams from 2π× 47 MHz to 2π× 5.5MHz linearly within 30ms. This increases
the restoring force on the atoms and also lowers their temperature according to
Equations (4.6) and (4.7).
Simultaneously, we linearly reduce the optical power of the cooler and the
repumper beam. While the cooler power is reduced to ≈ 10% of its initial value
(S0 ≪ 1), the repumper power is ramped completely to 0 (S0 = 0). This ramp
has two effects: First, the temperature of the atoms is further reduced as S0

reduces (according to Equation (4.7)). Second, by maintaining the cooler beam
at a slightly higher power then the repumper, the atoms are optically pumped
into the |22S1/2,F = 1/2⟩ state. This state contains the hyperfine components |1⟩
and |2⟩, that we later want in our experiment. For a level scheme, see Figure A.2.
The compression and optical pumping step takes 30ms and lowers the atom
cloud temperature to 250µK [99] while simultaneously compressing it to a size
of ≈ 200µm (FWHM). During this process, we lose about half of the atoms.
The final parameters correspond to kF ≈ 11µm−1, TF ≈ 5µK and consequently
T/TF ≈ 50.

4.4 Transfer to optical dipole trap
At the end of the compressed MOT stage, we transfer the lithium-6 atoms into
an optical dipole trap (ODT). The ODT is created by focusing a laser beam with
100W of optical power at a wavelength of 1064nm down to a waist of 38µm
which overlaps with in the center of the MOT. The optical beam path is shown
in Figure 4.3. The wavelength of the ODT is far red-detuned from the atomic
transitions at 671nm which minimizes heating due to photon scattering (see
Section 3.6). The transfer initiates by ramping up the optical power to 100W (at
the position of the atoms) in the last 10 ms of the MOT compression.
The efficiency is optimized by carefully tuning the frequency sweep responsible
for the compression of the MOT. We further employ two offset coils (see Section
3.5) to shift the center of the MOT in order to optimize its spatial overlap with
the ODT. We transfer a total 5% of the atoms from the compressed MOT to the
ODT, which equals about 2.5 × 107 atoms. Due to the asymmetric ramp of the
cooler and repumper power during the compression, these atoms are now in a
mixture of the Zeeman states |1⟩ and |2⟩.
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Figure 4.3: Setup for the optical dipole trap and the transport, conceptually
adapted from [99]. A focused 200 W fiber laser (IPG YLR-200-LP)
acts as an optical dipole trap. For intensity control and stabilization, a
setup of two acousto-optical modulators (AOMs) in combination with
a photo diode and a feedback control loop is used. The transport is
realized with a lens of 300 mm focal length mounted on an air bearing
translation stage from Nelson Air Corp (ATLAS-101- 400-HD). When
the lens is in its initial position (here: right), the focus of the laser
beam is in the center of the octagonal MOT chamber. By moving the
stage to its final position (left) in a total time of 750 ms, the atoms
are adiabatically transported to the glass cell in the focus of the laser
beam. The other optics are for properly shaping the laser beam.

4.4.1 Optical transport
After transferring the atoms into the ODT, we optically transport them into
the glass cell. This has several key advantages. In the glass cell, the atoms
are shielded from the (relatively fast) lithium atoms arriving from the oven.
Additionally, the glass cell provides a better optical access, which allows for
high numerical aperture imaging and optical manipulation the atoms without
being restricted to specific viewports. Moreover, the glass cell facilitates the
application of high magnetic fields as the coils can be placed closer to the atoms.
In addition, the absence of eddy currents in the glass eliminates distortive effects.
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The transport is achieved by mechanically moving a lens in the beam path of the
ODT as illustrated in Figure 4.3. For this purpose, we use micrometer precise
air bearing translation stage from Nelson Air Corp (ATLAS-101- 400-HD) [120].
Moving the lens shifts the focus of the laser beam, thereby transporting the
atoms from the MOT chamber into the glass cell within 750ms over a distance
of 27 cm. To minimize atom loss during the transport process, the trajectory has
been carefully optimized. As a result, we typically retain more than 90% of the
atoms throughout the transport.

Zeeman slower
beam

MOT MOT

optical   dipole trap

Imaging

Photoexcitation

CCD

Figure 4.4: Top view of the vacuum chamber with all the relevant laser beams
for the atom cloud preparation, manipulation and detection. These
include the Zeeman slower beam (purple), the horizontal MOT beams
(red), the optical dipole trap beam (blue), the photoexcitation beam
(yellow) and the imaging beam (green). As the illustration represents
a top view, the vertical MOT beam is not visible. The quantization
axis in the glass cell is perpendicular to the picture plane.

4.5 Evaporative cooling in the vicinity of the Fesh-
bach resonance

The final cooling step takes place in the glass cell, where we evaporatively cool
the atoms by progressively lowering the ODT power over a total time of 5 − 6
seconds. This allows the most energetic atoms to escape the trap. The remaining
atoms thermalize via elastic collisions, lowering mean temperature2 [129].
To optimize the thermalization, we do two things. First, we increase the magnetic
field in the glass cell to 790G using the Feshbach and offset coils. By this, we
tune scattering length of the atoms to a large value of as = 8300 a0 [78], which
enhances the elastic collision cross section. Second, we create a balanced mixture
of the two hyperfine states |1⟩ and |2⟩. This is done by employing a 100ms radio

2While the probability to find an atom at energyE follows a Boltzmann distribution pN (E) ∼
exp(−E/kBT ), the distribution of the energies follows pE(E) ∼ E × exp(−E/kBT ). Due to the
additional factor E, the distribution pE(E) has a tail which is more pronounced at higher
energies compared to pN (E). Thus, removing atoms above a certain energy, removes a larger
fraction of the total energy compared to the fraction of atoms that is removed. This effectively
lowers the mean energy per atom once the atoms thermalize.
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frequency pulse at a frequency of 76.2MHz and a power of ≈ 2W with the RF
antenna described in Section 3.7. This pulse drives Rabi oscillations between
the two hyperfine states creating an incoherent 50-50 mixture. As atoms in
individual states do not interact, this mixture maximizes the collision rate for
the gas.

The trap depth is lowered as follows. We first decrease the output power of the
fiber laser linearly within 3 seconds from 200W to 41W using the analog control
input of the laser. Considering the losses of the beam path, this corresponds to
a power of ≈ 20W at the position of the atoms. At this stage, the atom cloud
has a relative temperature of T/TF ≈ 10. The final power ramp is realized with
a feedback loop on one of the MIO cards of the ADwin system (see Section 3.3).
The loop employs a photo diode to measure the intensity and two AOMs to
adjust it, as shown in Figure 4.3. With this, we exponentially lower the power of
the ODT with within 3 seconds from the previous 20W down to 10− 1000mW
depending on the desired atom temperature .
With our current setup, we can achieve final temperatures of T ∼ 10nK corre-
sponding to T/TF ∼ 0.05 with typical atom numbers of N = 100 000. At this
stage, the system is prepared for experiments in the quantum degenerate regime
of the BCS-BEC crossover.

4.5.1 Stability
Although the atom cloud preparation takes approximately 12− 15 seconds and
involves various intermediate steps and devices operating in a precisely timed
manner, the preparation cycle has a great reproducibility.
As an example, Figure 4.5 shows the typical atom number over a period of 4
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Figure 4.5: a) Atom number measurement in the glass cell over a period of 4
hours. For each measurement, a new cloud is prepared within 12
seconds using the steps explained in the text. b) A histogram over the
atom number shows a standard deviation of only σ = 1.2%, indicating
the high stability of our setup.

hours, corresponding to around 900 experimental runs. In these runs, a cloud
with 2.1×105 atoms at a temperature of≈ 0.1TF was prepared and imaged using
absorption imaging. Throughout this period, we observed a standard deviation
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in the atom number of only 1.2%, indicating the high stability and repeatability
of our experimental cycle which sets the basis for precise measurements.

4.6 Absorption imaging
Absorption imaging is a crucial method in our experiment to determine the
spatial distribution the trapped 6Li atoms. From this we can infer important
physical properties of the atom cloud. The fundamental principle behind ab-
sorption imaging is the interaction of the laser light with the atomic cloud. When
resonant light passes the cloud, the atoms absorb and scatter photons, causing
a reduction in the intensity of the transmitted light. Effectively, the atoms then
cast a shadow, as illustrated in Figure 4.6.

CCD
Camera

Figure 4.6: Principle of absorption imaging. A cloud of atoms (blue balls) is
illuminated with a resonant laser beam. The atoms absorb and scatter
the photons of the laser beam, reducing the intensity of the transmitted
light and effectively casting a shadow. This can be measured with a
CCD camera to gain information about the density distribution of the
atoms.

As one thereby typically addresses single atomic transitions, laser light with a
narrow linewidth is required. For a laser propagating in z-direction, the decrease
of intensity is given by the Beer-Lambert law [141]

dI(x, y, z)

dz
= −n(x, y, z)σa

α∗
1

1 + I(x,y,z)
α∗ IS

+ 4( δ0
Γ
)2
I(x, y, z) (4.9)

where I(x, y, z) is the intensity of the incident light and n(x, y, z) is the atomic
density. The quantity σa is the ideal absorption cross section given by

σa =
3λ2

2π
. (4.10)

The additional factor α∗ > 1 in Equation (4.9) accounts for non-perfect polar-
ization or magnetic field orientation, as well as for a reduction of the effective
absorption cross section due imaging on non-closed optical transitions [141].
In the limit of a weak and resonant laser (I(x, y, z) ≪ IS and δ0 = 0), a closed
imaging transition and an ideal polarization (α∗ = 1), Equation (4.9) simplifies
to

dI(x, y, z)

dz
= −σa n(x, y, z)I(x, y, z). (4.11)
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This can be integrated, to find the intensity distribution If(x, y) after passing the
atom cloud, which yields

If(x, y) = Ii(x, y) e
−σa

∫
n(x,y,z)dz = Ii(x, y) e

−σan2D(x,y) = Ii(x, y) e
−OD(x,y) (4.12)

where Ii(x, y) is the initial intensity distribution andOD(x, y) the so-called opti-
cal density. For a Gaussian density distribution, the corresponding decrease of
intensity is shown in Figure 4.7. The calculation represents a typical scenario in
our experiments and is based on Equation (4.12) with λ = 671nm corresponding
to σa = 2.15× 10−13 m2.
According to Equation (4.12), we can deduce the column densities n2D(x, y) of

OD = 3.7
OD = 1.8
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Figure 4.7: Intensity I(z, 0, 0) of a resonant laser beam when passing the center
(x = y = 0) of 6Li atom clouds. The laser propagates in z-direction.
a) Intensities as a function of distance z for two atom cloud density
profiles shown in b). The clouds have different peak densities of
1 × 1018 (blue) and 2 × 1018 (red). The overall decrease of intensity
corresponds to an optical density of OD = 1.8 for the dilute cloud
(blue) and OD = 3.7 for the denser cloud (red).

the atom cloud by measuring the intensity distributions Ii(x, y) and If(x, y), e.g.
with a CCD camera. In addition, usually also a third image Id(x, y) is taken with
the laser turned off to correct for camera dark counts and background light.
From these three measurements, the column density is then calculated as

n2D(x, y) =
1

σa
ln

(
Ii(x, y)− Id(x, y)

If(x, y)− Id(x, y)

)
. (4.13)

For a better visualization, this calculation is illustrated in Figure 4.8. From the
column density, we can then determine important properties of the atom cloud,
such as the atom number or its temperature (see Chapters 2 and 9).
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Optical density

ln(         )=
If(x,y)

Id(x,y)

Id(x,y)

Figure 4.8: Graphical illustration of Equation (4.13) for calculating the optical
density from three different images (see text). By subtraction, division
and taking the logarithm, the optical density is obtained. In contrast
to the raw images, the result is almost free of noise.

4.6.1 Absorption imaging of 6Li
Equation (4.13) only holds for the ideal case, when the imaging laser is weak
and resonant and when the imaging transition is closed and addressed with the
correct polarization.
In our experiments, we perform spin-selective absorption imaging in the high
magnetic field on the transitions |1⟩ = |22S1/2,mJ = −1/2,mI = 1⟩ ↔ |22P3/2,mJ =
−3/2,mI = 1⟩ and |2⟩ = |22S1/2,mJ = −1/2,mI = 0⟩ ↔ |22P3/2,mJ = −3/2,mI =
0⟩ which requires circularly polarized σ− light. As the excited state has mJ =
−3/2, andmI cannot change, the atoms can only decay back into the same states,
thus providing a closed transition [115]. We image the atoms with a collimated
laser beam which propagates perpendicular to the quantization axis (see Figure
4.4). To satisfy the selection rules, we use linearly polarized light perpendicular
to both the quantization axis and the propagation direction of the laser. At the
position of the atoms, this light drives the desired σ− transition therefore with
50% efficiency, corresponding to α∗ = 2. We further use intensities as low as
0.02 IS and employ a resonant laser beam (δ0 = 0). Equation (4.9) therefore
becomes

dI(x, y, z)

dz
= −n(x, y, z)σa

2
I(x, y, z). (4.14)

which eventually yields

n2D(x, y) =
2

σa
ln

(
Ii(x, y)− Id(x, y)

If(x, y)− Id(x, y)

)
(4.15)

for the column density.

4.6.2 6Li as a lightweight scatterer
There is one major problem that complicates the matter. As 6Li is fairly light
atom, and the lightest of the Alkali atoms, the recoil from photon scattering dur-
ing the absorption plays a significant role. As the atoms scatter photons, they
experience an acceleration in the direction of the imaging laser beam. This leads
to a Doppler shift that shifts them out of resonance over time. This gradually
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lowers the absorption cross section and the atom cloud appears to be more dilute.
The recoil velocity per scattered photon of wavelengthλgiven by vrec = h/(mλ) ≈
0.1m/s. As a rough estimation, scattering 10 photons already leads to a Doppler
shift of kv ≈ Γ/4. In the limit of S0 ≪ 1, this lowers the cross section by a factor
of (1 + 4(0.25)2) = 1.25 from its initial value. For a long exposure time τim with
the imaging light, the apparent atom number therefore drops.
The duration of the imaging pulse, however, does not appear in the whole ab-
sorption imaging treatment so far. To estimate this effect, we consider a single
6Li atom at rest, exposed to imaging light of constant intensity. To match our
experimental setting, we set α∗ = 2, which effectively lowers the intensity the
atom experiences by this factor. The force on the atom is then given by

Fsc = ℏk
Γ

2

S0/α
∗

1 + S0/α∗ + 4( δ0+kv
Γ

)2
= mẍ. (4.16)

where S0/α∗

1+S0/α∗+4(
δ0+kv

Γ
)2

= σeff(S0,kv)
σ0

< 1 can be regarded as an attenuation factor
accounting for the Doppler shift and power broadening. Equation (4.16) rep-
resents an equation of motion for the atom. We can solve this equation for an
imaging light exposure time τim and take the time average

〈 S0/α
∗

1 + S0/α∗ + 4( δ0+kv
Γ

)2

〉
τim

(4.17)

to get the effective attenuation of the atom signal. This quantity thus represents
the scaling factor between the apparent atom number and the real atom number.
Note that this procedure is only applicable to a large number of atoms, when all
atoms in the cloud experience the same intensity. For this, the atom cloud has
to be dilute.
To verify this approach, we measure the two-dimensional optical densityOD(x, y)
of dilute atom clouds3 for four different imaging exposure times τim = 10µs,
20µs, 30µs, 50µs and various intensities I/IS . To calculate the column density
distribution n2D(x, y), we use the formula from Equation (4.15). By integrating
n2D(x, y) over x and y, we get the atom number N =

∫
n2D(x, y) dxdy.

The results are shown in Figure 4.9 and nicely agree with the calculation. For
both, larger imaging light exposure times τim and intensities I/IS , the observed
apparent atom number decreases. To determine I/IS , we measure the intensity
with a photo diode and include a scaling factor to obtain the intensity at the
position of the atoms. This is the only free parameter and effectively only scales
the abscissa in Figure 4.9. It has therefore no effect on the real atom number,
which is recovered in the limit of I/IS → 0 for all exposure times τim. Neverthe-
less, we compare the intensity from the model calculations with the intensity
obtained by measuring the laser power (before the uncoated glass cell) with
an optical power meter (PM160 from Thorlabs) and the intensity profile of the
imaging laser beam with the CCD camera. Both values are in reasonable agree-
ment, whereby the value from the model calculations is about 5 − 10% below
the measured value. The reason for the deviation may be due to the outdated

3The peak optical density in the center of the cloud was ODpeak ≈ 0.5.
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Figure 4.9: Measured signal for the atom number as a function of the imaging
light intensity for imaging pulse durations of τim = 10µs, 20µs, 30µs
and 50µs. The apparent atom number drops with higher intensity
and imaging pulse duration due to an increasing Doppler shift that
the atoms acquire while scattering photons. This effectively lowers
the cross section for absorption and thus the measured atom numbers.
In the limit of zero intensity, the real atom number is recovered.

calibration of the optical power meter, but can also be explained as follows.
The atom clouds in the presented measurements were dilute with a largest
optical density of ODpeak = OD(0, 0) = 0.5 in the center of the cloud. This cor-
responds to a 1 − exp(−0.5) = 40% decrease of the intensity from Ii before the
center of the cloud to If after passing the center of the cloud. The reason why
the results in Figure 4.9 still agree nicely with the theory is the following. First,
the peak optical density of ODpeak = 0.5 only holds in the central region of the
cloud for a small fraction of atoms. Atoms far outside experience an even more
homogeneous intensity. This becomes clear in Figure 4.10, where we calculate
the decrease of the lasers intensity from its initial value Ii when passing the
atom cloud (in positive z-direction).
The central region hereby refers to y = x = 0, while "far outside" corresponds
to |y| ≳ 50µm. The atoms on average experience an intensity < Ii due to the
absorption of the light as it passes the atomic cloud. As one can see from Figure
4.9, the decrease of the apparent atom number with intensity is almost linear
for all intensity regimes where the intensity changes by < 40%. For this reason,
one can approximately replace intensity all atoms experience by an averaged
intensity (see Figure 4.11). The deviation from the measured intensity Ii before
the cloud is thus simply absorbed by in the scaling factor mentioned above, that
we use to translate the photo diode signal to an intensity at the position of the
atoms. In the limit of I → 0, we therefore still recover the real atom numbers.

The Doppler shift the atoms acquire from the imaging beam also becomes
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i

Figure 4.10: Intensity distribution of a resonant laser beam when passing a dilute
atom cloud centered around x = y = z = 0. The color represents
the intensity distribution I(0, y, z)/Ii of the laser beam, which prop-
agates in positive z-direction with Ii = 0.05 IS at z ≪ 0. The black
contour lines illustrate the density distribution n(0, y, z)/n(0, 0, 0) of
the cigar shaped atom cloud. As the light passes the cloud, it is
absorbed by the atoms. In the central region around y = 0, the in-
tensity decreases by about 1 − exp(−0.5) = 40%, equivalent to an
optical density of ODpeak = 0.5 at x = y = 0. This corresponds to
the scenario shown in Figure 4.11.

clearly visible by spectroscopy. For this, we performed spectroscopy of dilute
atom clouds at two imaging exposure times τim of 10µs and 40µ and two in-
tensities I = 0.07 IS and I = 0.25 IS . The clouds were prepared with ≈ 255 000
atoms per spin state. As shown in Figure 4.12, the observed signals strongly
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Figure 4.11: Intensity I(0, 0, z) of a resonant laser beam when passing the cen-
ter (x = y = 0) of a dilute 6Li atom cloud (solid red line). The
density distribution n(0, 0, z) (solid blue line) corresponds to an op-
tical density of OD(0, 0) = n2D(0, 0)σa/α

∗ = 0.5. For such small
optical densities, the decrease of intensity within the cloud is al-
most symmetrical. The atoms on average therefore experience an
intensity given by Ii+If

2 (red dashed line), where Ii = I(z = 0) and
If = I(z ≫ 0).
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deviate from the expected Lorentzian lineshape with a theoretical linewidth of
Γ = 2π × 5.87MHz. When the light was initially blue detuned for the atoms
at rest (δ0 = ωl − ω0 < 0), the imaging beam accelerates the atoms in its prop-
agation direction. This causes a red shift, which enhances the absorption. For
this reason, the resonance curve is shifted towards a blue detuned imaging laser
frequency. Additionally, power broadening of the lineshape becomes visible.
In the limit of τim → 0 the power broadened linewidth is Γ

√
1 + S0. When

both S0 → 0 and τim → 0 , the typical Lorentzian lineshape of linewidth Γ is
recovered, which reaches a maximum at the real atom number of ≈ 255 000.
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Figure 4.12: Atom number signal N as a function of the initial detuning δ0 =
ωl−ω0 of the imaging laser frequency relative to the dipole transition
(from |1⟩ to |22P3/2, mJ = −3/2⟩). a) Measured and calculated
spectra for S0 = 0.07 and S0 = 0.25 and an imaging pulse duration of
10µs. b) Data for the same intensities and an imaging pulse duration
of 40µs. Both curves strongly deviate from the Lorentzian lineshape
with a FWHM of Γ/2π = 5.87MHz [77], which is recovered in the
limit of zero intensity and pulse duration.

4.7 Photoexcitation
With our experimental setup, we investigate pairing in the BCS-BEC crossover.
In previous experiments of ours, this involved mapping out the fraction of
molecules on the BEC side for various temperatures and interaction strengths
[15], or characterizing molecule dissociation dynamics in ultracold collisions
[130]. For all these investigations, we need to selectively obtain the number of
dimers and free atoms.
To do so, we first determine the total number of atoms (bound or unbound)
in the gas via absorption imaging. This works, because the binding energy Eb

of these pairs is always less than h × 1MHz for magnetic fields B > 650G [9].
Therefore, the imaging laser is resonant with both free atoms and pairs.
In the second step, we quickly remove the weakly bound molecules via optical

excitation before performing absorption imaging. The molecules, initially in
the X1Σ+

g , ν = 38 state, are transferred to the A1Σ+
u , ν

′ = 68 state which has the
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$\nu = 68

Figure 4.13: Potential energy curves (thick solid lines) for the X1Σ+
g singlet and

a3Σ+
u triplet state of the electronic ground state and theA1Σ+

u singlet
excited state. Also shown are the binding energies (dashed lines)
and wave functions (thin solid lines) of the two most-weakly bound
vibrational states of the ground state potential (ν = 38 forX1Σ+

g and
ν = 9 for a3Σ+

u ) and the wave function of the deeply-bound state
of A1Σ+

u with vibrational quantum number ν = 68. The potential
energy curves (PECs) for the singlet ground and excited states have
been provided by E. Tiemann, while the triplet PEC is interpolated
from data given in [79]. Binding energies and wave functions are
calculated by solving the Schrödinger equation for the respective
potentials.

largest Franck–Condon overlap of 7.7% with the initial state [142]. For more
Frank-Condon factors see e.g. [99]. This molecular excited state A1Σ+

u , ν
′ = 68

is shifted by approximately 1550 GHz from the 2S + 2P asymptote, as shown in
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Figure 4.13. For this reason, the photoexcitation requires a laser frequency of ap-
proximately 445.250 THz, corresponding to a wavelength of about ≈ 673.3nm.
For this, we use a home-built ECDL as presented in Section 3.4. The laser is
locked to the optical transition using the wavemeter lock (see Section 3.13), which
ensures a linewidth < 1 MHz. From the molecular excited state, the molecules
then either dissociate into highly excited unbound atoms, which quickly leave
the trap, or decay into deeply bound molecular states invisible to our particle
detection.
Spin selective absorption imaging after this excitation pulse gives the number
of free atoms per spin state. Removing the pairs and counting the remaining
atoms has to be done fast within ≈ 1ms, as otherwise the pairs start to reform
again via three-body recombination [15, 130]. We therefore observe an atom
loss when exposing the atoms to the photoexcitation laser light. Figure 4.14
shows typical loss curves in the BEC regime for the remaining atom fraction
as a function of the photoexcitation laser exposure time τp. The three curves

0.64
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Figure 4.14: Remaining fractionNσ(τp)/Nσ(0) of atoms per spin state σ as a func-
tion of the photoexcitation pulse duration τp. The measurements
were carried out at a magnetic field of 726 G and temperatures of
T/TF = 1.7, T/TF = 1.2, and T/TF = 0.64. The solid lines are expo-
nential fits according to Equation (4.18). For a large τp, all molecules
are lost due to photoexcitation. The remaining atom fraction then
reaches a plateau, corresponding to the fraction of unbound atoms.
The data is taken from [15].

correspond to measurements where (kFas)
−1 > 1 and dimers can be treated as

purely bosonic molecules. The remaining atom number per spin state Nσ(τp)
then follows an exponential decay [143]

Nσ(τp) = NP e
−τp a +Nσ,A. (4.18)

from the total number of atoms per spin state Nσ(0) = NP + Nσ,A, bound or
unbound, towards the number of unbound atoms Nσ,A. Here a is an auxiliary
parameter, that depends, among other things, on the laser power.
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In our previous experiments, we used such measurements to determine the
fraction of molecules [15, 130]. However, there is more to learn from the decay
curves. While the plateau4 on the BEC side reflects the fraction unpaired atoms,
the initial decay rate and the shape of the decay curve towards and even beyond
the Feshbach resonance reveal the strength and the nature of the underlying pair
correlations [31–33, 143]. These correlations are quantified by the Tan contact
(see Section 2.6) and are comprehensively investigated both experimentally and
theoretically within this thesis. The details and results are presented in the
Chapters 6 and 7.

4A true plateau is reached only in the BEC regime [14, 15, 143]. Towards the Feshbach
resonance, many-body interactions become dominant and the binding energy vanishes. The
atomic cloud can then no longer be regarded to be composed of (bosonic) molecules and unpaired
fermionic atoms. Additionally, the cross-section for photoassociating previously unbound atoms
into pairs increases [15]. Therefore, the atom loss due to photoexcitation no longer follows an
exponential decay towards a plateau.
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Chapter 5

High power solid-state laser system
for laser cooling at 671 nm

For laser cooling of the 6Li atoms, we utilize the D2 transition at a wavelength
of approximately 671nm. This requires a combined optical power of several
100mW for the Zeeman slower and the magneto-optical trap. In the past, this
was provided by the TA Pro system from Toptica Photonics [99, 117, 119, 144]
consisting of a diode laser which is subsequently amplified by a semiconductor
optical amplifier. As semiconductor amplifiers for 671nm typically suffer from
bad transversal beam profiles and short lifetimes, we have set up a new solid-
state laser system over the last years [65, 66]. The system is based on the design
of the Salomon Group in Paris [61–63] and consists of a home-built 1342nm
solid-state laser [65] which is subsequently frequency doubled to 671nm in a
home-built enhancement resonant [66].
In this thesis, I significantly improved the laser system’s long-term stability as
well as its linewidth. Additionally, I integrated the improved laser system into
the experimental setup. It reliably provides the necessary optical power for laser
cooling, which sets the basis for all our experiments. To our knowledge, this
is the only laser system of its kind that is still being used successfully and on
a daily basis to create degenerate, strongly interacting Fermi gases of 6Li. In
this Chapter, the laser system and the additional steps that lead to its stable
operation are described.

5.1 Fundamental laser at 1342 nm
The fundamental laser is a home-built diode-pumped solid-state laser (DPSS).
It provides an output power of 3.5W and a gapless tunable output frequency
of 223.300 − 223.410THz, corresponding to a wavelength range of 1341.9 −
1342.6nm. A comprehensive overview over the general working principle of the
DPSS laser for 1342nm be found in [61–63, 145, 146]. For a detailed description
of our system, see References [65, 66].

5.1.1 Laser setup
The fundamental laser system is built around a neodymium-doped yttrium
orthovanadate (Nd:YVO4) crystal, chosen for its lasing transition at 1342 nm,
as illustrated in Figure 5.1. For this, the crystal is optically pumped by an
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888 ± 3nm fiber-coupled diode laser (M1F4S22-888.3-50C) from DILAS (now
part of Coherent) which delivers an output power of 45− 50W.
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Figure 5.1: Term scheme of an Nd3+ ion in yttrium orthovanadate. We op-
tically pump from |4I9/2,Z2⟩ → |4F3/2,R2⟩ with a wavelength of
888nm. Emission at 1342nm then happens via the transition from
4F3/2,R2⟩ → |4I13/2,X2⟩ from which the ion relaxes through subse-
quent phononic transitions. The letters R, X and Z denote different
Stark sublevels of the Nd3+ ion (not shown in Figure). Figure adapted
from [145, 146].

For single frequency operation and optical amplification, the Nd:YVO4 crys-
tal is placed in a ring resonator in bow-tie configuration. This setup enhances
the stimulated emission, while simultaneously preventing spatial hole burning.
An illustration of the laser cavity with all relevant components and dimensions
is shown in Figure 5.2. The cavity design includes three highly reflective mir-
rors at 1342nm to maximize the intra-cavity power and one outcoupling mirror
with a transmission of 8%. When the Nd:YVO4 crystal is optically pumped, it
emits the 1342nm light bidirectionally. To ensure unidirectional lasing, the cav-
ity includes a terbium gallium garnet (TGG) crystal placed in an arrangement
of strong magnets which acts as a Faraday rotator. Together with a λ/2 wave
plate and the laser crystal, acting as a polarization-dependent analyzer, these
elements form an optical diode. The cavity further includes two Fabry-Pérot
etalons E1 and E2 for coarse frequency tuning. For frequency stabilization, one
cavity mirror is mounted on a ring piezo actuator (HPSt 150/14-10/12 VS22)
from Piezomechanik Dr. Lutz Pickelmann GmbH. Both the laser crystal and the
etalon E2 are temperature stabilized.

5.1.2 Frequency selection and tunability
Nd:YVO4 features a slightly asymmetric emission gain profile with a width of
≈ 280GHz [61] and a maximum at a frequency of νmax = 223.355THz, as shown
in Figure 5.3. This frequency corresponds to a wavelength of 1342.2nm. In
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Figure 5.2: Detailed sketch of the 1342nm laser cavity in bow-tie configuration.
All dimensions and mirror curvature radii are given in millimeters.
The cavity design includes the Nd:YVO4 laser crystal, two Fabry-Perot
etalons E1 and E2, a λ/2wave plate and Faraday rotator consisting of a
TGG crystal and strong magnets. The wave plate, the Faraday rotator
and the crystal form an optical diode for a unidirectional laser opera-
tion. To stabilize the laser frequency, one cavity mirror is mounted on
a piezoelectric transducer (PZT). Figure adapted and updated from
[66].

the absence of additional frequency-selective elements, the laser system would
naturally operate at νmax because it provides the highest gain. However, this
frequency 45GHz below the desired frequency of 223.400THz, which is half the
frequency of the D2 line of 6Li. For this reason, two Fabry-Pérot etalons E1 and
E2 are placed in the cavity whose specifications are listed in Table 5.1.
The frequency-dependent transmission T (ν) of a Fabry-Pérot resonator with
reflectivity R in the plane-wave approximation is given by

T (ν) =
1

1 +
[
2F
π
sin(π ν−νoffs

νfsr
)
]2 (5.1)

where F = π
√
R

1−R
denotes the finesse and νfsr =

c
2nL

the free spectral range deter-
mined by the length L and the refractive index n of the etalon. The transmission
of the etalon is periodic in νfsr and becomes 1, when ν = νoff + b νfsr, where νoffs is
some offset (frequency) and b ∈ Z. The offset depends on the optical path length
of the etalon, with respect to the propagating laser beam. It can be tuned by
either tilting the etalon with respect to the beam propagation1 or by changing its
temperature, which affects both its refractive index and length. The frequency

1When passing a Fabry-Pérot etalon, the laser beam experiences multiple reflections from
both end facets of the etalon. An initial Gaussian beam therefore becomes displaced and
distorted. This introduces so-called walk-off losses [147]. For this reason, one normally avoids
etalon tilting.
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Figure 5.3: Gain profile of the fundamental laser with and without etalons E1 and
E2. The overall gain of the laser cavity is given by the product of the
crystal gain profile (solid blue line) and the transmission functions T1
(solid red line) and T2 (solid green line) of the two etalons. By ad-
justing both etalons, the laser can be tuned to operate at 223.400THz.
The figure shows exactly this configuration. The data for the crystal
gain profile is extracted from Ref. [61].

change by temperature is given by

dνoffs
dT

= −ν
(
1

L

∂L

∂T
+

1

n

∂n

∂T

)
(5.2)

which is a value that only depends on the material properties and the wave-
length, not on the geometric properties of the etalon. Changing νoffs therefore
effectively shifts the transmission function of the etalon. For fused silica glass,
this shift at room temperature is given by −1.49GHz/K. For the calculation the
values listed in Table 5.1 were used. The overall gain of the laser cavity is given
by multiplying the gain profile of the crystal with the transmission functions
T1(ν) and T2(ν) of the two etalon, as shown in Figure 5.3.
Given that the gain profile of the crystal is constant and for a fixed transmission

function T1 (corresponding to a fixed angle and temperature of etalon E1), one
would expect that the laser frequency ν shifts almost linearly with the tempera-
ture of etalon E2, as also demonstrated in [61]. In our measurements, we however
observe a different behaviour, which we could not explain at first. Specifically,
as we increase the temperature of etalon E2, the laser frequency ν decreases
in a step-like manner with steps occurring approximately every 2.8 GHz, as
shown in Figure 5.4. The frequency of 2.8 GHz coincides with the free spectral
range of the laser crystal, given by νfsr,cr =

c
2Lcrncr

= 2.76GHz which turns out
to be more than a mere coincidence. The step-like frequency dependence arises
from a residual reflectivity of the laser crystal of about Rcr = 0.15%2. Although
this value might seem rather low, it is still comparable to the reflectivity of the

2We infer this value from our calculations, see Figure 5.4 b).
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Figure 5.4: a) Frequency of the fundamental laser as a function of the tempera-
ture of etalon E2. Measurements are shown as red dots, the dashed
red line serves as a guide to the eye. When increasing the temper-
ature of E2, the laser frequency decreases with an overall slope of
approximately ∂ν/∂T = −1.4GHz/K, in agreement with the calcula-
tion based on Equation (5.2). The step-like decrease is explained by a
residual reflectivity of the laser crystal surface which itself acts as an
etalon. This can be confirmed by numerical simulations (solid blue
line). The sudden large jumps frequency of ≈ 25GHz at 31 ◦C and
49 ◦C are caused by the periodicity of the etalon’s transmission func-
tion. b) Simulations of the step-like frequency change for different
crystal surface reflectivities. For Rcr = 0% no step is observed. For
larger values of Rcr, the step becomes more pronounced.

etalons, which have RE1 = RE2 = 3.3%. Consequently, the laser crystal itself
acts as an etalon, suppressing the laser operation at certain frequencies spaced
by 2.76GHz. This suppression causes the observed sudden jumps in laser fre-
quency when scanning the temperature of etalon E2.
We confirmed this behaviour with numerical simulations that account for the
crystal’s gain profile and the transmission functions of all optical elements in
the laser cavity, as listed in Table 5.1. With these simulations, we can recreate
the measured frequency scan almost perfectly, as indicated by the solid blue
line in Figure 5.4 a). Figure 5.4 b) presents the same simulations for different
crystal reflectivities. For Rcr = 0%, we observe the expected linear change in
laser frequency with etalon temperature.
Underestimating the influence of the residual crystal reflectivity was for a long

time the reason we could not achieve a stable laser operation. Previously, the
laser crystal was cooled by our house cooling water, which provides a high
pressure of up to 8 bar and a temperature of approximately 15 ◦C. However,
instabilities in the cooling water temperature caused fluctuations in the crystal
temperature on the order of 0.5K in. This leads to shifts of the crystal’s trans-
mission function which changes by −1GHz/K, as shown in Table 5.1. These
shifts resulted in instabilities in the laser operation, when the frequencies that
the crystal suppresses coincided with the desired laser frequency.
To address this issue, we installed a temperature-regulated water chiller (TCube



82 Chapter 5. High power solid-state laser system for laser cooling at 671 nm

Table 5.1: Optical elements in the fundamental laser cavity.

Etalon E1 Etalon E2 Laser crystal TGG crystal
Length L 0.488mm 3.9mm 25mm 6mm

Refractive index n 1.446 [148] 1.446 [148] 2.17 [149] 1.94 [150]
Free spectral range νfsr 212GHz 26.6GHz 2.76GHz 12.9GHz

Reflectivity 3.3% 3.3% 0.15% -
Therm. exp. coeff. 1

L
∂L
∂T 5.5×10−7/K [151] 5.5×10−7/K [151] 8.4×10−6/K [152] 7.0×10−6/K [153]

Thermo-optic coeff. ∂n
∂T 8.4×10−6/K [154] 8.4×10−6/K [154] 7.92×10−6/K [155] 17.5×10−6/K [153]

Freq. tuning dν
dT −1.49GHz/K −1.49GHz/K −1.00GHz/K −1.16GHz/K

Edge 3S from Solid State Cooling Systems) and added a Peltier element for fine
regulation of the crystal temperature. By setting a cooling water temperature of
8 ◦C, we achieve a crystal temperature of 20 ◦C in steady state operation, at an
optical pumping power of 45W. With these improvements, the temperature is
stabilized with fluctuations of less than 10mK. By carefully adjusting the tem-
perature of etalon E2 and the crystal temperature, a stable laser operation at
223.400THz with an output power of 3.8W could be achieved. This frequency
is subsequently frequency doubled via second harmonic generation (SHG) to
446.800THz as explained in the next section.

5.2 Second harmonic generation of 671 nm
For second harmonic generation, we use a nonlinear crystal made of periodically
poled magnesium-oxide-doped lithium niobate (ppMgO:LN) from Covesion
(MSHG1350-0.5-20) which has a length of L = 20mm. In the crystal, the optical
power Pω1 of the fundamental laser at a frequency of 223.400THz is converted
to an optical power Pω2 at a frequency 446.800THz. For a Gaussian laser beam
in the TEM00 transverse mode, which is focused into the center of the nonlinear
crystal, the second harmonic power is given by [66, 156, 157]

Pω2 =
2ω1d

2
eff

πϵ0n1n2c4
Lh(ξ, σT )P

2
ω1

(5.3)

where ω1 = 2π × 223.400 THz is the fundamental frequency, n1 and n2 are the
refractive indices of the crystal for the fundamental and second harmonic fre-
quency, deff is the effective nonlinear coefficient, ϵ0 is the vacuum permittivity
and h(ξ, σT ) the Boyd-Kleinman factor [156, 157]. It depends on the focusing
parameter ξ = L

2zR
given by the ratio of the crystal length L and the Rayleigh

length zR of the Gaussian beam and the phase-matching parameter σT which
is a function of the crystal temperature T . The Boyd-Kleinman factor has a
global maximum of h(ξ = 2.84, σT = 0.573) = 1.068 [61]. A detailed derivation
and further information to second harmonic generation with ppMgo:LN can be
found in References [61, 66, 156, 157].
From Equation (5.3), one can see that the second harmonic power Pω2 , scales
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quadratically3 with the fundamental power Pω1 . All the prefactors in this equa-
tion can be summarized in the conversion efficiency η, such that

Pω2 = ηP 2
ω1
. (5.4)

Typical values for a bulk SHG crystal are η ≃ 0.1% − 2%/W. Even with our
highest available input power of 3.5W at 1342nm, this would only yield a con-
verted power of about 250mW at 671nm. For this reason, the ppMgO:LN crystal
is placed in a running wave enhancement resonator in bow-tie configuration.
Within the resonator, the fundamental power is enhanced to Pcirc = 20 − 30W,
significantly increasing the effective conversion efficiency to 60− 75% [66].

5.2.1 Enhancement resonator
Our home-built enhancement resonator consists four mirrors arranged in bow-
tie configuration. It is in detail described in [66] and in illustrated in Figure 5.5
will all important dimensions. All cavity mirrors are anti-reflective coated for

36 mm

95 mm 95 mm

127 mm 127 mm

r = -150 mmr = -150 mm

PZT

20 mm
ppMgO:LN
 ~50 °C

1342 nm

Rc = 92%

671 nm

to PDH 
photo diode

Figure 5.5: Illustration of the second harmonic enhancement resonator. It consists
of four mirrors arranged in a bow-tie configuration. The 1342nm
light is coupled into the resonator through the incoupling mirror
(top left) with reflectivity RC = 92%. Light which is reflected from
this mirror is used to stabilize the resonator via a Pound-Drever-Hall
(PDH) stabilization scheme [158]. The other three mirrors are highly
reflective at 1342nm and anti-reflective at 671nm. The SHG crystal
is temperature stabilized and placed between the two curves mirrors
with radii of curvature of r = −150mm. The mirror in the top right is
movable by means of a piezoelectric transducer to adjust the length of
the cavity. The converted light exits the resonator through the curved
mirror on the bottom right. Figure adapted from [66].

671nm. Three of these mirrors are also highly-reflective coated for 1342nm, with
a reflectivity of RM = 99.5%. The remaining mirror with a reflectivity of Rc =

3Due to energy conservation, this only holds in the limit of a small conversion efficiency,
when the fundamental power Pω1

is constant over the whole crystal length L. Considering
losses due to conversion, one finds Pω2

= Pω1
tanh2(

√
η̃P 2

ω1
L).
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92% serves as the incoupling mirror for the fundamental light. Its reflectivity is
chosen to fulfill the optical impedance matching condition, approximately given
by [61, 66]

Rc = R3
Me

−αabsL(1− ηPcirc)(1− laux) (5.5)

which translates into the statement that the transmission of the incoupling mirror
should equal the sum of all round-trip losses of the fundamental power [62, 63,
66, 159]. These losses include leakages through the three other mirrors with
reflectivityRM , absorption in the ppMgO:LN crystal with absorption coefficient
of αLN = 0.2%/cm [160], losses due to the second harmonic generation and
additional losses laux due to e.g. dust on the optics.
As the resonator is a running-wave resonator, its length has to be stabilized to a
multiple of the fundamental wavelength of 1342nm. Our stabilization is based
on the PDH technique [158] and detailed in Section 5.3 and Ref. [66]. To adjust
the length, one of the cavity mirrors is mounted in a home-built piezo actuated
mirror holder with a travel range of 2.4µm and a bandwidth of 10kHz [66].
The resonator has a stable TEM00 eigenmode with a beam waist of 126µm in
the center of the crystal [66], which leads to an overall conversion efficiency
of 0.19%/W according to Equation (5.3). Due to the strong enhancement of
the fundamental light, we still achieve a decent output power and conversion
efficiency.

5.2.2 Performance
We typically operate the resonator with a fundamental power of Pω1 = 820mW
which is converted into 420mW of second harmonic power at 671nm corre-
sponding to a conversion efficiency of about 50%. This optical power is typically
enough for efficient laser cooling in our experimental setup, see Section 3.4.
When increasing the fundamental power further to 1.6W, we reach an output

power of more than one watt at 671nm. This is shown in Figure 5.6 a) and cor-
responds to a conversion efficiency of 65%. We typically do not go beyond this
value, as the system is optimized for lower optical powers and to stay well below
the optical damage threshold of lithium niobate which is 0.001−2MW/cm2 [61,
161]. From a numerical calculation, shown in Figure 5.6, we can infer a satura-
tion at an efficiency of over 70%, which would ideally provide a power of about
2.5 watts at 671nm for a fundamental power of Pω1 = 3.5W.
The second harmonic light has an almost Gaussian transversal beam profile, as
shown in Figure 5.6 b). This facilitates a measured fiber coupling efficiency of
more than 80% into a single mode polarization maintaining fiber (PMJ-3AF,3AF-
633-4/125-3-10-1 from OZ Optics).

5.3 Stabilization and linewidth
To achieve the frequency required for laser cooling, both the fundamental and
the second harmonic cavity have to be actively stabilized. The entire laser
system and stabilization scheme with all optical, electro-optical and electronical
components is illustrated in Figures 5.7 and 5.8 and works as follows.
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Figure 5.6: a) Measurement (red dots with error bars) and calculation (solid red
and blue lines) of the second harmonic power and effective conver-
sion efficiency. The simulation uses a crystal conversion efficiency
of 0.19%/W and the parameters shown in the figure. The parame-
ter ηmm includes incoupling losses into the cavity due to a non-ideal
mode matching of the fundamental laser to the SHG resonator eigen-
mode. b) Measured transversal beam profile of the converted 671nm
light, taken with a CCD camera. A Gaussian fit with an R-squared
value of 99.97% indicates an almost prefect Gaussian beam profile.

We first stabilize the SHG resonator to the free running fundamental laser4.
This is done by a PDH stabilization scheme which utilizes an EOM for creating
sidebands on the fundamental laser frequency and a fast photo diode to detect
the reflection of the sidebands from the resonator5. From the reflected light, we
generate a corresponding error signal, which is fed into an analog PID regulator
(PID 110) from Toptica Photonics. The electronical components for this are
shown in Figure 5.8 in blue colors. The PID regulator provides an appropriate
feedback voltage which acts on piezoelectric transducer in the enhancement
cavity to stabilize its length and maintain resonance with the fundamental light.

The enhancement resonator also supports higher transversal modes. These
are strongly suppressed compared to the TEM00 mode, but also feature a zero-
crossing in the generated error signal. To ensure, that we always stabilize to the
TEM00 mode, we use a second photo diode (not shown) to capture a fraction of
the converted light. This signal is also given to the PID regulator and compared
to a threshold value which ensures stabilization to the correct mode.

In the next step, the fundamental laser cavity is stabilized. This is done by
means of a frequency offset lock [124]. For this, we impose about 1mW of opti-
cal power from both our master laser (see Section 3.4) and the second harmonic
light and detect the frequency beat on a fast photodiode. With the electronical
components shown in Figure 5.8 in green colors, we generate an error signal

4To be more precise: This is done permanently, as our feedback control loop for the PDH
stabilization is permanently active.

5The basic idea is, that the cavity is exactly on resonance with the incoming light, when the
red and blue sideband are reflected at the same strength.
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Figure 5.7: Complete overview of the home-built solid-state laser system for laser
cooling of 6Li. The figure shows all optical and electro-optical compo-
nents. The electronical devices for stabilizing both laser cavities are
indicated by the blue and green colored labels and shown in Figure
5.8 in detail. For more information, see text.

whose zero-crossings can be shifted with an voltage controlled oscillator. This
allows for adjusting the relative frequency of the lasers, which is needed laser for
compressing the MOT (see Section 4.2). The error signal is fed to another analog
PID regulator (PID 110) from Toptica Photonics, to produce a feedback voltage
that acts on the piezoelectric transducer in the fundamental cavity. By tuning
the length of the fundamental resonator, the frequency of the fundamental light
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- and by this the frequency of the doubled light - changes accordingly6. The
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Figure 5.8: Overview of the solid-state laser system, only showing the electronical
devices for stabilizing both cavities. Blue colors show the components
for generating the PDH error signal and for utilizing it to stabilize the
SHG resonator. Green colors show the components of the frequency
offset lock, whose locking points can be shifted with an analog voltage
from the AdWIN. This enables us to easily tune the laser frequency.
A readout of the beat signal allows for determining the linewidth of
the solid-state laser.

locking scheme provides precise frequency control while simultaneously mini-
mizing the linewidth of the laser. We can estimate the linewidth by observing

6This scheme requires that the SHG cavity lock can follow the frequency changes of the
fundamental laser, which works without any problems in our case. One reason for this is also
the naturally small finesse of the SHG cavity of F = 37 [66], resulting in a cavity linewidth of
about 10MHz. This provides a large acceptance window for the fundamental frequency.
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the frequency beat of the master laser and the second harmonic frequency on a
spectrum analyzer (see Figure 5.8).

5.3.1 Narrowing the lineshape
For off-resonant laser cooling as done in our red detuned magneto-optical trap,
the linewidth of the laser plays a rather inferior role. However, for imaging the
6Li atoms or other applications in the future, having a narrow linewidth can be
quite advantageous. In the past, the linewidth of the home-built solid-state laser
system was on the order of 1.5MHz. By a mechanical frequency analysis and

before damping
after damping

a) b)

before damping
after damping

Frequency spectrum of error signal Beat frequency spectrum

Figure 5.9: Effects of damping the vibrations of the cavity mirrors. a) Fourier
transform of the frequency offset lock error signal before (red) and
after (blue) damping the four cavity mirrors of the fundamental cavity.
The pale colored signals in the background show the actual Fourier
transform while the darker signals in the foreground show the same
signal, but slightly smoothed with a low pass filter. As clearly visible,
all frequencies above 400Hz are drastically reduced by the damping
measures. One can still see a prominent feature at 390Hz, which
we assign to either the water pump of the crystal chiller or to the
eigenfrequency of the cavity base plate. By stopping the water for
a very short time, the peak disappears. b) Beat spectrum of the
frequency beat with the master laser. After the damping (blue) the
lineshape resembles an almost pure Lorentzian lineshape. Before, the
high amplitude region was broadened by mechanical noise following
a Gaussian distribution.

subsequent improvements on the mechanical components in the fundamental
laser cavity, I could reduce this value to less than 220kHz7.

7The value is determined by the beat frequency spectrum of the master laser and the solid-
state laser. A typical spectrum of the laser line is shown in Figure 5.9 b). The FWHM linewidth
of this signal is given by the convolution of the lineshapes of the individual lasers. For two (in-
dependent) lasers that have Lorentzian lineshapes with linewidths ∆ν1 and ∆ν2, the linewidth
of the beat signal is given by ∆νres = ∆ν1 + ∆ν2. For Gaussian lineshapes, the squares add
up, such that ∆νres =

√
(∆ν1)2 + (∆ν2)2. In both cases, the linewidth of the beat signal sets an

upper limit for the individual linewidths.
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The frequency of the laser is given by the length of the fundamental cavity.
Mechanical vibrations of the optical elements therefore lead to a broadening of
the laser linewidth. These components typically oscillate with their mechanical
eigenfrequencies/their resonance frequencies.
For identifying these frequencies, I used a acoustical sound generator to create
sound waves while simultaneously observing the beat signal and the error signal
of the frequency offset lock. A Fourier transform of this error signal is shown
in Figure 5.9 a) and already hints at the resonance frequencies of the optical
components (red signal traces). When generating sound waves with precisely
the frequencies corresponding to peaks of the shown signal, a sudden increase
of the laser linewidth and the amplitude of the error signal could be observed.
This procedure helped to find the resonance frequencies.
To assign them to individual components, I subsequently started to add metal
weights on the mirror holders of the cavity. These weights caused both a damp-
ing and a shift of the resonance frequencies. After a comprehensive analysis, we
found that the vibrationally induced linewidth broadening was primarily caused
by the four mirror holders. These are mirror holders from the company Radiant
Dyes (MDI-HS-2-3021, MDI-HS-2-3025). By either adding a large weight to the
mirror holder plates to increase their mass or damping the mirror holder plates
with additional mirror holders (see Figure 5.10), the laser linewidth could be
reduced by almost a factor of seven. Since we did not want to completely re-
build and realign the entire laser system from the start8 simply for the purpose
of testing other mirror holders, the approach described above was an elegant
solution and proved to be quite effective.

cavity mirror holder (red)
with mirror holder
plate (black)

rubber

second mirror holder 
without mirror holder 
plate, for damping

Figure 5.10: Modified cavity mirror holder with damped mirror holder plate.
Damping is achieved by utilizing a second mirror holder with a
removed mirror holder plate to exert pressure against the cavity
mirror holder plate from the front. To allow for fine adjustments
later, hard rubber plates are inserted between the components.

8Rebuilding and aligning the laser cavity is quite time-consuming as explained in the master’s
thesis of Stephan Maier [65].
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Figure 5.9 shows this improvement. In the Fourier transform of the error
signal depicted in a), one can see that almost all resonance frequencies were
drastically damped in amplitude. In b) one can see the beat spectrum before
(red) and after (blue) the damping. The signal before the damping represents
a typical spectrum of a laser with an intrinsic Lorentzian lineshape in the low
amplitude tails of the spectrum, which is broadened by a perturbation with
Gaussian noise (e.g. mechanical vibrations).

After the damping procedure, we can infer from the spectrum that the laser

220 kHz @ -3 dBm
950 kHz @ -20 dBm

Figure 5.11: More detailed analysis of the beat signal spectrum after damping
the vibrations. It shows a FWHM (measured at −3dB) of 220kHz.
Extracting the linewidth from the signal’s width at −20dB yields a
value of 95kHz. For more information, see text.

is almost as narrow as it could be. For a pure Lorentzian lineshape, namely,
the width at −3dB corresponds to the FWHM linewidth. The width extracted
at −20dB ideally should correspond to ten times the FWHM linewidth. By
extracting these widths from the beat signal, we find the results shown in Figure
5.11. While the width at −3dB is 220kHz, we find a width of 950kHz at −20dB.
This tells us to things: First, the lineshape is still slightly broadened by some
noise. Second, the intrinsic Lorentzian linewidth of the laser, is even smaller
than 100kHz FWHM. Moreover note, that this value is still an upper limit, as
is represents the sum of the master laser linewidth and the solid-state laser
linewidth.

5.4 Stability and every-day operation
As stated at the beginning, this laser system now sets the basis for all our
experiments by providing a stable optical power for laser cooling. This requires
an easy maintenance and a good overall stability.
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Thermal stability
Although the system consists of two rather large cavities with geometric lengths
of 90 cm for the fundamental and 50 cm for the SHG resonator, it is thermally
quite stable and typically stays locked for more than one full day. From the piezo
actuator voltages for maintaining the lock, we estimate length drifts of less than
0.5µm throughout the day for both cavities.

Mode-hop free tuning range
Without adjusting the etalons, the frequency of the laser can be tuned mode-hop
free by about 640MHz. This limitation is given by the length of the fundamental
laser, which has an free spectral range of c

L
= 319MHz9. Therefore, the frequency

doubled light is mode-hop free tunable by twice this value. For laser cooling, this
range is more than enough. To further increase it for other possible applications,
one could add another piezo actuator to tilt the etalon E2 while scanning the
frequency with the piezo actuated mirror.

Output power
As our laboratory does not provide cleanroom conditions, there will be always
some dust in the air. This is attracted by the circulating laser power in both
cavities and subsequently burned into the optical elements, leading to a de-
creasing efficiency for both the fundamental and the enhancement cavity. As
a consequence, the second harmonic power gradually decreases by ≈ 1% per
week. However, as we only use around 1/4 of the available fundamental power
for conversion, we have a large margin and could basically compensate for this
decrease in power for more than a year.

Optical cleaning
We still clean the four SHG cavity mirrors and the SHG crystal facets on a two-
monthly basis with a mixture of methanol and acetone. This takes approximately
10 minutes and prevents a long-term degradation of the coatings.
The fundamental laser requires a greater maintenance approximately once a
year due to mechanical drifts and dust accumulation on the optical elements.
As some of these elements (e.g. etalon E2 and the TGG crystal) are not directly
accessible for optical cleaning, they have to be removed, cleaned and reinserted
into the cavity. This makes a small realignment of the laser cavity necessary. The
whole process takes roughly one hour and is detailed in Appendix A.3. After
every cleaning and realigning process, we typically achieve the same output
power and observe no degradation in performance.

9Note that one has to use c/L rather than c/(2L), because the resonator is a running wave
resonator.
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Chapter 6

Precise photoexcitation
measurement of Tan’s contact

The contents of this chapter have been published in Ref. [13]:

Manuel Jäger and Johannes Hecker Denschlag
"Precise Photoexcitation Measurement of Tan’s Contact in the Entire BCS-BEC

Crossover",
Physical Review Letters 132, 263401 (2024).

6.1 Abstract
We study two-body correlations in a spin-balanced ultracold harmonically trapped
Fermi gas of 6Li atoms in the crossover from the Bardeen-Cooper-Schrieffer (BCS)
to the Bose-Einstein-Condensate (BEC) regime. For this, we precisely measure
Tan’s contact using a novel method based on photoexcitation of atomic pairs,
which was recently proposed by Wang et al. [31]. We map out the contact in
the entire phase diagram of the BCS-BEC crossover for various temperatures
and interaction strengths, probing regions in phase-space that have not been
investigated yet. Our measurements reach an uncertainty of ≈ 2% at the lowest
temperatures and thus represent a precise quantitative benchmark. By com-
parison to our data, we localize the regions in phase space where theoretical
predictions and interpolations give valid results. In regions where the contact is
already well known we find excellent agreement with our measurements. Thus,
our results demonstrate that photoinduced loss is a precise probe to measure
quantum correlations in a strongly interacting Fermi gas.

6.2 Introduction
A Fermi gas of ultracold atoms with tunable interactions is an excellent plat-
form for studying pair correlations and superfluidity. The interactions can be
controlled, e.g., via a magnetically tunable Feshbach resonance where the scat-
tering state of two atoms is coupled to a weakly-bound molecular state of a
closed channel at close range. This allows for investigating the crossover from
the BCS to the BEC regime, where the system fundamentally changes its physi-
cal character. In the weakly interacting BCS regime, weakly-bound Cooper pairs
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form on the surface of the atomic Fermi sea with its strong interparticle correla-
tions, while in the BEC regime fermionic atoms combine to form tightly-bound
bosonic molecules with small correlations between them. Tan’s contact, first
introduced by Shina Tan in 2008 [10–12], is a measure for short-range two-body
correlations and quantifies the likelihood of finding two interacting fermions at
very small distance. From a thermodynamical point of view the total contact I
is an extensive quantity, linearly scaling with the system size. It appears in a
number of important thermodynamic relations for a strongly interacting Fermi
gas.

The contact and several of its thermodynamic relations have been inves-
tigated experimentally in various approaches, including radio-frequency (RF)
spectroscopy [100, 107, 108], mapping of the momentum distribution [100, 106],
Bragg spectroscopy [109] and collisional decay [110, 162]. In recent years, con-
tact measurements reached uncertainties as low as two percent [106, 108, 109].
So far, however, contact investigations were only carried out in particular areas
of phase space, i.e. close to unitarity and at the lowest temperatures. A pre-
cise and comprehensive study across the entire phase diagram of the BCS-BEC
crossover, providing a full picture of the contact, has been missing. Tan’s con-
tact is expected to change smoothly from the BCS to the BEC limit, but precise
calculations of the contact are still challenging especially in the regime of strong,
near resonant interactions between the particles. Therefore, precise measure-
ments in this area will result in an important step forward towards a complete
understanding of the crossover physics.

Here, we provide a high precision measurement of Tan’s contact across the
full phase diagram of the BCS-BEC crossover for temperatures up to two times
the Fermi temperature TF . Due to a careful calibration the data reach a combined
statistical and systematic uncertainty of ≈ 2% for the lowest temperatures (T ≈
0), and up to 10% for T/TF ≈ 1.5. Therefore, they represent a quantitative
benchmark to test theoretical model predictions. For the contact measurements,
we demonstrate yet another method which is based on laser-induced loss in
the atomic gas, as outlined in [31]. Atom pairs at close range are photoexcited
to a short-lived excited molecular bound state, producing an atom loss rate
which is proportional to Tan’s contact. In our specific system, photoexcitation
occurs via a coherent admixture of a closed-channel molecular bound state to
the pair-wavefunction. This closed-channel bound state is also responsible for
the Feshbach resonance. Measurements of the closed-channel fraction have been
previously measured in the group of R. Hulet [142] and in the group of J.W. Pan
[163] and they are closely related to the method reported here. The measured
closed-channel fraction in [163] indicated a deviation by a factor of three from
the well-understood theoretical predictions on the BCS side. This deviation does
not occur in our measurements.
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6.3 Results

6.3.1 Photoinduced two-body loss
As pointed out in [32, 33] there is a very general and fundamental link between
the total contact I and the two-body loss rate of a two-component Fermi gas

−dN

dt
=

−ℏIm[a]

2πm|a|2 I , (6.1)

where N is the total atom number, m is the atomic mass and a is the scattering
length. If a has a finite imaginary part, loss due to a two-body process is present.
Thus, the total contact of the spin-balanced Fermi gas can be simply deduced
from the induced two-body loss rate. This is quite intuitive as two-body loss
goes naturally along with two atoms being at close range. Equation (6.1) holds
for collisional losses in s-wave collisions. For losses in p-wave collisions, a similar
relation was recently found [18, 162].

We now consider the special situation where an atomic s-wave collision
takes place in the vicinity of a single, magnetically tunable, intrinsically lossless
Feshbach resonance. Furthermore, two-body loss is induced via resonant pho-
toexcitation of an atom pair at close range to an electronically-excited, short-lived
molecular state with a lifetime 1/γ. For photoexcitation, the bare, closed-channel
bound state of the Feshbach resonance is coupled to the excited molecular state
with Rabi frequencyΩ. For this system, reference [31] has calculated the complex
scattering length a and Eq. (6.1) becomes

−dN

dt
=

ℏ I
2πmabg

Ω2/(2γW )

[1− abg/as]
−2 + [Ω2/(2γ W )]2

. (6.2)

Here, as denotes the real-valued scattering length without the photoexcita-
tion coupling, abg is the corresponding background scattering length and W
the width of the Feshbach resonance. For all practical purposes, the term
[Ω2/(2γ W )]

2 in the denominator can be neglected in our experiments.

6.3.2 Experiment
For our measurements we use an ultracold Fermi gas of 6Li atoms in the two
lowest hyperfine states |F = 1/2,mF = 1/2⟩ and |F = 1/2,mF = −1/2⟩ with
N/2 atoms per spin state. The atoms are trapped in a 3D harmonic trap which
consists of a combination of an optical dipole trap and a magnetic trap. The
atom cloud is cigar shaped, corresponding to the trapping frequencies ωax =
2π× 21 Hz in axial and ωr = 2π× 150− 2000 Hz in radial direction, respectively.
Using forced evaporative cooling at a magnetic field of around 790 G we set
a precise atomic temperature in the range of 0.04 − 2 TF for clouds with atom
numbers between 5× 105 and 2× 106. For a harmonically trapped gas, the Fermi
temperature is given by TF = EF/kB = ℏ (ωaxω

2
r3N)

1/3
/kB, where EF is the

Fermi energy and kB is the Boltzmann constant. By tuning the magnetic fieldB,
we control the particle interaction with the help of the broad s-wave Feshbach
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resonance at 832.18(8) G [78], which allows for entering both the BCS (as < 0)
and BEC regimes (as > 0) of the crossover. For this resonance the width is
W = −2µB × 262.3(3)G = −2πℏ × 734(1) MHz, and abg = −1582(1) a0 [78]
where a0 is the Bohr radius.

To optically induce two-body loss, we excite atom pairs, bound or unbound,
to a deeply-bound molecular level with vibrational quantum number v′ = 68 in
the electronically excited state A1Σ+

u with a linewidth of γ = 2π × 12(1) MHz,
as measured in our experiment1. For this, we make use of the fact that the
initial atom pair wavefunction has an admixture from the (bare) molecular state
X1Σ+

g (v = 38), from which the stateA1Σ+
u (v

′ = 68) can be reached via an electric
dipole transition [142]. The photoexcitation scheme is shown in Figure 5 of [14].
To drive the transition we employ a 673 nm laser beam with an intensity of a few
µW/cm2 (where Ω ≲ 2π × 1 MHz). At each magnetic field, the laser is tuned
to be resonant on the photoexcitation transition. The photoexcitation leads to a
decay of the total atom numberN within a few hundred milliseconds. This slow
decay ensures that the system stays in thermal equilibrium during the exposure.
This is in contrast to previous experiments of ours where we used fast loss to
measure the pair fraction in the Fermi gas, see [15].

We use high-field absorption imaging to measure the number of the remain-
ing atoms, bound or unbound, as described in [15, 82]. Pairs that had been
previously photoexcited to the molecular bound state are not detected because
they quickly decay to states that do not respond to our absorption imaging
scheme.
In Fig. 6.1 we show on a logarithmic scale the remaining atoms as a function of

time. The three data sets are recorded at 753 G, 832 G and 1078 G with initial
interaction parameters (kFas)

−1 = 1.5, 0 and −1.65, corresponding to the BEC,
unitarity and BCS regimes, respectively. Here kF = (2mEF/ℏ2)1/2 is the Fermi
momentum2. For better comparison, the data were normalized to the initial
atomic numbers N(t = 0). The laser power was adjusted so that the initial
relative loss rates are the same. Further details of the measurement parameters
can be found in the Supplemental Material of [13]. While on the BEC side at
(kFas)

−1 = 1.5 the loss is well described by an exponential, it is clearly non-
exponential on resonance and in the BCS regime. This behavior was predicted
theoretically [143] and also studied recently in [163]. The exponential decay is
typical for a pure, weakly-interacting, molecular ensemble which is present in
the BEC limit at zero temperature. At unitarity and on the BCS side the non-
exponential decays reflect the internal changes of the degenerate Fermi gas for
different densities. These decays and changes go hand-in-hand with a drop of
the chemical potential of the gas, see also Supplemental Material of [13].

Using Eq. (6.2) and the respective density-dependence of the contact in the
BCS, unitarity and BEC limit one can show [14, 143] that the decays at zero

1The measured value of γ = 2π×12(1) MHz is in agreement with earlier measurements [164]
and theoretical calculations [165] predicting a molecular linewidth of nearly twice the atomic
linewidth of the 2P state [77].

2Here, we ignore the slight anharmonicity of our trap, for details see [14]. This leads to a
small relative shift of kF on the level of less than 1%.
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Figure 6.1: Remaining atom fraction as a function of the photoexcitation laser
pulse duration. The measurements were carried out at magnetic fields
of 753 G, 832 G and 1078 G with the initial (kFas)−1 = 1.5, 0, −1.65
corresponding to the BEC, unitarity and BCS regimes of the crossover.
The initial temperatures were T/TF = 0.07, 0.05 and 0.04, respec-
tively. The continuous red and green lines are fits according to Eq.
(6.3), while the blue line is an exponential (i.e. b = ∞).

temperature can be described by

N(t) = N0/(1 + Γ0t/b)
b (6.3)

with the initial decay rate Γ0 and b = 2 in the BCS limit, b = 6 at unitarity
and b → ∞ in the BEC limit. Our fits to the data in Fig. 6.1 yield b = 1.6 ±
0.2 at (kFas)

−1 = −1.65 and b = 3.9 ± 0.9 at (kFas)
−1 = 0. For the decay

curve at (kFas)
−1 = 1.5 we find that a pure exponential (or any b ≳ 20) fits

well. Despite the quantitative deviations, this shows that we already have a
qualitative understanding of the decay. The deviations might be explained by a
slight increase of the atom gas temperature for long photoexcitation laser pulse
durations (for further discussion see [14]). We note, however, that it is the initial
loss rate Γ0, rather than b, which is relevant for the determination of the contact
I in our experiments. The decay rate at t = 0, according to Eq. (6.3), is simply
Ṅ = −N0Γ0. At t = 0, the atom number is the highest and therefore uncertainties
are the smallest. This has advantages compared to other methods that rely on
measuring the tails of RF-spectra or momentum distributions, where atomic
signals are generally low. In order to get precise results we accurately determine
the atom numbers, the (effective) trapping frequencies, the magnetic fields and
the corresponding scattering lengths, as explained in [14] where also effects due
to slight trap anharmonicities are discussed. In the following we investigate the
contact in the entire BCS-BEC crossover, first for T ≈ 0 and afterwards also for
T up to 2 TF .
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6.3.3 Contact in the zero temperature limit
For T ≈ 0 there exist already some experimental data and calculations of the
contact from other groups which we can use for comparison with our results.
In our measurements we typically achieve temperatures of T < 0.04TF ≲ TC
where TC is the critical temperature for superfluidity. According to Eq. (6.2) we
need to measure dN/dt and Ω in order to determine the contact I . We extract
the initial decay rate dN/dt from decay curves which are similar to those shown
in Fig. 6.1. Ω is given by Ω2 = k I , where I is the photoexcitation laser intensity
and k is a constant which is independent of the magnetic field B and therefore
of as. We can conveniently determine k by measuring dN/dt for a given I at
an interaction regime where the contact I is known. (We note that when using
this k, the constants γ,W and m effectively drop out of Eq. (6.2), see [14].)
Concretely, we chose (kFas)

−1 ≳ 1 where the contact approaches the analytical
result I/NkF = 4π/kFas [143]. With this calibration we can then determine I
from measurements of dN/dt at any (kFas)

−1 throughout the crossover.
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Figure 6.2: Normalized contact I/NkF of a harmonically trapped Fermi gas in
the crossover from the BCS to the BEC regime at T ≈ 0. Our data
(blue circles) are shown together with a guide to the eye (blue line).
Uncertainties are smaller or comparable to the size of the markers.
Also shown are trap-integrated calculations of the contact based on
different approaches (see text) as well as an interpolation [143] (pur-
ple). The inset shows our data point (blue circle) at unitarity and data
from other groups (diamonds), namely the EOS measurement [166]
(grey), Bragg spectroscopy measurements by [167] (yellow) and [109]
(cyan), a Quantum Monte Carlo calculation [168] (green), an inelastic
decay measurement [110] (red), and RF spectroscopy measurements
[108] (purple) and a momentum distribution measurement [106] (or-
ange).

Our results are shown in Fig. 6.2 along with theoretical calculations based on
ground state energy expansions in the BCS and BEC regimes (see [14, 143]). The
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statistical uncertainties of our data for I/NkF are below 2% and the systematic
errors due to anharmonic effects are below 0.3%. The solid red and dashed red
lines are based on expansions up to second order (fermionic Lee-Huang-Yang
correction) and up to the fourth order [169], respectively. The results apparently
converge for (kFas)−1 < −1.5. The solid green and dashed dark green lines are
based on the expansions to second order (bosonic Lee-Huang-Yang correction)
in the BEC regime. While for the green solid line the binding energy of a dimer
is calculated via EB = −ℏ2/ma2s, a more accurate binding energy formula is
employed for the dashed dark green line [96]. This leads to a 0.6% (1.3%) larger
total contact at (kFas)−1 = 1 (2).

In the inset we show a comparison to other measurements and calculations
at unitarity where we also find excellent agreement. In order to compare results
for homogeneous systems at unitarity with values for the contact for harmon-
ically trapped ensembles, we divided the homogeneous results by the factor
(C/nkhomF )/(I/NkF ) = (105π/256)ξ1/4 = 1.003 [143], using ξ = 0.367 for the
Bertsch Parameter [92, 93]. Here, C is the homogeneous contact density, n is the
atom density and khomF is the homogeneous Fermi momentum (see also [14]). We
further compare our data to calculations based on the equation of state (EOS)
measurements [166] (see [14]) and an interpolation from [143]. Here, we find
small deviations in the region −1 < (kFas)

−1 < −0.2 where we obtain slightly
higher values for the contact.

The contact is closely related to the closed-channel fraction in the scattering
state of two particles. In [14] we discuss this relation and compare various
experimental and theoretical studies of the closed-channel fraction. The results
partially differ substantially from each other.

6.3.4 Finite temperature contact
We now perform measurements at various temperatures and couplings to map
out the contact in the entire phase diagram of the BCS-BEC crossover. For this,
we vary the temperature of our atom cloud between 0.04 and 2 TF by changing
the depth of our dipole potential for forced evaporative cooling. As a result we
end up with around 5×104 (2×106) atoms at our coldest (hottest) temperatures.
To tune the interaction we set the magnetic field to values between 703 G and
1080 G leading to couplings in the range −1.5 < (kFas)

−1 < 2.5.
Our measurement results are shown as colored circles in Fig. 6.3a). Since the

contact changes by three orders of magnitude within the investigated range of
temperatures and couplings we plot the results logarithmically. By interpolating
the data, we obtain a continuous map of the contact. Close inspection shows
that this map consists of slanted, parallel stripes of color. This indicates that the
description of the map might be simplified within the given range. Indeed, as
shown in the Supplemental Material of [13], to a first approximation one can
effectively replace the 2D map by a 1D function. Although this observation
is interesting, at this point we cannot offer a simple physical explanation for
this. To compare our measurements to theoretical predictions we calculated the
contact within the quantum virial expansion [170] as done in [70] at unitarity.
These calculations are shown in Fig. 6.3b) and described in detail in [14]. As the
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Figure 6.3: Map of the contact in the BCS-BEC crossover. a) Colored circles
are measurements for the contact I/NkF , where the values are indi-
cated by the color bar. The typical statistical uncertainties are ≈ 2%
(4%, 6%, 9%) for T/TF = 0 (0.5, 1, 1.5) and the systematic deviations
due to the trap anharmonicity are smaller than 0.3% (1.3%, 3.0%, 3.2%)
for the same temperatures, see also3. The colored background area
is an inter- and extrapolation of the measured data. The continuous
black line marks the critical temperature for superfluidity TC , taken
from [82]. b) The contact IQV,2/NkF calculated from the second-order
quantum virial expansion. The shaded area below T = 0.5TF marks
the region where the virial expansion is expected to lose its validity.
c) Relative difference (IQV,2−I)/I of our measurements and the sec-
ond order quantum virial calculation. d) Contact I normalized by
the corresponding measured zero-temperature contact as a function
of temperature for three different couplings (kFas)−1. The data points
are interpolations from the measured data in a). The continuous lines
are guides to the eye. The dashed lines are quantum virial calcula-
tions taken from b).

quantum virial expansion is a series expansion in the fugacity z = exp(µ/kBT ), it
is valid at high temperatures and low chemical potentials µ. A table of chemical
potentials throughout the phase-space is provided in the Supplemental Material
of [13]. The calculations show that for a harmonically trapped system the virial
expansion should give valid results for the contact for temperatures as low as
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T = 0.5TF , since in this regime the fugacity is small. Below this temperature
the contact values calculated with the second and third order expansion start to
deviate from each other, as already discussed in [70].

Fig. 6.3c) is the relative difference between experimental data and the second
order virial calculation. It shows that our measurements are in good agreement
with the calculations in the given range of validity at temperatures above 0.5 TF
throughout the entire crossover. On the BEC side our results agree well even
down to the lowest measured temperatures of 0.04 TF . This can be expected
since the major contribution to the contact arises from the binding energy of the
dimers, which is included in the second order virial expansion. At unitarity and
on the BCS side for low temperatures, the Fermi gas is a system with genuine
many-body correlations. Since the second-order virial expansion effectively
only considers interactions between two bodies, it fails to describe these regimes
quantitatively. Furthermore, on the BCS side the effective chemical potential
approaches the Fermi energy at low temperatures. Therefore, the fugacity is not
small anymore, violating the validity of the virial expansion. Therefore, in the
low-T regime stretching from unitarity towards the BCS limit our measurements
are particularly important and can serve as a benchmark for theoretical models.

The different regimes in the BCS-BEC crossover also show up very clearly in
Fig. 6.3d), where we plot the contact as a function of temperature for (kFas)−1 =
−0.5, 0 and 1.5. On the BEC side at (kFas)−1 = 1.5 the dimers dominate the
contribution to the contact. For low enough temperatures, when all atoms
are bound in dimers, the contact is a constant (as a function of temperature).
When T × kB becomes comparable to the binding energy, the dimers become
thermally unstable, break up and the contact starts decreasing (see Fig. 6.3d)
blue curves). On the BCS side and at unitarity where (kFas)

−1 ≤ 0, no weakly-
bound Feshbach molecular state exists. There, the decrease of the contact with
increasing temperature is mainly due to overall decreasing atom density and to
a breakdown of short-range pair correlations. Here, at low temperatures, our
measurements for the contact strongly deviate from the results of the second-
order quantum virial expansion (see Fig. 6.3d) red and black curves).

6.4 Summary and conclusion
In conclusion, we have precisely measured Tan’s contact in the full phase di-
agram of the BCS-BEC crossover using photoexcitation of fermion pairs. Our
results bridge the gap between the well-understood BCS and BEC regimes and
are in line with recent measurements and calculations at unitarity. They extend
previous measurements of Tan’s contact to the finite temperature regime and
are consistent with the quantum virial expansion for temperatures above 0.5TF .

For the future, we plan to extend our contact measurements to homogeneous
Fermi gases. It has been predicted (and measured at unitarity [108]) [31, 171] that
a sudden change in Tan’s contact should appear at the critical temperature TC

3The statistical uncertainties decrease with decreasing temperature T , since in our exper-
iments evaporative cooling leads to more stable atom numbers at lower temperatures. The
increase of the systematic uncertainty with T is explained in [14].
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of superfluidity. Therefore, one could use such measurements to precisely map
out TC within the BCS-BEC crossover. In the harmonically trapped system this
sudden change is washed out due to the inhomogeneous density distribution
in the trap. In addition, we also aim for studying the contact for systems
of lower dimensionality or that feature spin imbalance. Here, probing pair
correlations by measuring the contact might uncover the presence of the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase [133].

6.5 Supplemental Material

6.5.1 Experimental parameters to the measurements
In Table 6.1 we list the experimental parameters for the three curves shown in
Figure 6.1.

Table 6.1: Experimental parameters for the measurement data shown in Figure
6.1 The values for atom numbers, couplings and temperatures are the
initial values at t = 0.

Magnetic field Atom number Coupling (kFas)
−1 Temperature Photoexc. laser power

753 G 5.9× 105 1.5 0.07 TF 6 µW
832 G 6.05× 105 0 0.05 TF 38 µW
1078 G 4.8× 105 -1.65 0.04 TF 610 µW

6.5.2 Quasi 1D Projection
We make an interesting observation when plotting our measurements from Fig.
6.3 in a three-dimensional coordinate system, as shown in Fig. 6.4 a).

By rotating the graph by the azimuthal and polar angles, we can align the
data points so that, at a particular line of sight, they approximately fall onto a
single universal 1D curve, as shown in Fig 6.4 b). We parameterize the line of
sight by two angles (ϕ, θ). The azimuthal angle ϕ is the angle between the line
of sight and the negative y-axis (temperature) and the angle of elevation θ is
the angle between the line of sight and the x-y (coupling-temperature) plane.
We find that for angles of ϕ = −24◦ and θ = −8◦ the convergence of data onto
a single line is best. This behavior, however, only works in a limited realm of
T/TF ≲ 2 and −1 ≲ 1/kFas ≲ 2. Second order quantum virial calculations at
high temperatures and calculations using the ground state energy expansions
of the BCS and BEC limits [14] show this.

6.5.3 Chemical potentials
In Figure 6.3, we show the measured contact in the BCS-BEC crossover as a
function of temperature T/TF and coupling (kFas)

−1. For the investigated range
of temperatures and couplings, we list the approximate normalized chemical
potentials µ0/EF in the trap center in table 6.2. We calculate µ0 by using the EOS
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Figure 6.4: a) Measured contact values (dots) in a 3-dimensional representation.
The colored plane is a linear interpolation of the data as shown in
Figure 6.3 a). By changing the viewer’s line of sight onto the dataset,
the data approximately collapse onto a single curve, see b). The angles
ϕ and θ specify the line of sight (see text). In order to better distinguish
the measured data points belonging to the BEC and BCS regimes and
to low and high temperatures, we used different colors for the plot
symbols (see legend).

measurements atT = 0 [166] and the 2nd order virial expansion forT ≥ TF [170].
The chemical potentials on the BEC side (as > 0) include the molecular binding
energy given by ℏ2

ma2s
/EF = 2/(kFas)

2. In the experiment, the photoinduced
two-body loss slowly changes the chemical potential µ0 over time due to the
decreasing atom number and slightly increasing temperature. Therefore, during
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the decay, the atom cloud generally follows a trajectory in the phase diagram
towards increasing |(kFas)−1| ∼ N−1/6 and temperature T/TF .

Table 6.2: Calculated, normalized chemical potentials µ0/EF of a harmonically
trapped Fermi gas as a function of temperature T/TF and coupling
(kFas)

−1. The values at T = 0 are obtained from the EOS measure-
ments [166], while the values for T ≥ TF are deduced from the 2nd
order virial expansion [170].

T/TF

(kFas)
−1

-1 0 1 2

0 0.9 0.6 -0.6 -3.6
1 -1.8 -1.8 -2.3 -4.9
2 -7.7 -7.8 -7.8 -8.8

6.5.4 Interpolated Contact Values
In Figure 6.3, we show our measurements of the contact together with an inter-
polation. The numerical values of this interpolation are given in Table 6.3 for
the parameter range −0.8 ≤ (kFas)

−1 ≤ 1.6 and 0 ≤ T/TF ≤ 1.5.

Table 6.3: Numerical values of the interpolated contact I/NkF shown in Figure
6.3 a).

T/TF

(kFas)
−1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0 0.55 0.83 1.27 1.99 3.08 4.57 6.4 8.6 10.8 13.1 15.5 17.9 20.4
0.1 0.56 0.76 1.17 1.91 2.99 4.44 6.22 8.22 10.9 12.9 15.3 18.1 20.3
0.2 0.48 0.69 1 1.69 2.52 3.85 5.61 7.6 10.1 12.4 14.7 18.3 20.2
0.3 0.4 0.62 0.88 1.42 2.07 3.33 4.92 6.61 9.1 11.7 14.2 17.8 20
0.4 0.34 0.51 0.73 1.17 1.74 2.9 4.34 5.87 8.1 11 13.9 17.3 19.8
0.5 0.27 0.4 0.54 0.92 1.41 2.38 3.81 5.07 7.3 10.1 13.2 16.8 18.9
0.6 0.21 0.35 0.41 0.66 1.03 1.75 3.01 4.15 6.15 8.8 12 16.4 18.4
0.7 0.17 0.28 0.35 0.5 0.78 1.27 2.16 3.19 5.01 7.6 10.6 15.4 17.6
0.8 0.15 0.21 0.28 0.39 0.69 0.88 1.52 2.4 4 6.5 9.2 13.5 16.4
0.9 0.12 0.14 0.2 0.28 0.55 0.68 1.09 1.92 3.27 5.6 8.1 11.9 15
1.0 0.1 0.13 0.19 0.225 0.42 0.55 0.85 1.62 3.05 4.95 7.2 10.6 13.5
1.1 0.08 0.099 0.16 0.195 0.29 0.45 0.73 1.21 2.72 4.35 6.4 9.3 11.8
1.2 0.07 0.08 0.12 0.167 0.238 0.405 0.67 1.12 2.5 3.81 5.5 8.2 10.6
1.3 0.05 0.07 0.097 0.141 0.208 0.385 0.6 1.03 1.84 3.01 4.6 7.1 9.2
1.4 0.047 0.06 0.087 0.125 0.19 0.328 0.5 0.84 1.42 2.31 3.65 5.9 7.4
1.5 0.038 0.051 0.076 0.108 0.16 0.27 0.41 0.67 1.09 1.74 2.75 4.4 5.9
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Chapter 7

Tan’s contact in the BCS-BEC
crossover: Methods and theory

The contents of this chapter have been published in Ref. [14]:

Manuel Jäger and Johannes Hecker Denschlag
"Methods for studying Tan’s contact in the BCS-BEC crossover",

Physical Review A 109, 063330 (2024).

7.1 Abstract
In a parallel publication [13] we demonstrate that photo-induced two-body loss
can be used to measure Tan’s contact with high precision in a two-component
Fermi gas. Here, in the present companion paper, we provide relevant back-
ground information on this work and describe in detail the methodology for
both the experiments and the data analysis. We first review various theoretical
approaches for calculating the contact and identify areas in phase space of the
spin-balanced Fermi gas where Tan’s contact has not yet been determined. Next,
we provide detailed information on our experimental methods, in particular ex-
plaining the measurement and calibration procedures to achieve a high precision
results for the contact. Afterwards, we study the variation of the decay laws of
two-body loss in a Fermi gas in the crossover from the Bardeen-Cooper-Schrieffer
(BCS) to the Bose-Einstein-condensate (BEC) regime, verifying previous predic-
tions. Finally, we determine the closed-channel fraction of the Fermi gas and
compare it to previous measurements and theoretical calculations.

7.2 Introduction
Tan’s contact, first introduced by Shina Tan in 2008 [10–12], is a measure for
short-range two-body correlations and quantifies the likelihood of finding two
interacting fermions at very small distance. It is an important quantity for
describing strongly interacting Fermi gases [10–12, 32, 33]. Tan’s contact has
been investigated both experimentally and theoretically in various approaches
[18, 70, 100, 106–110, 143, 162, 171]. One experimental approach to measure
Tan’s contact is by studying two-body loss in the gas, where the loss is laser-
induced. This was theoretically discussed in [31, 143] and demonstrated by us
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in recent work [13]. Using this method we have measured the contact across the
entire phase diagram of the BCS-BEC crossover, thus providing a comprehensive
picture of the pair correlations. We found that the method is quite convenient
and allows for high precision measurements.

Within the present companion paper, we provide additional background in-
formation on this work. In particular, we give a rough overview over previous
work related to the contact in the BCS-BEC crossover, mapping out the so far
charted and uncharted phase space regions of the BCS-BEC crossover with re-
spect to the contact. Furthermore, we lay out the experimental methods which
allow for contact measurements at high precision. In addition, we discuss pre-
vious work on the closed-channel fraction of a Fermi gas which is closely related
to the contact. Finally, we provide details on our experimental investigation
on the decay laws of the photo-induced loss of atoms. As predicted by [143]
and experimentally shown by [163] we confirm that the power law of the decay
varies across the BCS-BEC crossover.

7.3 Tan’s contact in the BCS-BEC crossover
In the following we consider the phase space of the BCS-BEC crossover for
a spin-balanced two-component Fermi gas with contact interactions which is
trapped in a harmonic potential [8, 81, 172] . Such a Fermi gas has essentially
only two degrees of freedom. 1) The coupling strength (kFas)

−1, where kF is the
Fermi wave number and as is the s-wave scattering length. 2) The normalized
temperature T/TF where TF is the Fermi temperature. Figure 7.1 shows the core
of the BCS-BEC crossover phase space, in which the nature of the Fermi gas and
its pair correlations fundamentally change. Below the critical temperature Tc
(continuous line) superfluidity sets in. Here, one distinguishes three limiting
regimes [8, 81]. For (kFas)−1 ≈ 0we have resonant superfluidity. For (kFas)−1 ≫
1 we have the regime of Bose-Einstein condensation (BEC) of molecules. And
finally for (kFas)

−1 ≪ −1 we have the regime of Bardeen-Cooper-Schrieffer
superfluid of atom pairs. For T ≫ Tc the gas is in the normal state. For
the BEC and BCS regimes at T = 0 there are analytical ground state energy
expansions which can be used to describe properties of the gas for coupling
strengths down to |(kFas)−1| ≈ 1, see Fig. 7.1. For T ≳ 0.5TF the gas properties
of the harmonically trapped Fermi gas can be described in the framework of the
quantum virial expansion [170]. At unitarity (i.e. (kFas)

−1 = 0) the scattering
length as drops out of the description and therefore simplifies the problem. A
variety of numerical calculations (e.g. [111–113] have provided predictions for
the gas properties and its contact for this regime. Furthermore, experimental
investigations have measured the equation of state (EOS) at T ∼ 0 [166] filling
the theoretical gap for |(kFas)−1| ≲ 1. In addition, measurements where carried
out at unitarity), determining among other things the contact [88, 106–109].

Figure 7.1 shows that there are still large uncharted areas in phase space,
especially for a strongly interacting gas close to unitarity at low temperature.
Filling this area with precise data for the contact, was one of the main motivations
for our work. In order to verify that our measurements of the contact (of a
harmonically trapped Fermi gas) are consistent with previous measurements
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Figure 7.1: Phase diagram of a spin-balanced Fermi gas in the BCS-BEC crossover.
The green and red circles represent fermions of the two spin compo-
nents and illustrate the different phases present in the crossover (see
text). The thin blue-grey line marks the critical temperature for su-
perfluidity TC for a harmonically trapped Fermi gas, taken from [82].
In selected regions, the contact has been studied intensely theoret-
ically and experimentally. For example, at zero temperature in the
regions where (kFas)

−1 < 1, = 0, and > 1 (thick blue lines and blue
dot), the contact can be calculated from the BCS-, unitarity and BEC
ground state energy expansions. In the orange marked area above
T/TF ≈ 0.5, the quantum virial expansion is expected to start provid-
ing accurate results for a harmonically trapped Fermi gas [70]. For
both the T = 0 (green broad line) and (kFas)

−1 = 0 (red broad line)
regions, there are numerous theoretical and experimental studies for
the contact (see text).

by other groups and established theoretical descriptions of the gas we carried
out comparisons. For this, the contact had to be extracted from several of these
works and partially recalculated for our situation of a harmonically trapped
Fermi gas. In the following we explain in detail how this was achieved.

The general approach is that we start out with an expression for the total
energy E of a homogeneous Fermi gas in a volume V . Here, E is the total
energy of the system including kinetic energy and interaction energy. We then
make use of the relation [11]

dE

d(1/as)
= − ℏ2

4πm
CV. (7.1)
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that connects the homogeneous contact density C to the derivative of total
systems energy E with respect to the s-wave scattering length as. This relation
in general holds for a two-component Fermi gas at any temperature.

Next we use this C to calculate the total contact I of a harmonically trapped
Fermi gas. In a harmonic trapping potential, the atom density is position de-
pendent and thus the contact changes locally. In the spirit of the local density
approximation (LDA), the total contact of the system I is then obtained by in-
tegrating C(r⃗) over the trap volume I =

∫
d3r C(r⃗). For this we follow the

approach discussed in Appendix C of [143].

7.3.1 Ground state energy expansions
In this section, we closely follow the derivation of Tan’s contact from the ground
state energy expansions as laid out in [143]. Only for the binding energy of
molecule, we use a slightly improved expression.

At zero temperature T the total energy E is known analytically at various
regions of the BCS-BEC crossover. For a homogeneous Fermi gas in the BCS
limit the energy per volume V at zero temperature is given by the expansion

E/V =
3

5

ℏ2(khomF )2

2m
n

(
1 +

10

9π
khomF as + 0.1855(khomF as)

2 + . . .

)
, (7.2)

where n is the atom density and khomF = (3π2n)1/3 is the Fermi momentum of
the homogeneous gas [143, 169, 173]. The first three terms are the energy of
the non-interacting Fermi gas, the Hartree-Fock mean-field correction, and the
(fermionic) Lee-Huang-Yang correction, respectively.

Using relation (7.1) we obtain the contact density [11]

C = I/V = 4π2n2a2s
(
1 + 1.049khomF as + 0.2584(khomF as)

2 + . . .
)
. (7.3)

At unitarity, the ground state energy density is

E/V =
3

5

ℏ2(khomF )2

2m
n

(
ξ +

ζ

khomF as
+ . . .

)
, (7.4)

where ξ ≈ 0.367 [92] is the Bertsch parameter and the constant ζ ≈ 0.8 [108].
Therefore, the contact density is

C =
6πkF ζ

5
n+ . . . . (7.5)

In the BEC limit of tightly bound dimers the energy density at zero temperature
can be approximated by

E/V = −nd
ℏ2

ma2s
+

2πℏ2add
2m

n2
d

(
1 + 4.81

√
nda3dd + . . .

)
, (7.6)
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where the first term arises from the molecular binding energy for as → ∞
and the next two terms from the mean-field and the (bosonic) Lee-Huang-
Yang correction, respectively [143]. Here, nd = n/2 is the dimer density and
add = 0.6 as is the dimer-dimer scattering length [94]. The contact density
becomes

C =
4πn

as
+ 0.6π2n2a2s

(
1 + 12.03

√
nda3dd + . . .

)
. (7.7)

The homogeneous contact densities calculated from Eqs (7.3), (7.5) and (7.7) are
shown in Figure 7.2.

Note that for finite scattering lengths as the expression for the binding energy
per molecule,

ℏ2

ma2s
,

in Eq. (7.6) has to be modified by higher order corrections [80, 96]. At a coupling
of (khomF as)

−1 = 1 (2) these result in corrections of 1.4% (2.9%) towards a larger
contact density, as shown in Fig. 7.2.

hom

ho
m

st

nd

nd

st

nd

rd

Figure 7.2: Normalized contact density of a homogeneous system calculated from
the ground state energy expansions (equations (7.3), (7.5) and (7.7))
and the equation of state (EOS) measurements. Also shown is the
contact in the BEC limit with the binding energy correction for small
as [96]. The different orders refer to the number of orders in equations
(7.3) and (7.7).
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7.3.2 Equation of state measurements
Navon et al. carried out measurements of the equation of state (EOS) of a zero-
temperature Fermi gas in the BCS-BEC crossover [166]. Here, we briefly explain
the procedure to first obtain the contact density C and then the trap-integrated
total contact I based on these measurements. The resulting curves are shown
in Fig. 7.2 and Fig. 2 of [13]. In general, the total energy of a Fermi gas at zero
temperature can be expressed as

E/V =
3

5

ℏ2(khomF )2

2m
nξ(δ)−Θ(as)

n

2

ℏ2

ma2s
, (7.8)

where ξ(δ) can be viewed as a generalized Bertsch parameter relating the systems
total energy to the Fermi energy at a given interaction parameter δ. Θ is the
Heaviside step function and accounts for the existence of the Feshbach bound
state with binding energy ℏ2/ma2s for as > 0. In the Supplementary Material of
[166] the function ξ(δ) is defined as

ξ(δ) =
h(δ)− δ

3
h′(δ)

(h(δ)− δ
5
h′(δ))5/3

. (7.9)

Here, δ is related to the coupling parameter (khomF as)
−1 through an implicit

equation,

(khomF as)
−1(δ) =

δ

(h(δ)− δ
5
h′(δ))1/3

, (7.10)

which can be solved numerically.
For the function h(δ), Padé-approximations were given for both the BEC (as > 0)
and BCS (as < 0) regime. The approximations, whose parameters were deduced
from the EOS measurements, were made such that h(δ) is continuous at unitarity
(khomF as)

−1 = 0. The function h′(δ) denotes the derivative of h(δ). By combining
equations (7.8), (7.9) and (7.10) we find the systems energy E as a function of
(khomF as)

−1. From this, the contact density C across the BCS-BEC crossover can
be determined as in the previous section. The resulting curve is shown in Fig.
7.2.
We then integrate over the trap volume as described in Appendix C of [143]
to get the total contact I for the harmonically trapped Fermi gas. Note that
although the Padé-approximations for h(δ) are continuous at unitarity, they are
not continuously differentiable there. As a result, both the calculated contact
density and the total contact exhibit a kink there (see Fig. 7.2 and Fig. 2 of [13]).

7.3.3 Quantum virial expansion
The quantum virial expansion has shown to be a powerful tool for investigating
strongly-interacting Fermi gases at high temperatures T [170]. In the high tem-
perature limit, the chemical potentialµof a Fermi gas approaches−∞. Therefore
the fugacity z = exp(µ/kBT ) becomes a small parameter, even for strong inter-
particle interactions as present in the BCS-BEC crossover [174]. Here kB is the
Boltzmann constant. In this limit, any physical quantity of the Fermi gas can be
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expanded as a series expansion in the fugacity z with corresponding expansion
coefficients, i.e. the virial coefficients.
We employ the quantum virial expansion to calculate Tan’s contact, follow-
ing [70] where this approach was described and used to present the contact
at unitarity and at T = 0.5TF for −2 < (kFas)

−1 < 0.5. Using the same ap-
proach, we show results for the contact in the entire BCS-BEC crossover for
−1.5 < (kFas)

−1 < 2.5 and 0 < T/TF < 1.5 in Fig. 3 b) of [13] and for four
different couplings (kFas)

−1 in figure 7.3. In figure 7.4 we further provide a
map of the central fugacity z0 of a harmonically trapped Fermi gas the BCS-BEC
crossover.

To quickly rederive the calculation of the contact within the quantum virial
expansion, we start from Tan’s adiabatic sweep theorem for the grand canonical
ensemble (

∂ΩG

∂(1/as)

)

T,V,µ

= −ℏ2CV
4πm

. (7.11)

In the virial expansion, the grand canonical potential

ΩG = −2kBTV/λ
3
dB

(
z + b2z

2 + b3z
3 + . . .

)
(7.12)

is expanded as a series expansion in the fugacity z = exp(µ/kBT ) where bn
are the virial coefficients, V is the volume and λdB is the thermal de Broglie
wavelength [170]. The virial coefficients are functions of λdB and the scattering
length as. Using equations (7.11) and (9.22) we find the homogeneous contact
density

CQV =
16

π2λ4dB

(
c2z

2 + c3z
3 + . . .

)
(7.13)

for a given temperature T , chemical potential µ and scattering length where
cn = ∂bn/∂(λdB/as). Using the local density approximation, one can calculate
the total contact for the harmonically trapped Fermi gas with trap frequency
ω by replacing the chemical potential µ with a local chemical potential µ(r) =
µ0 − 1

2
mω2r2 and then integrating

IQV =

∫
d3r C(r) =

16

π2λ4dB

∫
d3r

(
c2z

2(r) + c3z
3(r) + . . .

)

=
16

π2λdB

(
kBT

ℏω

)3 [ c2
23/2

z20 +
c3
33/2

z30 + . . .
]
. (7.14)

Here, µ0 is the chemical potential in the center of the trap and z0 = exp(µ0/kBT )
is the corresponding fugacity. In a harmonically trapped Fermi gas, the chemical
potential in the trap center is usually not known. Instead, the total atom number
N is known, as it can be measured. Starting from the thermodynamic relation
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Figure 7.3: Contact I of a harmonically trapped Fermi gas, as calculated with the
second and third order virial expansions for couplings (kFas)

−1 =
(−0.5, 0, 0.5, 1). We normalize each contact curve I(T/TF ) with the
respective zero-temperature value, I(0), taken from our interpolation
of the zero-temperature measurement, as shown in Fig. 2 of [13].

n = − 1
V

∂ΩG

∂µ
, and using again the local density approximation one finds

N =

∫
d3r n(r) = 2

(
kBT

ℏω

)3 [
z0 +

b2√
2
z20 +

b3√
3
z30 + . . .

]

= 2

(
kBT

ℏω

)3
[
z0 +

b
(0)
2 +∆b2√

2
z20 +

b
(0)
3 +∆b3√

3
z30 + . . .

]

= 2

(
kBT

ℏω

)3 [
z0 −

z20
23

+
z30
33

+ · · ·+ ∆b2√
2
z20 +

∆b3√
3
z30 + . . .

]

= 2

(
kBT

ℏω

)3 [
−Li3(−z0) +

∆b2√
2
z20 +

∆b3√
3
z30 + . . .

]
, (7.15)

where we separated the virial coefficients in parts ∆bn that take into account the
n-body interactions (e.g. scattering properties, bound states,...) and parts that
account for quantum statistics b(0)n = (−1)n+1

n5/2 . The infinite sum z0 − z20/2
3 + z30/3

3 + . . .
can be identified as the polylogarithm function Li3(−z0) of degree 3 and argu-
ment −z0. The polylogarithm function is related to the integral of the Fermi-
Dirac distribution function. The second order virial coefficient is analytically
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known and reads [170, 175]

b2 = b
(0)
2 +∆b2 (7.16)

=
−1

25/2
+
√
2Θ(as)e

λ2
dB/2πa2s

−
√
2

2
sgn(as)

(
1− erf

[√
λ2dB/2πa

2
s

])
eλ

2
dB/2πa2s , (7.17)

where Θ(. . . ) is the Heavyside step function, sgn(. . . ) is the sign function and
erf(. . . ) is the error function. By applying the virial expansion up to the second
order, equation (7.15) can be solved numerically to determine µ0 for a given atom
number N , temperature T , scattering length as and trap frequency ω. With the
chemical potential, one can then calculate the contact of the trapped Fermi gas
using equation (7.14). The result is shown in Fig. 4 b) of [13]. From the cal-
culation of the central chemical potential µ0, we also obtain the corresponding
fugacity z0 which is shown in Figure 7.4. Its value indicates in which regimes
the second order virial expansion is expected to provide reliable results.
We also performed calculations of the contact with the third order virial expan-
sion. For this, we extracted b3 from [176]. Above (kFas)

−1 ≈ 1.5, the second and
third order calculation give the same results for the contact. As also observed in
[70], we find that the second and third order results at unitarity start to deviate
from each other for temperatures lower than ≈ 0.5TF . Additional calculations
for couplings (kFas)−1 = (−0.5, 0.5, 1) are shown in Fig. 7.3. When we go deeper
into the BCS regime, the second and third order results start to deviate at tem-
peratures even higher than 0.5 TF . This is because in the BCS regime the fugacity
z0 = exp(µ0/kBT ) is not small anymore as the chemical potential µ0 is positive
and approaches the Fermi energy for (kFas)

−1 → −∞. As a result, the virial
expansion loses its validity and the higher order expansions do not converge.

7.4 Measurement of Tan’s contact via photoexcita-
tion

As pointed out in [32, 33] there is a very general and fundamental link between
the total contact I and the two-body loss rate of a two-component Fermi gas

−dN

dt
=

−ℏIm[a]

2πm|a|2 I , (7.18)

where N is the total atom number, m is the atomic mass and a is the scattering
length. If a has a finite imaginary part, loss due to a two-body process is present.
Thus, the total contact of the spin-balanced Fermi gas can be simply deduced
from the induced two-body loss rate, as long as the scattering length is known.
Note that relation (7.18) holds for collisional loss during s-wave collisions. A
very similar relation was recently found for a collisional p-wave loss rate [18, 162].
We now consider a special situation of two fermions colliding in an s-wave while
they are subjected to a photoexcitation laser beam, see Fig. 7.5. Atomic collisions



114 Chapter 7. Tan’s contact in the BCS-BEC crossover: Methods and theory

0.1

0.1

0.10.1

0.
5

0.50.5

1

11

10
10

100100

-2           -1            0            1            2

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

>1

C
en

tr
al

 f
ug

ac
it
y 
z 0

Figure 7.4: Calculation of the fugacity z0 in the center of a harmonically trapped
Fermi gas in the BCS-BEC crossover. The calculation is based on the
second order quantum virial expansion. In regions where z0 ≪ 1 the
expansion is expected to be valid.

take place in the vicinity of a single, magnetically tunable Feshbach resonance.
The Feshbach resonance comes about as a bare, closed-channel molecular bound
state is coupled (via hyperfine interaction) and admixed to the scattering state
of the colliding atoms. The Feshbach resonance is intrinsically lossless. Now,
two-body loss is induced via resonant photoexcitation of the atom pair at close
range to an electronically-excited, short-lived molecular state with a lifetime 1/γ.
Photoexcitation takes place via the closed-channel bound state of the Feshbach
resonance which is coupled to the excited molecular state with Rabi frequency
Ω. For this system, reference [31] has calculated the complex scattering length a
and Eq. (7.18) becomes

−dN

dt
=

ℏ I
2πmabg

Ω2/(2γW )

[1− abg/as]
−2 + [Ω2/(2γ W )]2

. (7.19)

Here, as denotes the real-valued scattering length without the photoexcitation
coupling, abg is the corresponding background scattering length and W the
width of the Feshbach resonance. In our experiments the resonance width is
W = −2µB×262.3(3)G = −2πℏ×734(1)MHz, and abg = −1582(1) a0 [78] where
a0 is the Bohr radius. The linewidth γ is γ = 2π×12(1) MHz, as measured in our
experiment [13]. The spectroscopic details of the excited and closed-channel
molecular bound states, as well as the scattering state of our experiment can
be found in Fig. 7.5 and the caption. For all practical purposes, the term
[Ω2/(2γ W )]

2 in the denominator can be neglected in our experiments, because
we have Ω ≲ 2π×1 MHz. Even for Ω up to 2π×250 MHz, the term [Ω2/(2γ W )]

2

is smaller than 10−3.



7.4. Measurement of Tan’s contact via photoexcitation 115

 

Figure 7.5: Photoexcitation scheme for the measurements of Tan’s contact via
two-body losses, using the example of two colliding ground state
6Li atoms in the lowest hyperfine levels |F = 1/2,mF = 1/2⟩ and
|F = 1/2,mF = −1/2⟩. The magnetic field is close to 832.2 G where a
broad Feshbach resonance is located. In the Feshbach resonance the
scattering state of the atoms is coupled via the hyperfine interaction to
the bare weakly-bound molecular level X1Σ+

g , v = 38. This Feshbach
resonance is essentially lossless. We induce two-body loss photoexci-
ation using a laser at 673 nm which couples the bare weakly-bound
molecular levelX1Σ+

g , v = 38 state to the excited deeply-bound molec-
ular state A1Σ+

u v′ = 68. The two states have a large Franck-Condon
overlap of 0.077 [142]. The excited state has a lifetime γ. Ω is the Rabi
frequency associated with this optical transition.

According to Eq. (7.19) the contact I can be determined by measuring the
atom loss rate dN/dt ≡ Ṅ , the Rabi frequency Ω and the scattering length as
in a given experimental run. In order to achieve a high precision for the value
I at a particular (kFas)

−1 and T/TF , we need to precisely determine the Rabi
frequency Ω, the atom number N , the trapping frequencies ωax and ωr, as well
as the scattering length as. (Note that kF = (2m/ℏ)1/2(ωaxω

2
r3N)1/6). How this is

achieved is described in the following sections.
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7.4.1 Calibration of the Rabi frequency Ω

As a first step, we simplify (7.19), by omitting the term [Ω2/(2γW )]
2 in the

denominator, as it can be neglected in our experiments,

−Ṅ =
ℏ I

2πmabg

Ω2/(2γW )

[1− abg/as]
−2 . (7.20)

Next, we make use of the fact that Ω is linked to the photoexcitation intensity I
via the relation Ω2 = k I where k is a constant. We use a calibration process to
determine k and with it Ω. For this, we choose a convenient parameter setting
for which the contact I is known. This parameter setting corresponds to a
specific photoexcitation intensity Ical, scattering length as,cal (via tuning of the
magnetic field B), particle density and temperature. Concretely, we chose the
low-temperature BEC regime which has the advantage that the contact there is
quite insensitive to temperature (see Fig. 7.3) and its value is I/NkF = 4π/(kFas)
[143]. We then measure the loss rate Ṅcal at these parameters and this yields

k = −Ṅcal
2πmabg
ℏIcal

[1− abg/as,cal]
−2

Ical/(2γW )
. (7.21)

Using (7.21) and the relation Ω2 = k I , equation (7.20) becomes

Ṅ = Ṅcal
I
Ical

I

Ical

[1− abg/as,cal]
−2

[1− abg/as]
−2 , (7.22)

where the parameters m, γ and W have dropped out as a consequence of the
calibration.

7.4.2 Atom number calibration
For determining the atom number, we perform absorption imaging at high
magnetic fields. For this purpose, we typically use a short laser pulse of τ =10
µs at an intensity of I/IS = 0.05 to drive the quasi-closed transition to the
|22P3/2;mJ = −3/2⟩ state with linewidth Γa ≈ 2π × 5.87MHz [77], where IS =
2.54mW/cm2 is the saturation intensity.

During the exposure with the imaging light, the atoms scatter photons. This
accelerates them and leads to an increasing Doppler shift (see e.g. [177]) which
effectively lowers the cross section for absorption over time. In order to take this
effect into account, we calibrated our imaging routine using a simple classical
mechanical model. In this model, we consider the acceleration of the atoms

a =
ℏkΓa

2m

I/IS
1 + I/IS + 4(kv/Γa)2

(7.23)

by scatting photons from the imaging beam with intensity I and wavelength
λ = 2π/k ≈ 671 nm [129]. Solving this differential equation yields the time-
dependent atom velocity v and Doppler shift kv. From this, we can calculate a
time-averaged cross section for absorption imaging which is lowered from the
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Figure 7.6: Measured signal for the atom number as a function the imaging light
intensity of for an imaging pulse duration of 10 µs and 20 µs. The
apparent atom number drops with higher intensity and imaging pulse
duration due to an increasing Doppler shift that the atoms acquire
while scattering photons. This effectively lowers the cross section for
absorption and thus the measured atom numbers. In the limit of zero
intensity, the real atom number is recovered.

largest possible cross section by a factor ⟨1 + I/Is + 4(kv/Γa)
2⟩τ due to the ac-

quired Doppler shift and power broadening. We fit this model to our measured
atom numbers with the intensity I and (real) atom numberN as free parameters
(see Fig. 7.6). This allows for extracting the accurate atom number at any given
intensity and pulse duration. With this, we can determine atom numbers with
a typical uncertainty of 5%, corresponding to an uncertainty in kF ∝ N1/6 of 1%.
We further tested this calibration using calculations of the atom cloud density
distribution in the trap based on the equation of state at unitarity [88] and with
a mean-field model in the low temperature BEC regime which we describe in
detail in the Supplementary of [82]. With this, we calculate the 2D column
density and 1D line density for given total atom numbers, trapping frequencies
and temperatures and compare the calculated densities to the measured ones.

7.4.3 Trap frequency measurement and anharmonicities
While the trapping potential of the atoms in our experiment in axial direction is
harmonic for all practical purposes, this is not quite the case in radial direction
where a single-beam optical dipole trap provides confinement. Therefore, the
radial-trapping potential has a Gaussian shape, thus increasingly deviating from
a perfect harmonic potential with the distance from the trap center. The larger
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the atomic cloud size, the larger are the effects due to the anharmonicity [178].
Cloud sizes increase, e.g., due to stronger repulsive interparticle interactions
and higher temperatures. Nevertheless, it turns out that the anharmonicity ef-
fects are comparatively small in our experiments, so that we can neglect them to
first order in our data analysis in [13]. This has the advantage that it keeps our
data analysis simple. However, it induces a small systematic error on our results
which nominally represent the normalized total contact I/NkF for a perfectly
harmonically trapped gas. We have estimated this systematic error as follows.
We carried out calculations to describe the properties and behaviour of the
atomic gas in an anharmonic trap. For temperature T ≈ 0 these calculations are
based on the EOS [166] and for T/TF > 0.5 they are based on the quantum virial
expansion [70, 170]. For our given anharmonic trap, temperature T , total atom
number N , and scattering length as, we calculated the atomic density distribu-
tion, the effective trap frequency ωeff , and the total contact using the local density
approximation (LDA). The effective trap frequency ωeff is the frequency of the
center of mass motion of the atom cloud in the anharmonic trap. It generally dif-
fers slightly from the trap frequency ωr at the trap center [178]. Next, we follow
our analysis protocol of [13] where we ignore anharmonicity and set ωr = ωeff to
calculate EF , TF , kF and the normalized total contact I/NkF . Finally, we com-
pare this value for the normalized contact to the one for the perfect harmonic
trap. We find, that they deviate by less than 0.3% (1.3%, 3.0%, 3.2%, 3.6%) at
T/TF = 0 (0.5, 1.0, 1.5, 2.0). These systematic deviations are smaller than the re-
spective statistical uncertainties in our measurements which are typically ≈ 2%
(4%, 6%, 9%, 12%) at T/TF = 0 (0.5, 1.0, 1.5, 2.0). The statistical uncertainties
decrease with decreasing temperature T , since in our experiments evaporative
cooling leads to more stable atom numbers at lower temperatures.

For determining the trapping frequencies ωax and ωeff , we perform either
parametric heating by modulating the potential of the optical dipole trap or
we observe the center of mass motion of the atom cloud after an initial small
displacement of a few micrometers. Both methods give consistent results with
approximately 2% uncertainty for the parametric heating method and 3% un-
certainty for the center of mass motion measurement.

7.4.4 Determination of the scattering length as
In order to determine the scattering length as precisely, we we precisely mea-
sure the measured magnetic field at the location of the atoms. We then assign
a scattering length to the measured magnetic field by using reference [78]. For
measuring the magnetic fields precisely, we perform radio-frequency (RF) spec-
troscopy between the two lowest atomic hyperfine states. For this, we first use a
short laser pulse to depopulate the |F = 1/2,mF = 1/2⟩ state. We then apply a 50
ms RF pulse and scan stepwise the RF frequency of ≈ 76.2 MHz to find resonant
population transfer to this state from the still populated |F = 1/2,mF = −1/2⟩
state. Using the Breit-Rabi formula we are able to determine the magnetic field
with an uncertainty < 0.5 G. Together with the typical uncertainty in kF of 1%,
this results in an uncertainty of (kFas)

−1 ≈ 0.01 in the investigated range of
magnetic fields.
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7.4.5 Thermometry
For determining the temperature of our atoms, we fit a second order virial
expansion of the density distribution to the outer wings of the atom cloud (see
[15, 82]). This works well even at low temperatures, as the local fugacity z(r⃗)
in the outer wings is still a small parameter which makes the virial expansion
applicable. With this method, we can determine the temperature with a typical
precision of ≈ 0.02 T/TF at small temperatures (T < 0.5TF ) and up to 0.05 T/TF
at high temperatures (T ≳ 1TF ).

7.5 Related studies
In this section, we present additional results and insights that we obtain from
our measurements. More precisely, we compare the photo-induced atom decay
measurements to predictions from [143] and measurements from [163] where
a dependency of the decay law on the interaction regime was predicted and
observed. We further extract the closed-channel fraction Z from our measure-
ments and compare the results to various theoretical predictions [31, 179–182]
and experimental results [142, 163].

7.5.1 Two-body decay laws in a Fermi gas
According to equation (7.19) the photo-induced two-body loss rate in the Fermi
gas is proportional to the total contact I [31]. If the dependency of the contact
on the atom number N is known, one can deduce the corresponding decay law
for N(t).

As calculated in [143] in the zero temperature BCS limit, the integration of the
homogeneous contact density over the trap volume yields the proportionality
I ∝ k3FN and therefore Ṅ/N ∝ N1/2. At unitarity one finds I ∝ kFN and hence
Ṅ/N ∝ N1/6. In the BEC limit I ∝ N such that Ṅ/N = const. Here kF =√
2mEF/ℏ is the Fermi momentum of the trapped gas, EF = kBTF = ℏω̄(3N)1/3

is the Fermi energy, and ω̄ is the geometric mean of the trapping frequencies.
Thus, these differential equations have the form Ṅ/N ∝ N1/b, where b = 2 in
the BCS limit, b = 6 at unitarity and b→ ∞ in the BEC limit. Their solutions, i.e.
the decay laws, are given by the power law

N(t) = N0/(1 + Γ0t/b)
b, (7.24)

with the initial decay rate Γ0. We can now compare these predictions with our
measurements.

From our measurements shown in Fig. 7.7 we obtain the parameters b listed in
table 7.1. We observe a deviation in the fit parameters b (see Eq. (7.24)) compared
to the theoretical predictions. We attribute this deviation to an increase of
the atom cloud temperature during the photoexcitation pulse, especially for
longer times (> 400 ms). Note, however, that we have not investigated this
heating effect properly as after 400-500 ms thermometry based on the atom
density distributions becomes increasingly difficult, because the density and
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Coupling Temperature Photoex. Theo. Fit Fit param. b
(kFas)

−1 laser power param. b param. b t < 250 ms
1.5 0.07 TF 6 µW ∞ > 20 > 20
0 0.05 TF 38 µW 6 3.9± 0.9 5.7± 3.1

-1.65 0.04 TF 610 µW 2 1.6± 0.2 2.1± 0.5

Table 7.1: Experimental parameters for the measurement data shown in Fig. 7.7.
The values for couplings and temperatures are the initial values at
t = 0.

0 100 200 300 400

10-1

100
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Figure 7.7: Remaining atom fraction as a function of the photoexcitation laser
pulse duration, taken from [13]. The measurements were carried
out at magnetic fields of 753 G, 832 G and 1078 G with the initial
(kFas)

−1 = 1.5, 0, −1.65 corresponding to the BEC, unitarity and
BCS regimes of the crossover. The initial temperatures were T/TF =
0.07, 0.05 and 0.04, respectively. For a better comparison, the laser
powers for the three data sets were manually adjusted so that their
initial relative loss rates were the same (see table 7.1). The continuous
red and green lines are fits according to Eq. (7.24), while the blue line
is an exponential (i.e. b = ∞).

therefore the signal decreases. We find, however, that during the first 250 ms,
the temperature stays rather constant within 5-10%. If we only include these
data points, the fitted parameters tend towards the theoretical values. However,
the uncertainty increases since we lower the number of data points for the fit.
Our results for b are compatible with measurements of [163], who measured
b ≈ 6 at unitarity and b = 1.78 (1.43) in the BCS regime at 925 G (1000 G).

7.5.2 Closed-Channel fraction
As discussed previously, in the vicinity of the Feshbach resonance the scat-
tering wavefunction Ψ of an atom pair has a closed-channel admixture of
the bare highest bound molecular state X1Σ+

g (v = 38). It can be written as
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Figure 7.8: Closed-channel fraction Z as a function of magnetic field, taken from
various studies. Blue lilac circles are extracted from our measured
contact data using equation (7.25). The blue lilac (green) shaded area
is a calculation of the closed-channel fraction based on these results
for the range of kF from 3.2 to 3.5µm−1 (2.2 to 3.9µm−1). Data from
other studies (calculations and measurements) have plot symbols as
indicated by the legend. This includes photoexcitation measurements
from G.B. Partridge et al. [142] and from X.-P. Liu et al. [163], as well
as calculations by J. Wang et al. [31], Q. Chen et al. [179], M.W.J.
Romans et al. [179], J. Javanainen et al. [182], and E. Cuestas et al.
[181]. We further show calculations based on the BCS ground-state
energy expansions as in Fig. 2 of [13].

Ψ =
√
Z Ψclosed +

√
1− Z Ψopen where Z is the so-called closed-channel fraction.

For a weak probe laser intensity (Ω2 ≪ γW ) this quantity is directly linked to
Tan’s two-body contact via [143]

Z =
I

NkF

ℏkF
2πmabgW

[
1− abg

as

]2
, (7.25)

and has been experimentally and theoretically investigated by several groups
[31, 142, 163, 179, 181, 182]. It is therefore natural to compare all these data, see
Fig. 7.8. However, since the closed-channel fraction is not a normalized quan-
tity it can only be compared directly for measurements and calculations with
similar parameters W,kF ,m, abg, as. Apart from some variations in the Fermi
momentum kF the parameters are indeed the same for the different data sets.
Therefore, a quantitative comparison is approximately possible.
To calculate the magnetic field dependence of the closed channel fraction for any
given Fermi momentum kF we use the interpolation of our measurements of
the total contact as presented in figure 2 in [13]. The measured quantity I/NkF
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only depends on (kFas)
−1 to a good approximation. Thus, for a given Fermi mo-

mentum kF and magnetic fieldB to which we assign a corresponding scattering
length as, we can determine I/NkF from our interpolation. Using this result
and equation (7.25), we can then calculate the closed-channel fraction Z. We
use this procedure to calculate the blue lilac and green shaded areas in figure 7.8.

With the blue lilac shaded area we illustrate a lower and upper bound for the
closed channel fraction deduced from our zero-temperature contact measure-
ments where the atom number ranges from 4.8×105−6.5×105 (corresponding to
kF = 3.3− 3.5µm−1). We further plot the closed channel fraction calculated for
kF = 2.2 − 3.9µm−1. This allows for comparing our measurements to the ones
presented in [142] where the Fermi momentum kF ranges from 2.2 to 3.9µm−1

and to the calculation presented in [179] for kF = 2.2µm−1. The plot shows
that up to this point there is still a large discrepancy between different measure-
ments and theories on the BCS side of the Feshbach resonance. This highlights
the importance of high precision measurements in this regime.

7.6 Summary and conclusion
In this companion paper, we present relevant background information on mea-
suring Tan’s contact in the BCS-BEC crossover with a novel photo-excitation
method. After a brief overview over various previous approaches to determine
the contact we have identified areas in phase space of the strongly interacting
Fermi gas where the contact is not known. We then lay out in detail the novel
experimental method for measuring Tan’s contact via photo-excitation, focusing
on how to achieve contact measurements with high precision. Afterwards we
use our measurements to study and confirm various predicted decay laws in
a Fermi gas due to two-body loss [143]. Finally, we extract the closed-channel
fraction from our measurements and compare them to several previous theoret-
ical and experimental studies. In the future it will be particularly worthwhile
to employ the described photo-excitation method to measure Tan’s contact in
homogeneous Fermi gases, as this will allow for resolving details of Fermi gas
properties which are washed out in our current experiments with trapped Fermi
gases [31].
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Chapter 8

Holographic Imaging

Contents of this chapter have been published in Ref. [17]:
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Limmer and Johannes Hecker Denschlag

"Holographic imaging of an array of submicron light scatterers at low photon
numbers",

Applied Physics B 129, 180 (2023).

Sections which have not been published are marked with (*)

8.1 Abstract
We experimentally test a recently proposed holographic method for imaging
coherent light scatterers which are distributed over a 2-dimensional grid. In our
setup the scatterers consist of a back-illuminated, opaque mask with submicron-
sized holes. We study how the imaging fidelity depends on various parameters
of the set-up. We observe that a few hundred scattered photons per hole already
suffice to obtain a fidelity of 96% to correctly determine whether a hole is located
at a given grid point. The holographic method demonstrated here has a high
potential for applications with ultracold atoms in optical lattices.

8.2 Introduction
In recent years, ultracold atoms in optical lattices have become a promising plat-
form for fundamental research of many-body and solid-state physics as well as
for applications in quantum information. Quantum gas microscopes have been
developed which use fluorescence imaging to detect atomic distributions in 2D
optical lattices, resolving single atoms at individual lattice sites, see e.g. [41, 183–
187]. In these quantum gas microscopes an individual atom typically scatters
thousands of photons. This leads to heating, and therefore additional cooling
techniques such as Raman sideband cooling [186] are typically required to pre-
vent the atom from leaving its lattice site during imaging. A main motivation
for the work presented here was to test a site-resolved imaging method with
small numbers of scattered photons so that additional cooling is not needed.
Indeed, fluorescence imaging with small photon numbers and single-atom sen-
sitivity has been recently demonstrated [188], but only for atoms propagating in
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free space. Furthermore, other imaging methods for atoms exist which are not
based on fluorescence imaging. For example, these include spatially resolved
ionization of atoms followed by ion detection [189, 190]. A review on various
single-atom imaging techniques can be found in Ref. [191]. Holographic imag-
ing of cold atomic clouds has been developed and demonstrated in recent years,
see e.g. [192–194], but not yet with µm- and single-atom-resolution. We have

Lens Camera

Figure 8.1: Coherent light scattered by the atoms is superimposed with a refer-
ence laser beam of the same frequency. For clarity, only the scattered
light of one atom is shown. The atomic array is located in the ob-
jective’s front focal plane. The digital camera sensor is the detection
plane.

recently proposed a novel approach to site-resolved detection of atoms in a 2D
optical lattice which is based on holographic techniques [50]. The main idea is
schematically illustrated in Fig. 8.1. An ensemble of atoms is exposed to a near-
resonant laser beam from which they coherently scatter light via fluorescence.
The scattered light is collimated by a lens and then superimposed with a colli-
mated reference laser beam of the same frequency. The resulting interference
pattern is recorded by a digital camera sensor. A fast Fourier transform (FFT)
of the recorded interference pattern ID(x, y) yields a site-resolved image of the
atomic distribution in the lattice. The role of the reference beam is to amplify
the weak atomic signals and to shift the information on the atomic distribu-
tions in the hologram to the FFT positions where technical background noise is
small. Our calculations predicted that this holographic imaging is better than
99% error-free already for about 200 scattered photons per atom. Therefore, as a
rough estimate, for a lattice which is deeper than a few times 200 photon recoil
energies, holographic imaging might work without additional cooling. For ex-
ample, for 6Li where the recoil energy is 3.5µK×kB for the resonant wavelength
of 671 nm, a trap depth of about 2 mK×kB should be sufficient to keep the atoms
trapped in their respective lattice sites. Here, kB is the Boltzmann constant.

In this work, we take a first experimental step to test our proposed holo-
graphic detection scheme. For this, we replace the atomic scatterers by an array
of circular submicron-sized holes in an opaque flat mask, see Fig. 8.2. The mask
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Figure 8.2: Pictures of various hole masks taken with an optical microscope. Each
hole is circular and has a radius of 0.3±0.03µm. For each mask, the
holes are positioned on a 9 × 9 square lattice with a lattice constant of
1µm. The hole pattern within each mask is arbitrary.

is homogeneously back-illuminated with laser light which is diffracted when
passing through the holes. The holes are randomly arranged in a square lattice
with 1µm lattice constant, similar to the distribution of real atoms in a partially
occupied 2D optical lattice 1. Clearly, this setup is much simpler than working
with an array of cold atoms, yet it offers all necessary ingredients for the scheme.

Besides experimentally demonstrating holographic imaging, we measure the
fidelity of reconstructing the hole positions of the known mask. We study how
this recognition fidelity depends on various parameters such as the scattered
photon number, the reference laser power and the incidence angle of the ref-
erence laser. We discuss various noise sources and resolution limits and we
investigate how to optimize the setup given these limits. We find that about 200
diffracted photons per hole are sufficient to reconstruct the hole positions in the
masks with a fidelity of 96%.

8.3 Results

8.3.1 Experimental setup
The hole masks were fabricated in the cleanroom of the Microelectronics Tech-
nology Center, University of Ulm, via e-beam lithography. Details of the fabri-
cation can be found in Appendix 8.5.1.

A scheme of the holography setup is depicted in Fig. 8.3. It resembles the
one for digital holographic microscopy which is based on a Mach-Zehnder
interferometer [195, 196]. The beam of a laser with wavelength λ = 671 nm and

1We note that many optical lattice set-ups in the literature exhibit lattice constants of about
500 nm. Performing holography with a smaller lattice constant as compared to ours requires an
optical lens with a correspondingly larger NA than ours.
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Figure 8.3: Scheme of the experimental setup. The 671 nm laser beam (red color)
is split by a PBS into a probe beam (upper path) and a reference
beam (lower path). A λ/2 plate and PBS control the intensity of the
probe beam which illuminates the hole mask. The diffracted light is
collected by an infinity-corrected microscope objective lens and hits
the sensor of a digital camera as a collimated beam. A tilted NPBS
is used to superimpose this probe beam light with the collimated
reference beam. The resulting interference pattern is recorded by the
camera sensor.

≈ 1 MHz linewidth is split by a polarizing beam splitter (PBS) into a probe beam
and a reference beam. The probe beam is attenuated by the combination of a λ/2
plate and a second PBS. It is diffracted at the hole mask and the diffracted light is
collected by an infinity-corrected microscope objective with numerical aperture
(NA) between 0.5 and 0.75, (e.g. Zeiss Epiplan Neofluar 50x, 0.75 HD Dic, 44
23 55 with an effective focal length of about f = 4mm). The distance between
the back side of the objective lens and the sensor is 16 cm. Since the distance
between mask and objective equals the focal length f , light scattered from a hole
in the mask is collimated by the lens and subsequently propagates as a plane
wave with a beam diameter of about 5 mm towards the camera. The diffracted
probe beam and the reference beam are merged at a tilted non-polarizing beam
splitter (NPBS) such that they overlap well at the camera in the detection plane.
While the diffracted probe beam hits the camera approximately under vertical
incidence, the reference beam has a small tilt angle θ ≈ 1◦. The reference beam
is roughly Gaussian with a waist of 5.3 mm and a power of 120 µW behind
the NPBS. A cross section of the beam profile is shown in Fig. 8.4, labelled as
IR. The beam illuminates the CMOS sensor chip (13.3 mm × 13.3 mm) of the
digital camera pco.edge 4.2LT which has 2048×2048 pixels. Further details on
the camera can be found in appendix 8.5.2. We verified that measurements
with a broader and thus more uniform reference beam profile did not produce a
higher recognition fidelity. The exposure time texp was typically 144µs and the
intensity of the reference beam was set such that the linear detection range of
the camera sensor was optimally used while avoiding saturation. This intensity
corresponds to a peak photon number per pixel of about 40,000. In the following,
we show how the hole pattern of the mask is reconstructed via FFT from the
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holographic image taken by the digital camera.

8.3.2 Reconstruction of the hole pattern of the mask
The light intensity distribution ID(x, y) in the sensor plane of the digital camera
is given by

ID(x, y) =
cϵ0
2

|ES(x, y) + ER(x, y)|2

=
cϵ0
2
(|ES|2 + |ER|2) + cϵ0Re{ESE

∗
R}, (8.1)

where ES and ER are the electric fields (in complex notation) of the diffracted
and reference beams in the detection plane, respectively. c is the speed of light
in vacuum and ϵ0 is the permittivity of free space. In the limit of a very weak
scattered light field we can neglect the term |ES|2. Ideally, the term |ER|2 is just a
constant. The information about the hole pattern is contained in the third term,
the interference term.

For simplicity, we first consider a single hole n in the mask at position rn =
(xn, yn) which emits a scattered, spherical light wave. The lens at the focal
distance f collimates the wave into a plane wave with the wavevector component
kn in (x, y) direction,

kn =
k√

x2n + y2n + f 2

(
−xn
−yn

)
≈ −k

f
rn, (8.2)

where k = 2π/λ is the wavenumber of the light. The origin of the coordinate
system is located on the optical axis of the microscope lens. The approximation in
Eq. (8.2) is valid for holes close to the optical axis, i.e. xn, yn ≪ f . At the camera
sensor, this plane wave interferes with the plane wave of the reference beam with
wavevector kR, leading to a 2D sinusoidal fringe pattern ∝ cos((kn−kR) · r+φ).
Here, r = (x, y) is the position vector in the sensor plane of the camera and
φ is a constant phase. The FFT of this pattern produces an output that only
contains two single peaks at ±(kn − kR), corresponding to opposite momenta.
After subtraction of the constant vector kR we obtain kn which, according to Eq.
(8.2), corresponds to the hole position rn, apart from a factor −k/f . The constant
vector kR depends on the incidence angle of the reference beam with respect to
the detection plane. In spherical coordinates we have

kR = k

(
sin θ cosϕ
sin θ sinϕ

)
, (8.3)

where θ and ϕ are the polar and azimuthal angles of the reference beam, respec-
tively.

If there is more than one hole in the mask, each hole contributes a cor-
responding sinusoidal pattern. All these patterns add up linearly under the
condition that the reference beam has much higher intensity than the scattered
probe beam. Since the FFT is a linear operation it reproduces the hole pattern
of the mask.
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Figure 8.4: Line profiles of the digital images of the hologram ID(x, y) and the
reference beam IR(x, y) = cϵ0|ER|2/2, as well as their difference ID −
IR. Here, x and y are positions in units of pixels. The profiles are
taken along the x-direction around the y-center (i.e. y = 0) of the
image. In order to reduce noise we have averaged over 11 pixel rows,
for details see2

In practice, the |ER|2 term in Eq. (8.1) is not just a constant, but it exhibits
corrugations e.g. due to diffraction from dust on top of optical surfaces. This
hampers the reproduction of the hole pattern. We find that most of these
perturbations can be removed by subtracting an image IR taken with only the
reference beam by blocking the probe beam (ES = 0) and averaging over 30
recordings to reduce noise. Figure 8.4 shows line profiles of the hologram
before (red) and after the IR-subtraction (yellow). The blue line is the profile
of the reference signal. The line profiles run along the x-direction through the
y-center of the hologram.

2In order not to average out the interference fringes between probe beam and reference beam,
the averaging is done in a diagonal fashion. This is because the interference fringes for the given
hologram are at an angle of 45◦ (see also Fig. 8.5a), as set by the chosen angle θ of the reference
beam. Concretely, the diagonal averaging is calculated as

∑5
i=−5 ID,R(x+ i,+i)/11 over 11 pixel

rows.
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Fig. 8.5a) depicts a hologram after IR-subtraction, along with a magnified
section. For this, the default mask shown in Fig. 2a) and an objective with a NA
of 0.75 was used. The angles of the reference beam were θ = 0.84◦, ϕ = 45◦ 3 and
about 40,000 photons were transmitted through each hole of the mask. We only
show the section of the hologram that contains the relevant features. It exhibits
five dominant spots, arranged in a cross-like fashion, with weaker signals in
between.

−
a)

4000    2000      0     -2000    -4000   

b)

Camera counts/pixel
Figure 8.5: a) Section of the recorded hologram ID − IR. For this recording, each

hole of the mask scattered roughly 40,000 photons. The panel below
is a magnification. The color bar gives the number of counts per pixel.
This count number can be negative as we are dealing with a difference
of two images. b) Section of the FFT of the hologram with a magnified
view of the reconstructed hole pattern of the mask.

The origin of the five dominant interference peaks can be understood as follows.
To a first approximation, the holes in the mask form a 2D square lattice. The
far-field diffraction pattern of a 2D square lattice is again a square lattice. The
spot in the center of the hologram is the zeroth-order diffraction peak of this
square lattice, while the surrounding spots are first-order peaks. The array of
holes in the mask, however, is not a perfect square lattice since a number of lattice
sites are not occupied. As a consequence, the intensity in between the major
diffraction peaks is non-zero and this is most relevant for the reconstruction of
the hole positions. The hologram is modulated with high spatial frequency by

3We choose θ = 45◦ in the experiment because this has technical advantages. For one, diagonal
pixel lines have a distance which is reduced by a factor of

√
2 as compared to the horizontal and

vertical pixel lines. This increases the spatial resolution for measuring fringes.
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a sinusoidal wave at an angle ϕ = 45◦. This oscillatory pattern is due to the
interference of the reference beam with the scattered probe beam. In the FFT it
leads to a diagonal shift of the reconstructed hole pattern of the mask from the
center, see Fig. 8.5b). Mathematically this shift is equivalent to the shift of the
vectors kn by kR, as previously discussed in the paragraph following Eq. (8.2).
As a result, the reconstructed hole pattern after the FFT is located in the upper
left and lower right corners. The two patterns are inverted with respect to each
other, as they correspond to opposite momenta ±(kn − kR).
The shift of the reconstructed pattern is advantageous because it reduces noise.
Without the shift, both patterns would be located in the center where they would
overlap with each other, with the noisy signal from the reference beam, and with
the |ES|2 term in Eq. (8.1). We find that a shift in diagonal direction is helpful
because there the noise background is particularly small4.
The FFT in Fig. 8.5b) clearly reproduces the hole pattern of mask a) in Fig. 8.2,
which shows that the holographic imaging scheme works.

a) b)

Figure 8.6: a) The circles drawn on the calculated diffraction pattern represent
various numerical apertures: NA = 0.5 (purple), NA = 0.6 (green),
and NA = 0.75 (red). For a given NA, only the pattern inside the
circle ends up on the camera sensor. Continuous lines correspond to
a hole mask that is centered on the optical axis of the lens, while for
the green dashed line it is off-center. b) The relevant sections of the
corresponding Fourier transforms are shown.

4The angle of θ = 45◦ shifts the holographic signal away from spurious horizontal and vertical
lines running through the center of the hologram. These lines stem from clipping of the reference
beam at the edges of the camera chip. Figure 8.5b) shows such line which is weak and runs
vertically through the center of the hologram.
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8.3.3 Numerical aperture

According to Abbe’s theory of imaging, the first order diffraction peaks of a
lattice need to be recorded in order to clearly resolve the individual lattice sites.
Therefore, the numerical aperture (NA) of the microscope objective needs to be
large enough. Figure 8.6 shows a calculated hologram for our default hole mask
from Fig. 2a). If the hole mask is centered on the optical axis, the NA of the
objective can be represented by a circle in k⃗ momentum space. In Fig. 8.6a) such
circles are drawn for NA = 0.5, 0.6, and 0.75. The relevant sections of the FFTs
of the inner parts of the circles are displayed in Fig. 8.6b). The sharpness of the
hole pattern increases with increasing NA.

When the mask is centered on the aperture of the objective with NA = 0.6
(green solid line), none of the first-order peaks are caught. By shifting the
mask diagonally, however, one can include two first-order peaks while still
retaining the central area which includes most of the hologram’s information
(green dashed line). (We note that for a small displacement of the mask, the
solid angle at which light is collected by the objective decreases only minimally
and the resulting ellipse can be still approximated by a circle.) This inclusion of
the first-order peaks can help to better resolve individual lattice sites. However,
because the positions of the sites of the regular lattice are known, the hole pattern
can still be clearly determined even for the centered case and low NA.

8.3.4 Photon shot noise
We now investigate how the reconstruction quality of the hole pattern decreases
as the probe light power is lowered. From Eq. (8.1) it is clear that the holographic
signal scales with the electrical field amplitude of the diffracted laser beam ES

and therefore with the square root of the number of scattered photons per hole.
The noise, on the other hand, is fundamentally dominated by the shot noise of
the light of the reference beam, corresponding to the |ER|2 term in Eq. (8.1).

As a consequence, for a fixed value of the reference beam power, signal to
noise diminishes for a lower probe beam power, or in other words, for a smaller
number of scattered probe beam photons Nph per mask hole. We find that once
Nph is reduced to below about 500, the signal to noise ratio is so weak that a
simple determination by eye of the hole pattern is no longer possible. Fig. 8.7a)
shows the FFT image for an extreme case where the average photon number per
hole was only about 100. With the following algorithm we can still decide with
high fidelity whether a lattice site is occupied or empty. For this, we make use of
the known positions of the lattice sites in the Fourier plane. A black pixelmask
consisting of a 2D array of circular slots (see Fig. 8.7b)) is overlaid with the FFT
image such that the midpoints of the slots coincide with the positions of the
lattice sites. Within each slot the FFT signal is added up, yielding a value Sn

where the index n labels the respective slot, see Fig. 8.7c). If the value Sn of a
lattice site is larger than an appropriate threshold value, Sn > Sthr, the site is
declared to be occupied, otherwise empty. The threshold value Sthr needs to be
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Figure 8.7: Reconstruction of the mask for Nph = 100 photons per hole. a) Re-
gion of interest in the FFT. b) Processing via overlaying of a digital
template. c) Binning of the pixels assigned to each lattice site. d) Sub-
sequent application of a threshold to distinguish between occupied
and empty sites. For simplicity we chose here an experimental sample
for which the hole pattern was correctly reproduced. For 100 photons
we typically only assign 90% of the holes correctly, see Fig. 8.8.

determined independently, e.g. by using a known hole pattern or by another
statistical method5.

With this discrimination method, the assignment of the occupation of the
lattice site becomes a probabilistic process. We define the recognition fidelity F
as the probability that the assignment for the lattice site is correct.

Figure 8.8 shows this fidelity F as a function of Nph for the hole masks in
Figs. 8.2 a) - e). Experimental data are shown as circles. From the diagram we
infer that 300 diffracted photons per hole are sufficient to obtain a nearly perfect
reconstruction of the hole arrays.

5For a variety of lattice sites many measurements of the occupation signals are taken and a
histogram of the occupation signals is generated. Ideally, the histogram will exhibit two peaks,
corresponding to an empty and occupied site. The minimum between the two peaks can then
be used to set the threshold value Sthr, see also [50].
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Figure 8.8: Recognition fidelity F for different masks (see Fig. 8.2) and photon
numbers per hole. Circles are experimental data. The settings for
the measurements were NA = 0.75, θ = 0.64◦, and texp = 144µs. For
each experimental data point we took∼14 images and determined the
fidelity for each image. From this list of values the mean value and
standard deviation were obtained. Diamonds are simulations which
have been rescaled for better comparison with the experimental data.
Namely, for a given calculated data point the actual photon number
Nph is 10 times smaller than indicated in the plot. For the simulations
we use over 50 images per data point. Each image has a different
(random) photon shot noise. The 96% fidelity benchmark, which we
chose arbitrarily, is represented by the black dashed line.

By lowering the probe beam intensity, the signal-to-noise ratio degrades and
finally, below Nph ≈ 300, the fidelity F starts to decline. The characteristics of
the decline is similar for all masks under study.

In addition to measuring experimental fidelities, we also calculated them,
using simulations as layed out in the Appendix 8.5.3. While the calculations
confirm the trend that the fidelity suddenly drops below a critical photon num-
ber, the absolute agreement with the experiment is not good. For a given fidelity
the calculated required photon number Nph is about a factor of 10 smaller than
for the experiment. In order to conveniently compare the trends of experiment
and theory in Fig. 8.8 we have rescaled the theoretical Nph values, multiplying
them by 10. These data are shown as diamonds. At this point it is not clear
what the reason for the discrepancy between theory and experiment is. Possibly
wavefront distortions of the light passing through optical lenses might play a
role. This will be subject of future work.

In the following we investigate in how far the onset of the decline depends on
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Figure 8.9: Required photon number N96 per hole for 96% recognition fidelity,
plotted as a function of a) the number of holes in the mask, b) the angle
θ between reference beam and z-axis (see Fig. 8.1), c) the numerical
aperture NA of the microscope lens, and d) the camera exposure time
(for constant total photon number). N96 and the corresponding error
bars are derived from an interpolation, see Fig. 8.8.

certain parameters of the set-up. This will provide us with the minimal number
of photons that need to be scattered per hole to still achieve a high fidelity in the
reconstruction of the hole pattern.

8.3.5 Minimal photon number
In order to quantify the onset of the decline in fidelity, we introduce the quantity
N96 which is the required number of photons per hole to achieve a fidelity of
96%. It can be extracted from Fig. 8.8 by reading off the photon number Nph

for which the data interpolations (colored lines) cross the 96% fidelity line (gray
dashed line).

In Figs. 8.9 a)- d), N96 is plotted as a function of four parameters.
Figure 8.9 a) shows N96 as a function of the number of holes Nh in a mask.

A first glance at the measured data seems to indicate a decrease of N96 with
Nh. However, we note that given the error bars this decrease is statistically not
significant.

Figure 8.9 b) shows thatN96 only moderately depends on the angle θ between
the reference beam and the z-axis within the range 0.4◦ < θ < 2◦. As already
discussed in section 8.3.2, an angle θ that is too small leads to a reconstructed
hole pattern which is overshadowed by noise in the vicinity of the center of the
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FFT. For a θ that is too large, the fringes in the hologram are too closely spaced
and therefore cannot be resolved by the camera sensor. Using the Nyquist-
Shannon sampling theorem we estimate that this limit sets in at a critical angle
of θ = 4◦ for our experimental set-up. Therefore, if we reach angles that are
either too small or too large, the experimentally determined numbers for N96

strongly increase. This can be seen in the inset where we show a coarse scan
from θ = 0.2◦ to 4◦. For optimized settings in our experiment we chose the angle
θ = 0.7◦.

With Fig. 8.9 c) we return to our discussion in Sec. 8.3.3 on how the recon-
struction quality of the hole pattern depends on the numerical aperture NA of
the objective lens. For these data, the mask was centered on the optical axis of
the microscope lens. We plot N96 for NA = 0.75, 0.6, and 0.5. The first order
peaks in the hologram are only included for NA = 0.75 (see also Fig. 8.6). The
experimental data show that N96 strongly increases as the NA is lowered. This
is in contradiction to our simulations in Fig. 8.6b) where we found that that
despite the blurring the the overall signal of a site did not strongly change.

Finally, in Fig. 8.9 d) we study the dependence of N96 on the exposure time
of the digital camera. Here, the light intensity is adjusted such that the total
numbers of photons from the probe and reference beams hitting the camera are
kept constant. We do not observe a significant dependence on exposure time for
the shown time window. This is expected as long as, e.g., mirror vibrations and
long-term interferometric drifts, as well as accumulated thermal camera noise
do not strongly affect the hologram.

8.4 Summary and conclusion
We have successfully tested a recently proposed holographic method for imaging
µm-scale patterns which are arranged on a 2D grid. Such patterns consist of
a random array of submicron holes in an opaque mask. We experimentally
and theoretically searched for the minimum number of photons that need to
be scattered off the pattern in order to reconstruct the pattern holographically
with high fidelity. After optimization, we found experimentally that about 200
diffracted photons per hole are sufficient to reconstruct the hole positions in the
masks with a fidelity of 96%. Our simulations predict that this number can still
be improved by about a factor of 10. In the future we anticipate that this method
can be applied to image ultracold atoms in optical lattices with single-site and
single-atom resolution, without the need of additional cooling.

8.5 Supplementary information

8.5.1 Fabrication of the hole mask
Circular areas were exposed by means of a Leica EBPG 5 HR electron beam
writer applied on fused silica photo mask blanks. The mask blanks (size:
100×100 mm2, thickness: 2.3 mm) were coated with chrome (thickness: 90 nm,
optical density: 3.0) and a positive e-beam resist. After e-beam exposition and
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developing the round holes were produced by wet chemical etching. The fin-
ished structures were controlled by means of optical microscopy. Atomic force
microscopy revealed a typical hole radius of 300±30 nm. After fabrication the
masks were protected with the polymer CrystalbondTM and cut into square
pieces (≈ 25× 25mm2).

8.5.2 Properties of the digital camera
The CMOS sensor of the pco.edge 4.2LT camera has a pixel size of 6.5 µm ×
6.5 µm. It has a digital resolution of 16 bit, 37,500:1 dynamic range, and 73%
quantum efficiency at 671 nm. The full well depth is about 30,000 electrons.
Therefore, the signal saturates at about 40,000 photons/pixel. There is a signal
conversion of 0.46 e−/count. Dark current is negligible for our experiments. A
short exposure without light has a constant offset of 100.3 ±0.6 counts and the
corresponding rms-noise is 2.2 counts. The nominal readout noise is 1.3 e− (rms)
which agrees roughly with the 2.2 count noise. The noise of our holographic
signals is generally dominated by the photon shot noise. According to the
Poisson distribution, if the average number of incoming photons is N , then the
shot noise on that number is

√
N (standard deviation). Since the conversion

of photons into electrons is probabilistic with probability p = 0.73, the Poisson
distribution for the photons is thinned out to produce a Poisson distribution for
the electrons with an expectation value (and variance) of Np, i.e. a shot noise of√
Np.

8.5.3 Details of the simulation
In the simulation shown in figure 8.8 the hole mask is represented by a matrix of
square pixels, each with 160 nm × 160 nm size. A pixel which is located within
a hole has a transmission of 1. A pixel which is located on the edge of a hole
has a transmission lower than one, as only a part of pixel area is covered by the
hole aperture. We assume the holes to be illuminated by a Gaussian probe laser
field. We calculate the FFT of the electrical field amplitude of the transmitted
light and clip off parts which lie outside the numerical aperture of the lens. This
results in the electrical field amplitude of the probe laser at the plane of the
CCD sensor. This field is superposed with the electrical field amplitude of the
Gaussian beam of the reference laser. We take into account signal loss due to the
finite quantum efficiency of the camera, the finite transmission of the NPBS, and
reflections on optical surfaces. Next, we calculate the expectation value of the
photon count for each pixel on the CCD chip and add photon shot noise. Photon
shot noise strongly dominates over other noise sources such as the read-out and
thermal noise of the CMOS camera and speckle noise. Speckle noise takes into
account interference fringes originating from dust particles on the optics and
from apertures and we use a speckle noise model as described in [50].

8.5.4 (*) Effects of the hole size and the obliquity factor
In the simulations presented above, the diffraction patterns were calculated
in the far-field approximation, which facilitates the employment of the Fast
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Fourier Transform. This was computationally done using MATLAB’s FFT2
function, which calculates the two-dimensional fast Fourier transform of the
input matrix, i.e. the hole mask. However, the FFT2 function does not account
for physical constraints, such as the diffraction limits. Specifically, nowhere in
the calculation of the Fourier transform, the ratio between wavelength and hole
size is employed. This means, that in the FFT calculated by MATLAB, also
orders appear which are physically not possible, i.e. orders n where nλ is larger
than the lattice constant a. In our case where λ = 671nm and a = 1µm, the
ratio a/λ is 1.49, such that already the 2nd diffraction orders do not appear. In
the simulation, this is partially corrected by subsequently cutting the calculated
diffraction pattern such that only the part landing in the NA is considered. This
is illustrated in Figure 8.10.

Diffraction patternHole mask Diffraction pattern

FFT2 Cut

Figure 8.10: Calculation of the diffraction pattern of a hole mask using the FFT2
function of MATLAB. Diffraction orders which are non-physical are
computationally cut out by the limited field of view of the numerical
aperture, see also Figure 8.6.

The simplification however still neglects the obliquity factor 1+cos(θ)
2

, which
appears in the Kirchhoff diffraction formula (see below) as derived in [197].
This factor enhances diffraction towards the zeroth order (Θ = 0) and weakens
diffraction at higher angles (Θ > 0).

To address these issues, we conducted additional calculations using Kirch-
hoff’s diffraction formula. For an incident plane wave parallel to the surface
of the hole mask, the amplitude of the electric field behind the hole mask at
coordinates (x, y, z) is given by [197]

ED(x, y, z) =
aS
λi

∫

mask

dSfS
ei2πd/λ

d

1 + cos(θ)

2
(8.4)

where d =
√
(xn − x)2 + (yn − y)2 + z2 and (xn, yn, 0) are the coordinates at the

position of the mask. The angle Θ is the angle between the surface normal
of the mask/the plane wave and the direction where the diffraction pattern is
observed. The quantity aS is the amplitude of the plane wave, λ its wavelength
and fS is the aperture function of the hole mask. It is 1 at the position of a hole
and 0, otherwise. The scenario is illustrated in Figure 8.11.

The general shape of the diffraction pattern in the far field is of course not
affected by the more precise calculation according to the Kirchhoff diffraction
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Figure 8.11: Diffraction pattern of a hole mask illuminated by a plane wave.
EM(xn, yn, 0) is the electric field of the plane wave at the position
of the hole mask. The corresponding intensity ID(x, y, z) at a screen
separated by a distance z from the mask can be calculated using
Kirchhoff’s diffraction formula given by Equation (8.4).

integral. However, the approach yields a more accurate representation of the
intensity distribution within the diffraction pattern.

Hole size

We first calculated the fraction of photons landing within the numerical aperture
(NA) as a function of hole size. Notably, for an increasing hole size, the lower
diffraction orders become more pronounced and a larger fraction of the incom-
ing photons is captured by the numerical aperture of the objective and thus
contributes to the reconstruction of the image. The reason is, that the diffraction
pattern is given by the convolution of a single hole of finite size and a point-like
hole grid. For an increasing hole size, diffraction towards the zero order is en-
hanced (just as in the diffraction at a single slit). In the limit of the hole size
going to zero (which represents the case of single point-like atoms as scatter-
ers), the number of photons should theoretically distribute equally amongst all
diffraction orders. In this case, still around 50% of the total number of photons
behind the mask are captured by the numerical aperture. The reason is, that
due to the diffraction limit of the hole mask, the second orders do not exist at
all, as 2λ > a. At the same time, the numerical aperture of NA = 0.75 fully
captures the (1, 0) and (0, 1) order peaks (first order horizontally and vertically)
and also partially the (1, 1) (first orders diagonally) order peaks. As the second
orders do not exist, these five orders include almost all diffracted photons. For a
hold radius of 450µm, the diffraction towards the zero order peak is even more
pronounced. As a consequence, over 99% of the diffracted photons are captured
by the objective with NA = 0.75. This is specified quantitatively in Table 8.1 and
shown qualitatively in Figure 8.12.

With our simulations, we find that for the hole pattern shown in Figure 8.2
a) and a hole size of 400nm, 14 photons per hole should be sufficient to reach a
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Hole mask (r = 50 nm) Hole mask (r = 250 nm) Hole mask (r = 350 nm)

Diffr. pattern(r = 50 nm) Diffr. pattern(r = 250 nm) Diffr. pattern(r = 350 nm)

Figure 8.12: Intensity distributions (lower panels) of the diffraction pattern for
hole masks with different hole sizes (upper panels). The regions
of the diffraction pattern which do not fall into the field of view of
the numerical aperture, centered around the zeroth order peak, are
greyed out. For increasing hole size, more photons are captured by
the numerical aperture, as the intensity of the diffraction pattern is
more concentrated towards the zeroth order. Note that the intensity
pattern is warped towards the outside, as the calculation maps the
pattern onto a planar screen, as illustrated in Figure 8.11.

Table 8.1: Number of photons N96 to reach a recognition fidelity of 96% for the
mask shown in Figure 8.2 a) calculated for different hole sizes. Also
listed is the fraction of photons, that is captured by the numerical
aperture of the objective.

Hole radius N96 per hole N96 total N96 in NA % in NA
50 nm 40 1960 969 49.4
75 nm 39 1911 952 49.8
100 nm 37 1813 954 52.6
150 nm 28 1372 846 61.7
200 nm 23 1127 800 71.0
250 nm 20 980 792 80.8
300 nm 16 784 702 89.5
350 nm 15 735 706 96.1
400 nm 14 686 683 99.6

recognition fidelity of 96%. As the utilized hole mask has 49 holes, this equals a
total number of 686 photons, from which 683 photons land within the NA. For a
hole radius of 50nm≪ λ, all diffraction orders become more equally pronounced
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(see Figure 8.12). This includes also the orders which can not be captured by
the numerical aperture and therefore do not contribute to the reconstruction of
the hole pattern. For this reason, the number of photons per hole necessary to
reach a fidelity of 96% increases to 40. This equals a total of 1960 photons, from
which 50% (≈ 969) land within the NA. Both values are of similar magnitude as
the experimentally reported value in Reference [188] where about 20 photons
per atom were necessary for single atom detection using fluorescence imaging.

Obliquity factor

The Kirchhoff diffraction formula additionally includes the obliquity factor. This
factor enhances diffraction towards the zeroth order peak and ensures that no
light is diffracted back into the direction of the incident plane wave. For a lattice
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Figure 8.13: a) and b) show the calculation of the intensity distribution neglecting
the obliquity factor. While a) shows the full two-dimensional inten-
sity distribution, b) shows the distribution along the y-direction at
x = 0, where the zero and the two first order peaks are clearly visible.
c) and d) show the same calculation including the obliquity factor.
One can see a slight enhancement of the signal in the region between
the zero order and first order peaks. Figures b) and d) have been
normalized to the intensity of the first order peaks. As expected, the
relative intensity of the zero order peak in d) is slightly increased.

constant of 1µm and a wavelength of 671nm, the four first order diffraction peaks
(horizontal and vertical) appear under an angle of Θ01 = Θ10 = sin(671/1000) =
42.1◦, while the diagonal first order peaks appear at Θ11 = sin(

√
2671/1000) =
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71.6◦. These orders are therefore weighted by the factors (1 + cos(Θ1)/2 = 0.89
and (1+cos(Θ11)/2 = 0.79. This small attenuation barely changes the diffraction
pattern, as shown in Figure 8.13. Although the effects are barely visible, it is still
notable, that the factor additionally enhances the fraction of photons which are
collected by the numerical aperture of the objective and therefore contribute to
the reconstruction of the hole mask.
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Chapter 9

A Fermi gas in the BCS-BEC
crossover

In our experiments, we create and study ultracold strongly-interacting two-
component Fermi gases of lithium-6 atoms. These systems can also be modeled
theoretically. This enables us to make predictions and gain additional insights
that are difficult to obtain from measurements alone.
Within this thesis, I set up two models for simulating various properties of an
interacting two-component Fermi gas on the BEC side of the Feshbach reso-
nance. These properties include the density distribution, pair fraction, conden-
sate fraction, and the critical temperature for condensation. The models employ
a mean-field approach and have been developed for earlier measurements [15,
82] for both verifying experimental findings and simultaneously testing the
models. Mean-field approaches are well-established methods for treating small
interparticle interactions and particularly effective in describing macroscopic
properties of systems [6, 8, 198–202]. A third established approach for theo-
retically modeling strongly-interacting Fermi gases, which has also been used
throughout this thesis, is the quantum virial expansion. This expansion is espe-
cially suited for describing Fermi gases in the high temperature limit.
In addition, the equations of state (EoS) of a strongly-interacting Fermi gas have
been determined experimentally at T = 0 and (kFas)

−1 = 0 [88, 166, 203].
This chapter provides a conceptual explanation of two mean-field models and
presents several key calculations. Additionally, the quantum virial expansion
and the equation of state (EoS) measurement results are introduced and some
practical examples of how to obtain useful results from both are given.

9.1 Thermal Bose-Fermi mixture
On the BEC side of the Feshbach resonance above the critical temperature, a spin-
balanced interacting Fermi gas in thermal equilibrium consists of free unbound
atoms and non-condensed dimers [97]. In recent experiments, we investigated
this region in phase-space by measuring the fraction of paired and unpaired
fermions using photo-excitation, see [15] and 4.7. As detailed in Chapter 2, for
the non-interacting case the density distribution of both components within the
local density approximation is given by

nF (r) = − 1

λ3dB
Li3/2

(
−e(µF−V (r))/kBT

)
. (9.1)
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for the unbound, fermionic atoms (F ) and

nB(r) = +
1

λ3dB
Li3/2

(
+e(µB−V (r))/kBT

)
. (9.2)

for the bosonic dimers (B). In thermal equilibrium, the chemical potentials are
related via [19, 98]

µB = 2µF + Eb (9.3)

where Eb = ℏ2/ma2s is the binding energy of the Feshbach molecules. The
Equations (9.1) and (9.2), however, only hold for the case of non-interacting
particles.

9.1.1 Model
One method for including interactions into the description is the so-called mean-
field approach. The mean-field approach simplifies the many-body problem by
approximating the interactions between particles in an averaged manner with a
pseudo-potential

Vint(r) =
2πℏ2

mr

as n(r) = g n(r) (9.4)

where g is the coupling constant. This method is particularly effective in describ-
ing the macroscopic properties of the system for small interparticle interactions
[6, 71, 198–202], i.e. when |as| ≪ n1/3 as also done in the Gross-Pitaevskii equa-
tion, see Section 2.1.2.
For two colliding fermions (FF ), the reduced mass is mFF = 1

2
m. For two

bosonic dimers (BB) or a dimer and an unpaired fermionic atom (FB), the re-
duced masses are given bymBB = m and mFB = 2

3
m, and the scattering lengths

are aBB = 0.6 as [94, 95] and aFB = 1.18 as [8]. This yields the coupling constants

gFF =
4πℏ2

m
as, gFB =

2πℏ2

3m
1.18as and gBB =

2πℏ2

m
0.6as (9.5)

for atom-atom, atom-dimer and dimer-dimer interactions.
Within the mean-field approach, one therefore gets a set of coupled equations for
the density distributions of the unbound fermionic atoms and bosonic Feshbach
dimers in a harmonic trapping potential VF (r) =

∑
imω

2
i x

2
i /2, which reads

nF (r) = − 1

λ3dB
Li3/2

(
−e(µF−VF (r)−gFFnF (r)−gFBnB(r))/kBT

)
(9.6)

nB(r) = +
1

λ3dB
Li3/2

(
+e(µB−VB(r)−2gBBnB(r)−gFBnF (r))/kBT

)

= +
1

λ3dB
Li3/2

(
+e(2µF+Eb−2VF (r)−2gBBnB(r)−gFB2nF (r))/kBT

)
. (9.7)

Together with the constraint for the atom number per spin state Nσ = N/2 =∫
drnF (r) + nB(r), these coupled equations can be solved self-consistently for

various temperatures and interactions.
This is done by iteratively calculating the density distributions, which depend
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Figure 9.1: Density distributions n(r) and pair fractions ÑP of a harmonically
trapped Fermi gas on the BEC side of the BCS-BEC crossover at vari-
ous temperatures T/TF and interaction strengths (kFas)

−1, as calcu-
lated within the mean-field model (see text). The solid line shows
the radial density distributions of the total number of atoms per spin
state, while the dashed (dashed-dotted) lines correspond to the free
fermionic atoms (bosonic dimers). The calculations were carried out
for Nσ = 120 000 atoms per spin state, confined in an isotropic har-
monic trap with trap frequency ω = 2π× 500Hz. The magnetic fields
B = 792, 762, 739 and 720G were chosen to set interaction parameters
of (kFas)

−1 = 0.5, 1.0, 1.5 and 2.0. These distributions can also be
represented in reduced variables r̃ and ñ(r̃), where r̃ = r/RTF and
ñ = nR3

TF /Nσ, where RTF =
√

2EF /(mω2) is the Thomas Fermi ra-
dius, see [204]. For the given parameters, we have RTF = 24.53µm.

on themselves1 due to the mean-field interaction ∼ g n, and using them in sub-
sequent steps to update the distributions. After a number of iterations, the
solutions typically converge. This number roughly depends on the interaction
strength. For a larger mean-field energy, the step-to-step variations of the cal-
culated density distributions are larger, which increases the number of steps to
reach the convergence. We also employ a technique to prevent overshooting of

1In the first step, the density distribution is calculated without the mean-field interaction.
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the density distributions. In this, the density distribution for the next iteration
step is calculated as a weighted average of b% from the current step’s distribu-
tion and (100− b)% from the previous step’s distribution. We find that for large
temperatures and small interaction strengths, a value of b ≈ 50 − 70 results in
a fast convergence. For T → TC and (kFas)

−1 → 0, b has to be chosen smaller
(≈ 2− 10) to ensure (fast) convergence.

The results for a few temperatures and interaction strengths are presented
in Figure 9.1 and resolve the spatial density distributions of the unbound atoms
and the dimers. As clearly visible, the fraction of dimers increases towards
lower temperatures T/TF and larger interaction parameters (kFas)−1, i.e. larger
binding energies EB = ℏ2/(mas)2. For large repulsive interactions and dimer
fractions, the dimers even push out the unbound atoms from the center of the
harmonic trap, as shown e.g. in Figure 9.1 a) for T/TF = 0.5.

9.1.2 Pair fraction
As a result of the calculations, one not only obtains the density distributions,
but also the number of unbound fermionic atoms (per spin state)

NF =

∫
drnF (r) (9.8)

and bosonic dimers
NB =

∫
drnB(r) (9.9)

and with this the pair fraction ÑP = NB

NF+NB
. The contour lines for selected pair

fractions are shown in Figure 9.2.

9.1.3 Critical temperature
Another important quantity that we obtain from the model is the critical tem-
perature for condensation TC . For this, one has to examine the effective chemical
potential for the dimers in the center of the harmonic trap, given by

µB,eff = 2µF + EB − 2gBBnB(0)− gFB2nF (0). (9.10)

When the effective chemical potential for the dimers becomes larger than zero,
the model calculations fail, because the polylogarithm function in Equation (9.7)
is not defined anymore. In a physical picture, this scenario corresponds to Bose-
Einstein condensation of the dimers. One can then roughly find TC at a fixed
(kFas)

−1, by starting the calculation at high temperatures (where µB,eff < 0) and
slowly approaching smaller temperature (where µB,eff → 0) until the calculation
fails. The resulting curve for TC on the BEC side is shown in Figure 9.2.
At (kFas)−1 = 0 our model yields a value of TC/TF = 0.2. Interestingly, this coin-
cides with the sophisticated result from the t-matrix calculation TC/TF = 0.207
[16], although the results for pair fraction deviate towards the Feshbach reso-
nance.
The fundamental difference between the two models is the treatment of dimers
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Figure 9.2: Critical temperature TC and contour lines for the pair fractions of
ÑP = 5%, 15%, 50% and 95% for a harmonically trapped Fermi
gas. The pair fraction was calculated from different approaches,
namely the presented mean-field model (solid line), a t-matrix calcu-
lation (dots) [15, 16] and a classical calculation neglecting interactions
(dashed line) [15, 97]. Data for the t-matrix and classical calculations
are extracted from [15]. Further shown is the critical temperature
TC (green-grey solid line) obtained from the mean-field model as ex-
plained in Section 9.1.3.

and interactions towards the Feshbach resonance. Our model treats the dimers
as purely bosonic entities, although their binding energy becomes compara-
ble/smaller than the interaction and thermal energies scales towards the Fes-
hbach resonance. The diagrammatic t-matrix calculation takes the intrinsic
fermionic nature of the dimer constituents into account.
Additionally, the repulsive interaction within our mean-field model is linear in
the scattering length as, leading to a nonphysical divergence of the mean-field
energy gn ∝ as as the scattering length approaches +∞. While the results for
the pair fraction deviate, the effects seem to cancel each other out regarding the
critical temperature.

9.1.4 Effective scattering length
One approach for avoiding a diverging mean-field interaction energy is by in-
troducing an effective scattering length which does not diverge at the Feshbach
resonance. As detailed in Section 2.2, the scattering cross section is a measure
for the interparticle interactions and given by

σ0(k) =
4πa2s

1 + k2a2s
(9.11)
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For small as, we recover σ0 = 4πa2s and for |as| → ∞, it does not exceed the
unitary limit σu = 4π/k2, obtained for the largest possible scattering phase shift
when sin2(δ0) = 1 (see Section 2.2).
One can therefore model an effective (local) scattering length of the form

as,eff =
as√

1 + c(khomF )2a2s
(9.12)

which approaches as for |(kFas)−1| → ∞ and c−0.5/kF for (kFas)−1 → 0, as also
discussed in Ref. [199].
The parameter c is a fudge factor which can be chosen to fulfill certain constraints.
For example, the energy per particle in a unitary Fermi gas at zero temperature
is given by ξ 3

5
Ehom

F = ξ 3
5

(ℏkhomF )2

2m
. If one sets this equal to the mean-field energy of

the Fermions 4πℏ
m
asn, one obtains as = ξ 18π

40
1
kF

≈ 0.531/kF , which yields c = 3.71

for ξ = 0.367 [92, 93]. In [199], the energy was roughly assumed to be 3
5
Ehom

F ,
which yields c = 0.5.
In Figure 9.3, we compare the results for both values of c, together with the results
for a diverging scattering length (i.e. c = 0). Already for c = 0.5 the results
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Figure 9.3: mean-field calculation of the critical temperature TC and contour lines
for the pair fractions of ÑP = 5%, 15%, 50% and 95%. The results
were obtained with an effective scattering length as parameterized by
Equation (9.12) with c = 0 (solid lines), c = 0.5 (dashed lines) and
c = 3.71 (dotted lines). Additionally, t-matrix calculations of the pair
fraction are shown as dots [15].
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for the pair fraction almost approach the classical limit (c → ∞) and strongly
deviate from the results obtained for a diverging scattering length (c = 0). For a
larger value of c, corresponding to a smaller effective scattering length towards
the Feshbach resonance, the critical temperature TC within the model becomes
quite insensitive to the interacting strength. For c = 0.5 (c = 3.71), we find
TC = 0.37 (TC = 0.39) at (kFas)−1 → 0. This substantially differs from recent
calculations ofTC = 0.207 [16]. In the BEC limit of (kFas)−1 → ∞, all calculations
approach the expected value of TC = 0.5175TF (see Section 2.1.3).

9.2 Partially condensed molecular Bose gas
Below the critical temperature TC , the spin-balanced Fermi gas is in a superfluid
state. For 0 < T < TC , the gas thereby consists of two phases, the superfluid
and the normal fluid phase. In recent experiments, we investigated this state by
exciting first and second sound waves via intensity modulation of a repulsive
laser beam focused into the center of the harmonically trapped atom cloud [82].
While first sound is a density wave, second sound waves are essentially entropy
waves and can only propagate in the presence of two different gas phases, as
detailed in Refs. [82, 205–207]. With these experiments, we could, among other
things, examine the superfluid phase in the BCS-BEC crossover.
To theoretically investigate the superfluid phase and its spatial extension at
various interactions and temperatures 0 < T < TC , I implemented another
model based on the local density approximation and the mean-field approach.
With this model, we were able to locate the superfluid region of our cloud in the
BEC regime very precisely and also make precise statements about the densities
of the superfluid and normally fluid phases, see [82]. Within the model, the
Fermi gas below TC is assumed to consist purely of bosonic molecules which are
partially condensed and partially thermal.

9.2.1 Non-interacting molecular Bose gas
For a non-interacting Bose gas, the ratio of condensed particles to the total
number of particles is N0/N = 1 − (T/T 0

C)
3. Such a gas is almost present

in the deep BEC regime of a two-component Fermi gas when (kFas)
−1 → ∞

and T 0
C ≈ 0.5176TF [115, 208], see also Section 2.1.3. In this case, fermions of

opposite spin form bosonic molecules. The gas then consists of a condensed and
a non-condensed, normal phase with density distribution functions

n0(r) =
µ0 − V (r)

g
Θ [µ0 − V (r)] (9.13)

nB(r) =
1

λ3dB
Li3/2

(
+e(µB−V (r))/kBT

)
, (9.14)

see Equations (2.19) and (2.30).
As the densities of these gas phases follow different distribution functions, the
total density distribution of the atom cloud shows a characteristic bimodal fea-
ture, as also shown in experimental measurements of the density distributions in
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Figure 1.1. This bimodal feature clearly indicates that the condensed molecules
at high density accumulate in the center of the trap while the thermal ones
surround them.

9.2.2 Model
To consider interparticle interactions, one can again make use of the mean-field
approach, as in the previous section. With the coupling constant for dimer-
dimer interaction

gBB =
2πℏ2

m
0.6 as (9.15)

one obtains a set of coupled equations for the density distributions [6, 82, 209]

n0(r) =
µ0 − V (r)− 2gBBnB(r))

g
Θ [µ0 − V (r)− 2gBBnB(r)] (9.16)

nB(r) =
1

λ3dB
Li3/2

(
exp

[
µB − V (r)− 2gBBn0(r)− 2gBBnB(r)

kBT

])
(9.17)

for a given temperature T , scattering length as and trapping potential V (r) As
0 < T < TC , the thermal fraction has to reach the critical density Li3/2(1)/λ

3
dB

somewhere in the trap. Otherwise, the gas would be either not partially con-
densed or not be in thermal equilibrium. We can therefore set

µB = min [V (r) + 2gBBn0(r) + 2gBBnB(r)] (9.18)

to fulfill this condition. This effectively fixes µB. To also fix µ0, we have to again
consider the constraint for the total particle number N =

∫
drn0(r, µ0) + nB(r).

With this, the set of coupled equations can be solved self-consistently to obtain
the density distributions for the superfluid and thermal gas phases. The results
for (kFas)

−1 = (1, 1.5, 2) and T/TF = (0.05, 0.15, 0.25, 0.35) are presented in
Figure 9.4.

9.2.3 Critical temperature
Another important quantity that the calculations reveal is the critical temper-
ature TC . In contrast to the previously presented mean-field model for the
thermal Bose-Fermi mixture at T > TC , the mean-field model for the partially
condensed molecular Bose gas only works below TC . In order to find TC for a
given interaction parameter (kFas)−1, one has therefore to start the model calcu-
lation at T ≪ TC and gradually increase the temperature. The point, where the
calculations run into numerical issues indicates the critical temperature.
From the calculations, we find TC/TF ≈ 0.415 (0.44, 0.448) at (kFas)−1 = 2 (3, 5)
in agreement with calculations from [16] (see inset of Fig. 7) using the same
mean-field approach. In [16], additional calculations for TC using aBB = 0.75 as
(1.16 as, 2.00 as) were carried out and compared to t-matrix calculations for TC .
The results are shown in Figure 9.5, together with the calculation using the
established value aBB = 0.6 as [94, 95].



9.2. Partially condensed molecular Bose gas 151

3 3 3

3 3 3

3 3 3

3 3 3

Figure 9.4: Line density distributions n(x) of a partially condensed molec-
ular Bose gas, calculated within a mean-field approach. From
top to bottom, the rows correspond to temperatures of T/TF =
(0.05, 0.15, 0.25, 0.35). From left to right, the columns correspond
to (kFas)

−1 = (1, 1.5, 2). The calculations were carried out for
N = 105 atoms confined in an isotropic harmonic trap with trap
frequencies ωi = 2π× 63Hz corresponding to a Thomas Fermi radius
of RTF,i = 29.2µm.

Interaction and harmonic trap effects

When approaching the Feshbach resonance, the critical temperature decreases
due to the increasing repulsive interactions that prevent the gas from reaching
the critical density required for condensation. This shifts the critical temperature
from the critical temperature of a non-interacting Bose gas T 0

C . In Reference [71],
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Figure 9.5: Critical temperature for condensation of a molecular Bose gas, taken
from [16]. The solid lines are calculated with a mean-field approach
for different dimer-dimer scattering lengths as indicated by the leg-
end. As expected, TC decreases with increasing interparticle interac-
tions. Further shown is a t-matrix calculation (dashed line). It coin-
cides with the mean-field result for a dimer-dimer scattering length of
aBB = 1.16 as [16] in the limit of (kFas)−1 → ∞. Precise calculations
of the dimer-dimer problem yield aBB = 0.6 as [94, 95].

the downshift for a harmonically trapped Bose gas was found to be

∆T int
C

T 0
C

= −1.33
a

aHO

N1/6 (9.19)

where a is the scattering length, aHO =
√

ℏ
Mω

the harmonic oscillator length
and N the atom number. In our scenario of a molecular Bose gas, a = aBB =
0.6as and M = 2m. With ℏ2k2F/2m = EF = ℏω(6N)1/3 and therefore kF =√
2mω/ℏ(6N)1/6, one can then rewrite the shift in Equation (9.19) into

∆T int
C

T 0
C

= −0.592 kFas (9.20)

with T 0
C = 0.5176TF (see Section 2.1.3). At (kFas)

−1 = 2 (3, 5) this yields
∆T int

C /T 0
C = −0.296 (−0.197,−0.118) and thus T int

C /TF = 0.364 (0.415, 0.456).
Another effect that introduces a shift of the critical temperature is the harmonic
trap itself. Condensation in the harmonic trap actually does not start when the
effective chemical potential reaches zero, but when it approaches the energy of
the ground state. For a three-dimensional isotropic trap, this energy is 3

2
ℏω. For

an isotropic harmonic trap with trap frequencies ωx, ωy and ωz, the associated
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shift is given by [71, 210]

∆T tr
C

T 0
C

= −0.73
(ωx + ωy + ωz)/3

(ωx ωy ωz)1/3
N−1/3 (9.21)

which is smallest for the isotropic case. For typical atom numbers ofN = 105 (106)
in an isotropic harmonic trap, the shift is ∆T tr

C /T
0
C = −0.0157 (−0.0073). For

a cigar shaped atom cloud with aspect ratio of 1 : 10, one obtains ∆T tr
C /T

0
C =

−0.0237 (−0.0100) for the same atom numbers.

9.2.4 Condensate fraction
Another interesting quantity is the condensate fraction. For a non-interacting
harmonically trapped Bose gas below TC , the fraction of condensed parti-
cles scales as N0/N = 1 − (T/T 0

C)
3. For a homogeneous Bose gas, one finds

n0/n = N0/N = 1− (T/T 0,hom
C )3/2 as derived in Section 2.1.2.

0       0.2       0.4      0.6      0.8          10

0.2

0.4

0.6

0.8

1

(kF as)-1 = 2
(kF as)-1 = 5
(kF as)-1 = 10
(kF as)-1 = 200
(kF as)-1 = 20000
1 - (T/TC)3

1 - (T/TC)3/2 

(kF as)-1 = 2
(kF as)-1 = 5
(kF as)-1 = 10
(kF as)-1 = 200
(kF as)-1 = 20000
1 - (T/T 0

C)3 

0       0.1      0.2      0.3     0.4      0.50

0.2

0.4

0.6

0.8

1

C
on

de
ns

at
e 

fr
ac

ti
on

 N
0/

N

C
on

de
ns

at
e 

fr
ac

ti
on

 N
0/

N

Temperature T/TF Temperature T/TC

a) b)

Figure 9.6: Condensate fraction of an interacting molecular Bose gas, as calcu-
lated with a mean-field approach. a) Shows the condensate fraction
N0/N as a function of the relative temperature T/TF for various in-
teraction parameters (kFas)

−1 (solid lines), as well as for the non-
interacting case (dash-dotted line). From the curves, we can infer
the critical temperature TC for each (kFas)

−1. b) Shows the conden-
sate fraction N0/N as a function of the relative temperature T/TC for
same interaction parameters (kFas)

−1 as in a). The critical temper-
ature TC at each (kFas)

−1 was taken from [16] and agrees with the
critical temperature inferred from our calculations shown in a). For
comparison, the analytical results for a non-interacting harmonically
trapped (dash-dotted line) and homogeneous Bose gas (dashed line)
are shown. Note that the non-interacting harmonically trapped result
almost coincides with the calculation for (kFas)

−1 = 20000 and is
therefore difficult to recognize in a) and b). For a BEC of (bosonic)
87Rb atoms with typical atom numbers of 105, trap frequencies of
ω = 2π × 100Hz and a background scattering length of ≈ 100 a0, one
can associate an interaction parameter of (kFas)−1 ≈ 15.
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Within our model, we can obtain the condensate fraction for various inter-
action parameters (kFas)−1. The results are shown in Figure 9.6 together with a
comparison to the theoretical predictions for the non-interacting harmonically
trapped and homogeneous Bose gas.

As expected, we recover the relation for the non-interacting harmonically
trapped Bose gas in the limit of weak interactions, i.e. (kFas)

−1 → ∞. For
stronger interactions, the rise of the condensate fraction around TC is flatter,
compared to the non-interacting case. This was also observed in measurements
[211] and model calculations presented in [71] (see Figs. 1 and 2) and can be
explained by the fact that strong repulsive mean-field interactions result in a
more homogeneous density distribution because the particles repel each other.
The increase of the condensate fraction therefore approaches the relation for the
homogeneous Bose gas. For further information, two comprehensive reviews
on the effects of interactions in Bose gases below and above TC can be found in
References [6, 212].

9.3 The quantum virial expansion
Another framework to treat strongly-interacting Fermi gases is the quantum
virial expansion. This expansion has proven to be a powerful tool for investigat-
ing strongly-interacting Fermi gases at high temperatures T [170] and was also
frequently used within this thesis. In the high temperature limit, the chemical
potential µ of a Fermi gas approaches −∞ faster than T approaches ∞ [21, 22].
Therefore, the fugacity z = exp(µ/kBT ) becomes a small parameter, even for
strong interparticle interactions as present in the BCS-BEC crossover [174]. In
this limit, any physical quantity of the Fermi gas can be expanded as a series
expansion in the fugacity z with corresponding expansion coefficients bn, the
so-called virial coefficients.
One of those quantities is the grand canonical potential ΩG. For the grand
canonical ΩG potential, the virial expansion reads

ΩG = −2kBTV

λ3dB

[
z + b2z

2 + b3z
3 + . . .

]
(9.22)

where bn are the virial coefficients, V is the volume and λdB is the thermal de
Broglie wavelength [170]. The factor of 2 accounts for the two spin components.
The local interactions are determined by the ratio of the de Broglie wavelength
λdB and the scattering length as. The virial coefficients are therefore dimen-
sionless functions of λdB

as
[170, 176] and can all be expressed as the sum of two

terms
bn = b(0)n + bintn . (9.23)
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While the first term b
(0)
n = (−1)n+1

n5/2 accounts for the presence of n non-interacting
fermions2 in the grand canonical ensemble, the latter bintn considers their n-body
interactions. These include scattering properties as well as possible n-body
bound states. This becomes clear, when rewriting the grand canonical potential

ΩG = −2kBTV

λ3dB

[
z + b2z

2 + b3z
3 + . . .

]
(9.24)

= −2kBTV

λ3dB

[
z + (b

(0)
2 + bint2 )z2 + (b

(0)
3 + bint3 )z3 + . . .

]
(9.25)

= −2kBTV

λ3dB

[
z + b

(0)
2 z2 + b

(0)
3 z3 + · · ·+ bint2 z2 + bint3 z3 + . . .

]
(9.26)

= −2kBTV

λ3dB

[
1

15/2
z − 1

25/2
z2 +

1

35/2
z3 + · · ·+ bint2 z2 + bint3 z3 + . . .

]
(9.27)

= −2kBTV

λ3dB

[
− Li5/2(−z) + bint2 z2 + bint3 z3 + . . .

]
. (9.28)

We obtain as one term the polylogarithm function of order 5/2 and argument−z,
originating from the infinite sum over all terms b(0)n zn. As detailed in Chapter 2,
the polylogarithm arises from quantum statistics. This means even when there
are no particle interactions involved (e.g. in a system with zero scattering length
and zero bound states), the quantum virial expansion inherently accounts for
quantum statistics - in this case, the Fermi-Dirac statistics.

The only virial coefficient which is (currently) known analytically in the entire
phase space of the BCS-BEC crossover is the second order coefficient

b2 = b
(0)
2 + bint2

=
−1

25/2
+
√
2Θ(as)e

λ2
dB/2πa2s −

√
2

2
sgn(as)

(
1− erf

[√
λ2dB/2πa

2
s

])
eλ

2
dB/2πa2s .

(9.29)

where λ2dB/(2πa2s) = Eb/(kBT ). To obtain this result, one has to solve the two-
body problem of two interacting Fermions with opposite spin. A detailed calcu-
lation can be found in [170, 175, 213] and in Appendix A.4. For a diagrammatic
calculation of the third virial coefficient b3, see Ref. [176].
With the grand canonical potential expressed within the quantum virial expan-
sion, other key properties of the Fermi gas can be derived using fundamental
thermodynamic relations [170]. As two important examples, the density distri-
bution and Tan’s contact are derived in the following sections.

2For a derivation, see Appendix A.4. For bosons one finds b(0)n = 1
n5/2 , as expressed in

Equation (A.39).
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9.3.1 Density distribution from the quantum virial expansion
The density is related to the grand canonical potential via [166, 170, 214]

n = − 1

V

∂ΩG

∂µ
. (9.30)

For a trapped, spin-balanced Fermi gas within the local density approximation,
one obtains the total density distribution

n(r) =
2

λ3dB

[
e(µ−V (r))/kBT ) + 2b2e

2(µ−V (r))/kBT ) + ...
]
. (9.31)

The first two terms represent the sum of two thermal density distributions3.
The first term can be associated with the free fermionic atoms with chemical
potential µ and trapping potential V (r), while the second term describes the
dimers with chemical potential 2µ and trapping potential 2V (r). At first glance,
it seems that the chemical potential for the dimers misses the term for the binding
energy ℏ2/ma2s. This term is, however, included in the b2 coefficient as shown in
Equation (9.29).
For a cigar shaped atom cloud with trap frequencies ωy = ωz = ωr, as usually
present in our experiments, the result for the column density n(x) along the
axial direction is obtained by integration

n(x) =

∫
dy

∫
dz n(r) =

4πkBT

mω2
rλ

3
dB

[
e(µ−mω2

xx
2/2)/kBT + b2e

(2µ−mω2
xx

2)/kBT + ...
]
.

(9.32)
The density distribution is especially useful for thermometry. By fitting the
calculated density distributions to the measured distributions, we can determine
the temperature of our atomic clouds quite accurately. This is demonstrated in
Appendix A.4.

9.3.2 Tan’s contact from the virial expansion
The quantum virial expansion can also be used to obtain Tan’s contact I [70]. In
our work, we used this approach to calculate the contact in the entire BCS-BEC
crossover of a harmonically trapped Fermi gas [13, 14]. The conceptual idea is
briefly summarized and further detailed here. For more details, see [14, 70].
We start from Tan‘s adiabatic sweep theorem

(
∂E

∂(1/as)

)

S,N,V

= − ℏ2I
4πm

(9.33)

relating the total contact I to the change of the internal energyE with scattering
length as at fixed entropyS, atom numberN and volumeV , see also Section 2.6.1.

3For simplicity, I do not split the virial coefficients into two terms in this calculation.
If one does so and considers, as above, the infinite sum over b(0)n , one obtains the result
n(r) ∝ −Li3/2(−z) + 2bint2 z2 + . . . , see Appendix A.4. This also accounts for the Fermi-Dirac
statistics, in agreement with the result for the density distribution presented in Section 2.1.1.
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The energy E can also be written in its differential form [170, 214] according to
the first law of thermodynamics4

dE = TdS + µdN − pdV − ℏ2I
4πm

d(1/as) (9.34)

where p is the pressure. Here, one can see that the total contact I and the
scattering length as can be understood as a pair of conjugate variables with
respect to the energy E, where I represents an extensive and as an intensive
quantity. To make use of the virial expansion above, the energy E has to be
expressed in terms of the grand canonical potential ΩG. These quantities are
related via [214]

ΩG = E − TS − µN. (9.35)

Combining Equations (9.34) an (9.35), one obtains

dΩG = dE − TdS − SdT − µdN −Ndµ (9.36)

= − ℏ2I
4πm

d(1/as)− pdV − SdT −Ndµ (9.37)

and with this Tan’s adiabatic sweep theorem for the grand canonical ensemble
(

∂ΩG

∂(1/as)

)

T,µ,V

= − ℏ2I
4πm

. (9.38)

Within the quantum virial expansion of the grand canonical potential, as given
by Equation (9.22), the contact I is

I = 16π2 V

λ4dB

[
c2z

2 + c3z
3 + . . .

]
(9.39)

for a given chemical potential µ, temperature T and scattering length as, where
cn = ∂bn/∂(λdB/as). Results of this calculation are shown in [13, 14, 170].

9.4 The Equations of State
In the years 2010-2012, the groups of M. Zwierlein and C. Salomon published
measurements on the equations of state (EoS) of a strongly-interacting Fermi gas
[88, 166, 203]. Their results are valid for Fermi gas on the Feshbach resonance
at various temperatures [88, 203] or at zero temperature for various interaction
strengths [166].
Within all these works, the gas pressure P (µ, T ) of the Fermi gas was derived
and related to the pressure of a non-interacting Fermi gas using multiplicative
transfer functions. These are functions of µ and T for a gas on the Feshbach
resonance [88, 203] or functions µ and as for the zero temperature Fermi gas
[166].

4Note, that in thermodynamics the letterU is typically used for the systems internal energy E.
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As a brief summary, this was achieved by precisely measuring the density dis-
tributions n(r) of a unitary or T ≈ 0 Fermi gas for a known trapping potential
V (r). Using the local density approximation, n(V ) was then obtained. From
this, the pressure P (µ, T ) (at (kFas)−1 = 0) or P (µ, as) (at T = 0) was derived
using fundamental thermodynamic relations (see [88, 166, 203] for more details).
The conceptual idea follows a proposal by [215]. Although the measurements
were carried out with harmonically trapped Fermi gases, the corresponding
equations of state were deduced for homogeneous Fermi gases.
Since these works form an important basis for the description of strongly inter-
acting Fermi gases and I have used their results frequently in the course of this
thesis, I will briefly present the results below and explain how useful quantities
can be derived from them.

9.4.1 The Equation of State of a Unitary Fermi gas
On the Feshbach resonance, the scattering length as diverges and drops out of the
description of the Fermi gas. The properties of the gas are therefore determined
by the chemical potential µ and the temperature T , only. The transfer function to
translate properties of a non-interacting to the unitary Fermi gas must therefore
be a function these two parameters.
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Figure 9.7: Measured equations of state for the unitary Fermi gas, taken and
adapted from [88]. a) Shows the density and b) the pressure of a uni-
tary Fermi gas, normalized by the corresponding density and pressure
of a non-interacting Fermi gas as function of the ratio µ/kBT .

In Reference [88], such functions were experimentally determined for the density
n(µ, T ) and the pressure P (µ, T ) of the unitary Fermi gas. The derived functions
relate these quantities to the ideal Fermi gas density (see Section 2.1.1)

n0(µ, T ) = − 1

λ3dB
Li3/2

(
−eµ/kBT

)
(9.40)
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and the ideal Fermi gas pressure

P0(µ, T ) = −kBT
λ3dB

Li5/2
(
−eµ/kBT

)
. (9.41)

The results are shown in Figure 9.7. Here, the transfer functions are the ratios
n(µ, T )/n0(µ, T ) and P (µ, T )/P0(µ, T ) between the unitary and the ideal Fermi
gas density and pressure. In the high temperature limit where µ/kBT → −∞
[21, 22], both transfer functions approach the value of 1. This behaviour is
expected because, at high temperatures, the Fermi gas becomes dilute and the
effects of strong interactions are negligible. Thus, with the thermal energy ex-
ceeding the energy of the many-body interactions, the unitary Fermi gas behaves
like an ideal Fermi gas. For the zero temperature limit where µ/kBT → ∞, the
ratio for the density and the pressure approaches ξ−3/2 ≈ 4.5 [88, 203]. This is
in agreement5 with the chemical potential of the unitary Fermi gas approaching
µ→ ξEF for T → 0.
With the density or the pressure EoS, other properties of the unitary Fermi gas
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Figure 9.8: Measured and calculated line density distributions of a unitary Fermi
gas for given atom numbers and trap frequencies. The red, green
and blue solid show calculations based on the EoS measurements for
T/TF = 0.25, 0.18 and 0.10. The black solid line shows a measured
density distribution, to which we assign a temperature of T = 0.18TF .

can be calculated using fundamental thermodynamic relations [214]. As a first
example, note that already n and P are related via n =

(
∂P
∂µ

)
T

[88]. Deriving a

second time, yields the compressibility k = 1
n2

(
∂n
∂µ

)
T

[88]. Also, the local Fermi
momentum khomF = (6π2n)1/3 and the local Fermi energy Ehom

F = ℏ2(khomF )2/2m

5The zero-temperature density of an ideal Fermi gas is given by n0 =
k3
F

6π2 =
1

6π2

(
2m
ℏ
)3/2

E
3/2
F = 1

6π2

(
2m
ℏ
)3/2

µ3/2 at T = 0. As µ = ξEF for the unitary Fermi gas and
µ = EF for the ideal Fermi gas, the ratio of the densities at T = 0 is n(µ, 0)/n0(µ, 0) = ξ−3/2 [88].
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are directly determined from the density.
The density distribution is especially useful for thermometry. By calculating
n(r) for different temperatures and fitting the calculations to measured den-
sity distributions, we can estimate the temperature of our atom cloud in the
experiment. This is demonstrated as an example in Figure 9.8.

As a remark, note that the EoS results presented in [166] indicate a Bertsch
parameter of ξ = 0.42(1). This value is almost 15% larger than more recent
results, which find an agreement on ξ = 0.367 [92, 93]. In Reference [88] a
value of 0.376(4) was reported, which is closer to the recent predictions. For
this reason, we consider the latter EoS measurements to be more reliable for the
unitary Fermi gas and therefore typically use these results.

9.4.2 The Equation of State of a low temperature Fermi gas
At zero temperature, for varying interparticle interactions, the transfer functions
are functions of µ and as. These have been determined in [166] for spin-balanced
and imbalanced two-component Fermi gases. Figure 9.9 shows the function
hS(δ̃) for the spin-balanced Fermi gas, which relates the gas pressure at zero
temperature

P (µ, as) = P0(µ)hs(δ̃) (9.42)
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Figure 9.9: Measured equation of state for a spin-balanced zero temperature
Fermi gas, taken and adapted from [166]. The figure shows the func-
tion hS(δ̃), as inferred from the measurements (black dots), as well
as two Padé-approximations (solid blue and red lines) for the BCS
(δ̃ < 0) and BEC regime (δ̃ > 0). This function relates the proper-
ties of a strongly-interacting, zero temperature Fermi gas to those of
an ideal Fermi gas. Its argument δ̃ = ℏ2√

2mµas
can be regarded as a

dimensionless interacting parameter. For more details, see text and
the Supplementary Material of [166] where also the parameters of the
Padé-approximations are listed.
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to the pressure of an ideal Fermi gas at T = 0, given by

P0 =
∂n0

∂µ
=

2

15π2

(
2m

ℏ

)3/2

µ5/2 (9.43)

where δ̃ = ℏ2√
2mµas

can be seen as a normalized interaction parameter, expressed
in terms of µ and as. For an ideal Fermi gas at zero temperature, µ = EF , so
that ℏ2√

2mµas
= (kFas)

−1. Both, P (µ, as) and hs(δ̃) again provide other Fermi gas
properties, as outlined in the previous section.
As another important example, one can deduce the total energy E of the Fermi
gas as a function of the scattering length as, as detailed in the Supplemental
material of Reference [166]. Using Tan’s adiabatic sweep theorem

dE

d(−1/as)
=

ℏ2CV
4πm

(9.44)

introduced in Section 2.6.1, this gives access to Tan’s contactC for a homogeneous
Fermi gas. From this, the total contact I for the harmonically trapped Fermi
gas can be calculated by integration over the trap, as outlined in the Appendix
of Reference [143]. The complete procedure is demonstrated in our work [14],
which can also be found in Chapter 7.
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Chapter 10

Conclusion and outlook

In my thesis, I have extensively investigated strongly interacting Fermi gases
using an apparatus designed to generate ultracold, quantum degenerate clouds
of 6Li at high magnetic fields in the vicinity of the Feshbach resonance at 832.2
Gauss.
The main focus of this thesis is the experimental investigation of pair correlations
in strongly interacting Fermi gases. Using a recently proposed photoexcitation
scheme, I quite precisely measured short-range two-body correlations in a two-
component Fermi gas for a wide range of interactions and temperatures. The
central result was a comprehensive map of Tan’s contact parameter in the entire
phase diagram of the BCS-BEC crossover. This parameter not only quantifies
the short-range two-body correlations in strongly interacting Fermi gases, but
also appears in various fundamental relations describing such systems.
The experimental studies are complemented by a thorough theoretical inves-
tigation of the measured correlations based on various approaches. Together
with our measurements, we were able to identify the validity ranges of the dif-
ferent established models to describe a Fermi gas in the BCS-BEC crossover. In
addition, I have detailed our experimental methods and calibration techniques.
Within this thesis, these methods have been both developed and significantly
improved, enabling precise measurements with our experimental apparatus.
Moreover, I have detailed the technical implementations and experimental steps
necessary for the preparation, manipulation, and detection of quantum degen-
erate, strongly interacting fermionic 6Li gases.
I have described the improvement and integration of our high-power solid-state
laser system into the experimental setup, providing the optical power needed for
laser cooling. Along with a newly designed lithium oven, these enhancements
have significantly improved the durability and robustness of our apparatus.
Furthermore, I have presented the test of our recently proposed holographic
imaging scheme for atoms in optical lattices. In the test setup, atoms in an
optical lattice are imitated by submicron holes in an opaque mask. Our re-
sults indicate that with a few hundred photons scattered per hole, high-fidelity
single-site detection might be achievable.
And finally, I have detailed and compared four different approaches for theoret-
ically modeling strongly interacting Fermi gases. These models have been tested
against experimental data, used to extract key properties and to understand the
underlying physics governing these complex quantum systems.
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Outlook for future experiments
For future experiments, implementing our newly developed optical trapping
potential for creating homogeneous Fermi gases can complement our previous
work. This includes measurements of the pair fraction [15], first and second
sound measurements [82], and measurements of two-body correlations using
photoexcitation [13, 14]. All these aspects can then also be investigated in ho-
mogeneous systems, which are easier accessible from a theoretical perspective
and therefore better suited for testing theoretical predictions.
By measuring the pair fraction and the underlying two-body correlations, we
expect to observe a clear signature of superfluidity in the signals as the tempera-
ture of the atomic gas is lowered below the critical temperature for superfluidity
[171]. This should enable us to determine this temperature and the underlying
evolution of pair correlations. To this end, the critical temperature has not been
experimentally determined precisely in the entire range of interactions in the
BCS-BEC crossover.
This progression can also provide a pathway to experimentally observe the
elusive Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase for the first time in a
three-dimensional Fermi gas. The FFLO phase is characterized by Cooper pairs
with nonzero total momentum and a spatially non-uniform order parameter
[133]. So far, the phase has only been observed in one-dimensional gases [216].
Observing the phase of a harmonically confined Fermi gas is particularly chal-
lenging. The reason for this is that the gas properties change locally due to
the inhomogeneous density distribution. As a consequence, only small regions
of the gas cloud can meet the requirements for temperature, spin polarization
and interaction necessary for the FFLO phase [217, 218]. Using a homogeneous
Fermi gas can therefore strongly enhance the signal. As the Fermi gas transitions
into the FFLO phase, a change in the pair correlations might become evident in
the photoexcitation rate.
In our previous work, we developed knowledge about excitation protocols for
first and second sound excitations [82]. In the reported studies, second sound
was excited in the center of a cigar shaped, harmonically trapped atom cloud.
When exciting first and second sound in the center of the homogeneous atom
cloud, density waves should become visible as concentric rings traveling to the
outer region of the gas. Measuring the diameter of the rings as a function of the
sound wave propagation time reveals the speeds of sound. Since these are di-
rectly linked to the normal fluid and superfluid densities [82], these experiments
should enable us to determine the superfluid fraction in the BCS-BEC crossover.
Having rings traveling at constant speed in the homogeneous system, instead
of small localized wave packets in the previously used cigar shaped atom cloud
configuration, could thereby enhance the precision for determining the speeds
of sound. However, note that the strength of the rings should decrease as the
diameter of the ring increases.
Additionally, after having successfully tested our proposed holographic imaging
scheme [50] on idealized hole masks [17], our experimental and theoretical in-
sights enable us to adapt this technique to real atomic systems in optical lattices
or optical tweezer arrays.
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Appendix A

Appendix

A.1 Technical drawing of the lithium oven
Figure A.1 shows a technical drawing of our lithium oven, which is described in
Section 3.2.
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Figure A.1: Technical drawing of our Lithium oven, described in Section 3.2. All
units are in millimeters. The oven is made of solid steel (AISI 316L).

A.2 Level scheme with relevant transitions
Figure A.2 shows a level scheme of 6Li with all relevant optical laser transitions
for cooling in the zero field and imaging in the high field as presented in Section
3.4. In addition, the radio frequency and microwave transitions are shown, that
can be driven with the implemented antennas (see Section 3.7). The presented
term scheme combines the term scheme shown in Figure 2.5 and the Zeeman
splitting of the S1/2 ground state shown in Figure 2.6. Additionally, the Zeeman
splitting for the P3/2 excited state is shown.
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Master

Repumper

Cooler Imaging |1>
Imaging |2>

P3/2, F = 5/2, 3/2, 1/2

S1/2, F = 3/2

S1/2, F = 1/2

Crossover

RF  |1>-|2>
RF  |2>-|3>

MW  |2>-|5>

Figure A.2: Level scheme of 6Li with all relevant laser transitions used in the
experiment for atom preparation and imaging. These include the
master laser (pink), which is spectroscopically stabilized to the tran-
sition from the S1/2, F1/2 − S1/2, F3/2 crossover to the P3/2 state, the
cooler and repumper lasers (red) and the imaging laser (orange) for
high field absorption imaging. The cooler/repumper and imaging
lasers are stabilized to the master laser by means of a frequency offset
locking scheme, as presented in Section 3.4. In addition, the radio
frequency and microwave (MW) transitions are shown, that can be
driven with the implemented antennas. For illustrative reasons, we
only show the MW transition from |2⟩ to |5⟩. However, also tran-
sitions between |1⟩ and |6⟩, as well as |3⟩ and |4⟩ are possible with
the MW antenna. The frequency of 446.799649THz for the S1/2−P3/2

splitting is taken from [76].
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A.3 Fundamental 1342nm laser cleaning and align-
ment guide

In this appendix, the procedure to clean and realign the 1342nm solid state laser,
presented in Chapter 5, is explained. Due to the accumulation of dust on the
optical elements in the fundamental cavity, this should be done approximately
once a year wearing protective laser goggles for both the pump laser wavelength
at 888nm and the fundamental laser wavelength at 1342nm.

• First, the laser has to be switched off by slowly turning the current of the
pump diode laser to zero. At the same time, the Peltier element based
temperature stabilization of the etalon and the laser crystal have to be
switched off and the water temperature for the crystal chiller should be
changed to the ambient temperature which is about 20◦C. Note, that one
should keep the crystal chiller always running to prevent clogging of the
water pipes due to corrosion.

• Once the laser is switched off, both etalons have to be removed for cleaning.
To later speed up the realignment process, their angles with respect to the
optical axis should be noted roughly. Removing the etalons also gives
access to the terbium gallium garnet (TGG) crystal which is mounted on a
cylindrical metal rod (see [65]), that can then be removed from the Faraday
rotator magnet housing.

• Next, all optical elements in the cavity have to be cleaned carefully. For
cleaning, I made good experience with a mixture of methanol and ace-
tone. This combines the good dust-dissolving properties of acetone with
the good non-staining evaporation properties of methanol. The cleaning
includes both surfaces of the laser crystal and the etalons, the wave plate
and the TGG crystal. Due to the mounting of the TGG crystal and the
wave plate, only one surface can be easily cleaned, which is sufficient to
restore proper output power and stable operation. In addition, all four
cavity mirrors have to be cleaned. Care has to be taken when cleaning
the piezo-actuated mirror, as its surface is not easily accessible. For the
incoupling and outcoupling mirrors, both sides should be cleaned.

• After cleaning, the TGG crystal can be reinserted and the laser can be
started for a quick performance test without the two etalons. For this, the
current of the diode pump laser has to be slowly increased to approximately
52A. Simultaneously, the crystal chiller temperature should be set to 8 −
9◦C. The Peltier regulator for the crystal can stay switched off until the
very last step of the alignment process where the laser is tuned to its target
frequency. Lasing at 1342nm typically starts at a pump current of 50A.

• The laser now needs approximately 10-20 minutes to thermalize. After
that, it should now reach an output power of 5.1− 5.2W at 52A of pump
laser current. The laser frequency should then be around 223.355THz,
corresponding to the highest gain of the laser crystal (see Figure 5.3). This
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can be measured with the infrared wavelength meter (see Figure 5.7). If
the output power is not reached, optimize the power by rotating the TGG
crystal mount around its symmetry axis. Additionally, beam walking can
be done with the outcoupling mirror and the curved mirror which is not
mounted to the piezo actuator (top right and bottom left mirrors in Figure
5.2).

• If the output power of 5.1 − 5.2W is reached, switch off the laser again
(see steps above), carefully re-insert the thin etalon (E1) and start the laser
again. It will typically now operate at a different wavelength and output
power.

• While the laser is running, tilt the thin etalon around the vertical axis
to optimize for the highest output power. When tilting the etalon, the
output power changes almost periodically. Typically, a global maximum
at 4.8− 4.9W of output power can be found, corresponding to a frequency
of 223.355THz. If the output power is optimized, switch off the laser again
(see steps above). Note, that the etalon’s angle is now optimized for the
highest output power, which does not correspond to the desired output
frequency. Frequency tuning is done in the very last step.

• Reinsert the thick etalon (E2) at about the same angle as before the optical
cleaning and stabilize its temperature to ≈ 40◦C. This will later provide a
large bandwidth for temperature tuning. Then start the laser again, and
carefully tilt the thick etalon horizontally to optimize for the highest output
power. This should be found at 4.2−4.3W and a frequency of 223.355THz.

When this power is reached, the cleaning and alignment was done properly and
the laser can be tuned to the target frequency of 223.400THz.

• As a first test, change the temperature of etalon E2 by ±8◦C. The laser
frequency should now change by about ∓12GHz. This corresponds to an
operation range of 223.355 ± 12GHz. With this, one can verify that the
transmission function of the thin etalon is centered around 223.355THz.

• Now, tilt E1 around the vertical axis towards an increasing angle between
its surface normal and the cavity beam propagation direction. If E1 was
inserted as before (see Figure 5.3), this corresponds to a clockwise rotation
of the horizontal adjuster screw. This changes the effective optical path
length of the etalon and consequently shifts its transmission function. A
180◦ clockwise rotation of the screw shifts the transmission function up by
about +20GHz. To confirm, perform a 180◦ rotation clockwise and probe
again the lasers frequency windows by changing the temperature of E2.
The laser should now operate at approximately 223.375± 12GHz.

• Finally, rotate the adjuster screw for E1 clockwise by another 180−225◦ until
the frequency range of the laser is centered around the desired frequency
of 223.400THz. The laser should now have an output power of 3.5−3.8W.
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If all these steps are done correctly, the laser now operates stable at the desired
frequency. The Peltier regulator for the crystal can then be activated to further
stabilize the crystal temperature.
After a few weeks, the laser operation may become slightly unstable again due
to dust accumulating on the surface of the thin etalon which causes heating and
a corresponding downshift of its transmission function. In this case, turning the
etalon adjuster screw clockwise will shift the transmission function towards a
higher central frequency (see above) and restore a stable operation.

A.4 Details on the quantum virial expansion and
thermometry

For calculating important properties of strongly-interacting Fermi gases, the
quantum virial expansion is usually done for the grand canonical potential
[170]

ΩG = −kBT ln(Z) = −kBT ln

(∑

N

ZNz
N

)
= −kBT ln

(
1 + Z1z + Z2z

2 + Z3z
3 + . . .

)

(A.1)
where Z is the grand canonical partition function and

ZN =
1

h3NN !

∫
dr3N

∫
dp3Ne−HN (r,p)/kBT (A.2)

are the canonical partition functions, whereHN(r, p) is theN -body Hamiltonian
[213, 214].
Expanding the logarithm in Equation (A.1) for z ≪ 1 leads to

ΩG ≈ −kBT
[
Z1z +

(
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Z2
1

2

)
z2 +

(Z3
1

3
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= −kBTZ1

[
z + b2z

2 + b3z
3 + . . .

]
. (A.3)

With Z1 =
2S+1
h3

∫
dr3
∫
dp3e−p2/2mkBT = 2V

λ3
dB

this becomes

ΩG = −2V kBT

λ3dB

[
z + b2z

2 + b3z
3 + ...

]
(A.4)

where V is the volume of the system and the factor of 2 accounts the two different
spin components.
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A.4.1 Analytical calculation of b2
The following considerations can be in detail found in [170, 175, 213]. For the
second order virial coefficient

b2 =
Z2

Z1

− Z1

2
=

1

Z1

(
Z2 −

Z2
1

2

)
(A.5)

one has to calculate Z2. While calculating the interactionless single particle
partition function Z1 is rather simple, calculating Z2 also involves the 2-body
scattering problem as well as the presence of bound states. The calculations
simplify if we, for now, just calculate the difference between the interacting and
non-interacting second order virial coefficient [175]

bint2 = b2 − b
(0)
2 =

1

Z1

(
Z2 −

Z2
1

2

)
− 1

Z(0)
1

(
Z(0)

2 −
(
Z(0)

1

)2

2

)
=

1

Z1

(
Z2 −Z(0)

2

)

=
λ3dB
2V

(
Z2 −Z(0)

2

)
=
λ3dB
2V

Tr
(
e−βĤ2 − e−βĤ

(0)
2

)
(A.6)

where the superscript (0) denotes the non-interacting quantities and Z(0)
1 ≡ Z1.

Later b(0)2 can be simply added to obtain b2. The operator Ĥ2 over which the trace
Tr[. . . ] is performed is the Hamilton operator of the two particle Schrödinger
equation

Ĥ2Ψα(r1, r2) = EαΨα(r1, r2) (A.7)

and given by

Ĥ2 = − ℏ2

2m

(
▽2

1 +▽2
2

)
+ V (r12) (A.8)

with the central interaction potential V (r12) and the two-particle wave function
Ψα(r1, r2), where ri is the position of the particles and r12 = |r2−r1| their distance.

Solving the Schrödinger equation

To solve this, a transformation to the center-of-mass coordinates R = 1
2
(r1 + r2)

and relative coordinates r = r2 − r1 of the two particles is performed [175, 213].
With that, the wave function Ψα(r1, r2) can be separated into two parts

Ψα(r1, r2) = Ψα(R, r) = Ψj(R)Ψn(r) =

(
1√
V
eiPjR/ℏ

)
Ψn(r) (A.9)

with the assumption of a simple plane wave for the center of mass wavefunction.
The energy eigenvalues Eα are then given by

Eα =
P 2
j

2(2m)
+ ϵn (A.10)

and consist of the kinetic energy of center of mass and the relative kinetic energies
ϵn of the two particles, where Pj denotes the center of mass momentum. With
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that Eq. (A.6) becomes

b2 − b
(0)
2 =

λ3dB
2V

∑

α

(
e−βEα − e−βE

(0)
α

)

=
λ3dB
2V

∑

j

e−βPj/4m
∑

n

(
e−βϵn − e−βϵ

(0)
n

)
(A.11)

since the center of mass energies Pj/4m are the same for interacting and non-
interacting particles. The first sum over j is simply

∑

j

e−βP 2
j /4m =

V

h3

∫ ∞

0

4πe−βP 2/4mP 2dP =
√
8
V

λ3dB
(A.12)

which is equal to the single particle partition function of an atom with mass 2m.
This leads to

b2 − b
(0)
2 =

λ3dB
2V

√
8
V

λ3dB

∑

n

(
e−βϵn − e−βϵ

(0)
n

)
=

√
2
∑

n

(
e−βϵn − e−βϵ

(0)
n

)
. (A.13)

For the further calculation one has to consider the energy spectra of ϵn and ϵ(0)n .

Calculating the density of states g(k) of ϵn and ϵ(0)n

For the non-interacting system, the energies are given by a simple continuum
ϵ
(0)
n = ℏ2k2n

2(1/2)m
with a density states g(0)(k). In the interacting system, the density

of states is g(k). Additionally, bound states with energies ϵB may exist1. By
rewriting the sum over n as an integral, Equation (A.13) becomes

b2 − b
(0)
2 =

√
2Θ(as)

∑

B

eβϵB +
√
2

∫ ∞

0

dk e−βℏ2k2/m [g(k)− g(0)(k)
]
. (A.14)

To find the densities of states g(k) and g(0)(k) one can examine the corresponding
wavefunction of the relative motion. Since a central interaction potential V (r)
was assumed, the wave function can be written as a product of a radial function
χkl(r) and a spherical harmonic Ylm(θ, ψ)

Ψklm(r) = Aklm
χkl(r)

r
Ylm(θ, ψ) (A.15)

with Ψklm(−r) = Ψklm(r) for bosons and Ψklm(−r) = −Ψklm(r) for fermions.
The radial function χkl(r) has to fulfill the boundary condition

χkl(R0) = 0 (A.16)
1In our systems, the only bound state involved in the scattering process and in the description

of the Fermi gas is the Feshbach bound state with eB = ℏ2/(ma2s) for as > 0. Therefore∑
B e

βϵB = eℏ
2/(ma2

skBT ) = eλ
2
dB/(2πa2

s)
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at a very large distanceR0 between the two atoms. The asymptotic form of χkl(r)
is then

χkl(r) ∝ sin

(
kr − lπ

2
+ δl(k)

)
(A.17)

with the scattering phase shift δl(k). Combining the last two equations, the
condition

kR0 −
lπ

2
+ δl(k) = nπ, n = 0, 1, 2, . . . (A.18)

arises which leads to an expression for the wave number difference ∆k for two
consecutive states n and n+ 1 (see also [213])

(
R0 +

dδl(k)

dk

)
∆k = π. (A.19)

With that the density of states gl(k) for the l’th partial wave is then given by

gl(k) =
2l + 1

∆k
=

2l + 1

π

(
R0 +

dδl(k)

dk

)
(A.20)

The factor 2l + 1 arises from the fact that each k that belongs to an l’th partial
wave, the magnetic quantum numbers m can take the values −l, (−l + 1), .., l.
The total density of states for all the partial waves is thus given by

g(k) =
∑

l

gl(k) =
∑

l

2l + 1

π

(
R0 +

dδl(k)

dk

)
. (A.21)

For the non-interacting case dδl(k)
dk

= 0 and therefore

g(k)− g(0)(k) =
∑

l

2l + 1

π

dδl(k)

dk
. (A.22)

This leads to

b2 − b
(0)
2 =

√
2Θ(as)

∑

B

eβϵB +
√
2
∑

l

2l + 1

π

∫ ∞

0

dk e−βℏ2k2/mdδl(k)

dk
. (A.23)

To get the full expression, the scattering phase shift δl(k) has to be calculated.
At ultracold temperatures, fermions in different spin states only scatter in s-wave
collisions (l = 0), see Section 2.2. For the s-wave Feshbach resonance, the phase
shift is given by the expression

k cot[δ0(k)] = − 1

as
+

1

2
r0k

2 + . . . (A.24)
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where r0 is the effective range of the scattering potential2. This results in

dδ0(k)

dk
= −

(
1

as
+
r0k

2

2

)
×
[(

1

as
− r0k

2

2

)2

+ k2

]−1

. (A.25)

With this result and the substitution y = k|as| the integral in Eq. (A.23) becomes
∫ ∞

0

dk
dη0(k)

dk
e−βℏ2k2/m = −sgn(as)

∫ ∞

0

dy
1 + y2r0/(2as)

[1− y2r0/(2as)]2 + y2
exp

(
− λ2dB
2πa2s

y2
)
.

(A.26)
For zero-range interaction (r0 → 0), the integral has the simple solution [170]
∫ ∞

0

dk
dη0(k)

dk
e−βℏ2k2/m = −sgn(a)

π

2

[
1− erf

(
λdB√
2π|as|

)]
exp

(
λ2dB
2πa2s

)
(A.27)

which leads to the expression

b2 = b
(0)
2 +

√
2Θ(as)

∑

B

eβϵB −
√
2

2
sgn(as)

[
1− erf

(
λdB√
2π|as|

)]
exp

(
λ2dB
2πa2s

)

(A.28)

for the second order virial coefficient b2. The zero-range approximation also
holds for a contact interaction where r0 ≪ as [170].

Calculating b(0)2

The last thing to consider is the 2nd order virial coefficient b(0)2 for the non-
interacting system. To calculate all the interactionless virial coefficients b(0)n one
can look again into the grand canonical partition function which can be written
as

Z(0)(µ, V, T ) =
∑

N

Z(0)
N (N, V, T )zN =

∑

N

∑
ni=N∑

{ni}

∏

i

(
e−β(ϵi−µ)

)ni

=
∑

n1

∑

n2

· · ·
∑

ni

∏

i

(
e−β(ϵi−µ)

)ni
=
∏

i

∑

ni

(
e−β(ϵi−µ)

)ni
. (A.29)

Where ni are the occupation numbers for the states i. For fermions, the sum
over the occupation numbers ni runs just from 0 to 1 due to the Pauli exclusion
principle [25], which simplifies the partition function to

Z(0)
F (µ, V, T ) =

∏

i

(
1 + e−β(ϵi−µ)

)
(A.30)

2As explained in Chapter 2, this range has a value of r0 = (mC6/ℏ2)1/4 ≈ 62.5 a0 for 6Li with
C6 = 1.333× 10−76 Jm6 [73].
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and leads to a grand canonical potential given by

Ω
(0)
F = −kBT ln(Z(0)

F ) = −kBT
∑

i

ln
(
1 + e−β(ϵi−µ)

)

= −kBT
∑

i

ln
(
1 + ze−βϵi

)
. (A.31)

With the energies that now just account for single particle motions without in-
teraction, the kinetic energy ϵi = ℏ2k2/2m, the relation

∑
i = 2V/(2π)3

∫∞
0

4πk2dk
(factor of 2 for the two spin states) and the substitution t = βϵi this is

Ω
(0)
F = −2V kBT

λ3dB

2√
π

∫ ∞

0

dt
√
t ln
(
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= −2V kBT

λ3dB
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π
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2
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3
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32
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√
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z3 − . . .

]
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λ3dB

[
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√
1

32
z2 +

√
1

243
z3 − . . .

]

= −2V kBT

λ3dB

[
−Li5/2(−z)

]
. (A.32)

Comparing this to the previous result of the grand canonical potential from Eq.
(A.4) namely

ΩG = −2V kBT

λ3dB

[
z + b2z

2 + b3z
3 + ...

]
(A.33)

one can directly identify

b(0)n =
(−1)n+1

n5/2
. (A.34)

With that, the 2nd order virial coefficient is given by

b2 = b
(0)
2 + bint2

= − 1√
32

+
√
2Θ(as)

∑

B

eβϵB −
√
2

2
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[
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(
λdB√
2π|as|

)]
exp

(
λ2dB
2πa2s

)

=
√
2
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−1
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+ Θ(as)
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B

eβϵB − 1

2
sgn(as)

[
1− erf

(
λdB√
2π|as|

)]
exp

(
λ2dB
2πa2s

)]
.

(A.35)
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Non-interacting virial coefficients for bosons

For bosons, the sum over ni in Equation (A.29) runs to infinity. Using the
geometric series, we find

Z(0)
B (µ, V, T ) =

∏

i

1

1− e−β(ϵi−µ)
(A.36)

and therefore

Ω
(0)
B = −kBT ln(Z(0)

B ) = kBT
∑

i

ln
(
1− ze−βϵi

)
. (A.37)

Equation (A.32) for bosons then reads

Ω(0) =
2V kBT

λ3dB
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dt
√
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]
(A.38)

with
b(0)n =

1

n5/2
(A.39)

being the virial coefficients for non-interacting bosons.

A.4.2 Thermometry
The quantum virial expansion is useful for determining the temperature of a
strongly-interacting, harmonically trapped Fermi gas. This method involves
fitting theoretically calculated, temperature-dependent density distributions to
experimentally measured ones and identifying the temperature that minimizes
the deviation.
The total density distribution of a two-component, spin-balanced Fermi gas
within the quantum virial expansion is given by (see Section 9.3.1)

n(r) =
2

λ3dB

[
−Li3/2

(
−e(µ−V (r))/kBT )

)
+ 2bint2 e2(µ−V (r))/kBT ) + ...

]
. (A.40)
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In our experiments, we typically determine the (two-dimensional) column den-
sityn2D(x, y) =

∫
dz n(r)via absorption imaging. We calculate from this the one-

dimensional line density n(x) =
∫
dy n2D(x, y) =

∫ ∫
dzdy n(r), which addition-

ally reduces noise. For a cigar shaped cloud with trap frequency ωy = ωz = ωr

this yields

n(x) =

∫ ∫
dydz n(r)

=
4πkBT

mω2
rλ

3
dB

[
−Li5/2

(
−e(µ−mω2

xx
2/2)/kBT

)
+ bint2 e(2µ−mω2

xx
2)/kBT

]
. (A.41)

within the second order quantum virial expansion. For given trap frequencies
ωr, ωx and scattering length as, we can fit this function to the measured density
distribution to determine the (absolute) temperature T of the atom cloud as well
as the chemical potential µ. By further determining the total atom number N
from the absorption image (see Section 4.6), we can express the temperature in
units of TF = EF/kB = ℏ(3Nω2

rωx)
1/3/kB.
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Figure A.3: Thermometry of a unitary Fermi gas. a) Calculated (black solid line)
and fitted (colored solid lines) density distributions. The calculation
is based on the EoS from Ku et al. [88], while the fit employs the
quantum virial expansion according to Equation (A.41). The yellow
(red, purple, turquoise) colors indicate the excluded regions of the
line density distribution n(x) where the density exceeds w = 99%
(60%, 20%, 5%) of the peak density, where w is the wing factor. b)
Extracted temperature as a function of the wing factorw. Forw → 0%,
we recover the correct temperature of 0.20TF .

Since the quantum virial expansion is only valid for a small fugacity z ≪ 1, we
have to restrict the fit to the outer tails of the line density distribution, where the
local fugacity z(x) = exp [(µ−mω2

xx
2/2)/kBT ] is small. We typically observe a

tendency towards higher fit temperatures, when allowing the fit to include more
data points from the inner regions of the density distribution where the fugacity
is larger. However, the more we restrict the fit to the outer regions of smaller
density (the wings of the cloud), the more the fitted temperature convergences
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towards the true temperature.
We confirm this behaviour with calculations of the density distributions based
on the EoS (see Section 9.4.1 for a unitary Fermi gas and based on a mean-field
approach (see Sections 9.1 and 9.2). This is shown as an example in Figure
A.3 for a unitary Fermi gas with T = 0.2TF . Here, we introduce the quantity
w, referred to as the wing factor, which determines the regions of the density
included in the fit. Specifically, for a wing factor w, we only include regions,
where n(x) < wnpeak, where npeak is the central peak density. For w → 0%, the
extracted temperatures approach the correct temperature of 0.20TF .
In our experiments, the density distributions typically exhibit noise, which com-
plicates the fitting process in regions of low density. The correct temperature
can then be determined from an extrapolation of the fitted temperatures towards
w = 0%. Based on numerical calculations incorporating noise levels comparable
to those in our experiments, we estimate an accuracy of ≈ 0.04 T/TF at small
temperatures (T < 0.5TF ) and up to 0.08 T/TF at high temperatures (T ≳ 1TF ).
These values hold for thermometry on a density distribution determined from
a single absorption image of the atomic cloud. Averaging over 5 absorption im-
ages of identically prepared atom clouds increases the precision to ≈ 0.02 T/TF
at small temperatures (T < 0.5TF ) and up to 0.05 T/TF at high temperatures
(T ≳ 1TF ). The high stability of our system helps significantly in this process.
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We investigate pairing in a strongly interacting two-component Fermi gas with positive scattering length. In
this regime, pairing occurs at temperatures above the superfluid critical temperature; unbound fermions and pairs
coexist in thermal equilibrium. Measuring the total number of these fermion pairs in the gas we systematically
investigate the phases in the sectors of pseudogap and preformed pair. Our measurements quantitatively test
predictions from two theoretical models. Interestingly, we find that already a model based on classical atom-
molecule equilibrium describes our data quite well.

DOI: 10.1103/PhysRevA.99.053617

I. INTRODUCTION

A unique feature of fermionic superfluids is the pairing.
For a weakly interacting Bardeen-Cooper-Schrieffer (BCS)
superfluid pairing occurs directly at the critical temperature
for superfluidity Tc [1]. This pairing is accompanied with
the emergence of an excitation gap �sc which is identified
with the superfluid order parameter and �2

sc is proportional to
the density of condensed pairs [2]. For fermions with strong
coupling, an excitation gap already emerges at a temperature
above Tc. This is referred to as the pseudogap regime [3].
The existence of the pseudogap has been observed early on,
e.g., in underdoped high-Tc superconductors [4,5]. While its
nature has been intensely studied, it is still not fully under-
stood. Understanding the pseudogap is expected to be the
key for revealing the mechanism behind high-Tc supercon-
ductivity [6,7]. One interpretation of the pseudogap is based
on the presence of noncondensed pairs with nonvanishing
momentum [8].

Ultracold Fermi gases are an excellent system for inves-
tigating the gap and pseudogap physics from the BCS to
Bose-Einstein condensate (BEC) regimes [9]. Using radio-
frequency (RF) spectroscopy in various forms, e.g., [10–13],
the excitation gap has been studied in the way similar to angle-
resolved photoemission spectroscopy (ARPES) of solid-state
systems [14]. Evidence for pairing above Tc was found in the
RF experiments, as well as in other physical quantities, such
as viscosity [15], heat capacity [16], and Tan’s contact [17,18].

In this article, we investigate pairing of fermions for
various temperatures and interaction strengths on the BEC
side of the BEC-BCS crossover. For this, we measure the
total number of bound fermion pairs Np in our sample for
T > Tc. Such counting of fermion pairs is in general not

*Corresponding author: johannes.denschlag@uni-ulm.de

possible for solid-state systems and therefore complements
existing methods. We determine the fermion pair number by
converting all atom pairs to tightly bound diatomic molecules,
either by photoexcitation [19] or by a fast magnetic-field ramp
[20,21] and measuring the decrease in atom number of the
cloud. When we compare the measured and calculated pair
numbers we find quite good agreement with two models: an
ab initio t-matrix approach and a classical statistical model of
atom-molecule equilibrium [22]. We provide an explanation
why the classical model achieves good results, despite the
fact that strong interactions and quantum statistics play an
important role in our system.

In the following, we consider an ultracold, spin-balanced,
strongly interacting two-component Fermi gas in a harmonic
trap. Collisions lead to pairing of atoms with opposite spins,
|↑〉, |↓〉. For a given temperature and interaction strength
well-defined fractions of pairs and atoms are established at
thermal equilibrium, as long as collisional losses are negligi-
ble. Figure 1 shows the phase diagram of such a system in
the vicinity of a Feshbach resonance at (kFa)−1 = 0. Here,
a is the s-wave scattering length, kF = √

2mEF/h̄ denotes
the norm of the Fermi wave vector, m is the atomic mass,
and EF = kBTF is the Fermi energy in the trap center with
kB the Boltzmann constant. The dash-dotted and solid lines
are contours of constant molecular fractions Np/Nσ for two
different approaches. Here, Nσ = Np + Na is the number of
all atoms per spin state regardless of whether they are bound
in pairs (Np) or free (Na). The dotted lines are calculations
based on a self-consistent t-matrix approach [23], while the
solid lines correspond to a statistical mechanics approach
treating the particles as a canonical ensemble of noninter-
acting molecules and atoms in chemical equilibrium (see
[22] and Appendix A). Here, the molecules have a binding
energy of Eb = −h̄2/(ma2). Also shown is a calculation (cyan
dash-dotted line) by Perali et al. [24] of the BCS mean-
field critical temperature which provides an approximate es-
timate of the pair breaking temperature. It partially coincides

2469-9926/2019/99(5)/053617(5) 053617-1 ©2019 American Physical Society
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T    CT    C

FIG. 1. Theoretical phase diagram for a balanced
two-component harmonically trapped ultracold Fermi gas in
the vicinity of a Feshbach resonance (vertical line) where kF and TF

are determined in the trap center. Shown are calculated contours for
various pair fractions. Dotted lines are based on a self-consistent
t-matrix approach [23], while solid lines are based on a classical
model of noninteracting atoms and molecules (see text) [22]. Close
to the Feshbach resonance the solid lines are blurred because the
classical model is expected to lose its validity. The cyan dash-dotted
line marks a pair breaking temperature, as calculated by [24] with a
BCS mean-field model that was extended to the near-BEC regime.
The gray shaded area marks the superfluid phase below the critical
temperature Tc which was calculated within the self-consistent
t-matrix approach [25].

with the 50 % pair fraction line of the statistical mechanics
approach.

We carry out our experiments with a spin-balanced two-
component Fermi gas of 6Li atoms which is initially prepared
at a magnetic field of 780 G. The atoms have magnetic quan-
tum numbers mF = +1/2 (|↑〉) and mF = −1/2 (|↓〉) and
correlate to the F = 1/2 hyperfine level of the ground state
at 0 G. They are confined in a harmonic three-dimensional
cigar-shaped trapping potential which is generated in radial
direction mainly by a focused 1070-nm dipole trap laser beam
and along the axial direction mainly by a magnetic field
gradient. The temperature T is set via evaporative cooling
and is measured by fitting a distribution obtained from the
second-order quantum virial expansion to the outer wings
of the density profile [26]. The particle number Nσ per spin
state ranges from 3 × 104 for the lowest temperature of about
0.3 TF to 3 × 105 for the highest temperature of about 3 TF.
The population balance of the two spin states is assured by
means of a 100-ms-long resonant RF pulse that mixes the
two Zeeman states |↑〉 and |↓〉. For a spin-balanced system
the Fermi energy is given by EF = h̄(6Nσ ω2

r ωa)1/3, where
ωr and ωa denote the radial and axial trapping frequency,
respectively. In our experiment ωr ranges from about 2π ×
300 Hz to 2π × 1.6 kHz while ωa = 2π × 21 Hz is almost
constant as it is dominated by the magnetic confinement.
The interaction parameter (kFa)−1 can be tuned by changing
either the scattering length a via the broad magnetic Feshbach
resonance located at 832 G [27,28], or by adjusting the Fermi
energy EF.

II. MEASURING THE PAIR FRACTION

In order to determine the pair fraction Np/Nσ we measure
the particle numbers Np and Nσ separately. Nσ is obtained
by means of spin-selective absorption imaging of the |↑〉
component using a σ−-polarized 671-nm laser beam resonant
with the D2 transition of 6Li [29]. This transition is essentially
closed due to a decoupling of the nuclear spin and the total
electronic angular momentum in the Paschen-Back regime of
the hyperfine structure [30]. All |↑〉 atoms will be counted
regardless of whether they are free or bound in the weakly
bound pairs. Since the binding energy Eb of these pairs is
always less than h × 1 MHz in our experiments, the imaging
laser is resonant with both free atoms and bound pairs. In
order to determine the number of bound pairs Np, we transfer
all pairs to states that are invisible in our detection scheme
and measure again the remaining |↑〉 state atom number via
absorption imaging. We use two different bound-state transfer
methods which produce consistent results. They are briefly
described in the following.

A. Optical transfer (OT) method

This transfer method is based on resonant excitation of
fermion pairs to a more strongly bound molecular state
(A1�+

u , v′ = 68) with a laser (λ = 673 nm) which is detuned
by 2 nm from the atomic transition; see also [19]. Subse-
quently, the excited molecules quickly decay to undetected
atomic or molecular states; see Fig. 2(a). This optical exci-
tation of the fermion pairs occurs via an admixture of the
molecular bound state X 1�+

g , v = 38 to the fermion pair wave
function [19].

If, for now, we ignore other loss processes, the number of
fermion pairs decays exponentially as a function of the laser
pulse length �t such that the measured total number Nσ (�t )
of mF = +1/2 atoms as a function of time is given by

Nσ (�t ) = Nσ (0) − Np(1 − e−k1�t ), (1)

where 1/k1 is the time constant for the optical excitation.
Figure 2(b) shows this decay for five different initial temper-
atures T/TF at a magnetic field of 726 G. By fitting Eq. (1) to
the measured data (see fit curves) we are able to extract the
pair number Np. Besides the photoexcitation of pairs a loss
in Nσ could in principle also be induced by photoassociation
of two free atoms. However, we made sure that within our
field range its rate is negligible. The photoassociation rate
constants range between 1 × 10−9 and 3 × 10−9 cm5(W s)−1

for magnetic fields between 726 and 820 G. We work with
low particle densities of at most 1011 cm−3 and a maximum
laser intensity of about 1.9 W/cm2.

For the data shown in Fig. 2(b) the laser intensity is
0.22 W/cm2 and the peak density for the lowest temperature
of T/TF = 0.64 is 1.4 × 1011 cm−3 which corresponds to an
initial photoassociation time constant of about 33 ms. This is
much longer than the loss dynamics observed in Fig. 2(b).
Indeed, the fact that the curves in Fig. 2(b) approach constant
values for pulse times t � 0.3 ms already suggests that the
photoassociation of free atoms is negligible.

However, closer to resonance the time constants for pho-
toassociation and pair excitation become more comparable.
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FIG. 2. Measurement of the number of fermion pairs. (a) and
(b) Optical transfer method. A resonant laser pulse transfers pairs
to states which are invisible to our detection scheme [blue arrows
(1)]. The total number Nσ (�t ) of remaining fermion pairs and
single atoms is measured by absorption imaging [red arrows (2)]. (b)
Nσ (�t )/Nσ (0) as a function of the pulse width �t at a magnetic field
of 726 G for various temperatures T/TF = {0.64, 0.79, 1.2, 1.4, 1.7}.
The solid lines are fit curves using Eq. (1). (c) and (d) Magnetic
transfer method. Using absorption imaging, the particle number
Nσ = Na + Np is measured at the magnetic field (1) and the number
of unbound atoms Na is measured after a fast ramp to (2). (d) The
measured particle numbers at (1) (B = 726 G, green solid circles)
and at (2) (B = 550 G, red solid squares) for various temperatures
T/TF.

Therefore, we generally release the particles from the trap
0.3 ms before applying the laser pulse. The subsequent expan-
sion lowers the cloud density by about a factor of 4 and assures
additionally that photoassociation is negligible. Furthermore,
lowering the density also strongly suppresses regeneration
of depleted Fermi pairs during the laser pulse, since pair
regeneration mainly occurs via three-body recombination. We
have checked that during the expansion the fermion pairs do
not break up. For this, we carried out measurements at a
magnetic field of 780 G, working at the lowest temperatures
of about 0.3 TF, where only about 10%−15% of the atoms are
unbound and thus photoassociation does not play a significant
role. We measured the same pair numbers with and without
expansion.

In general the OT method works very well up to magnetic
fields of about B = 820 G, close to the Feshbach resonance.
There, we observe marked deviations from the exponential
decay in Eq. (1), a behavior that also had been reported
earlier by the Rice group [19]. An analysis of these signals
would require a better understanding of the nature of strongly
interacting pairs. For this reason, we decide to stay below
magnetic fields of 820 G for the present investigations where
the analysis is unequivocal.

FIG. 3. Measured pair fractions Np/Nσ (blue circles) at 726 G
for various temperatures T/TF. (a) Optical transfer (OT) method;
(b) magnetic transfer (MT) method (see Fig. 2). We note that due
to evaporative cooling (kFa)−1 also changes with T/TF (orange
diamonds). The green curves are calculations based on the classical
model.

B. Magnetic transfer (MT) method

Here, we increase the binding energy of the pairs to h ×
80.6 MHz by quickly ramping the magnetic field at 20 G/ms
down to 550 G; see Fig. 2(c). This works very efficiently
without breaking up the molecules as previously shown in
[20,21]. At 550 G the fermion pairs cannot be resonantly
excited anymore by the imaging laser and become invisible
to our detection scheme; see [31]. Np is determined as the
difference of the numbers for atoms and pairs (Nσ ) measured
before the ramp and unbound atoms (Na) obtained after the
ramp. Figure 2(d) shows these particle numbers for different
temperatures at a magnetic field of 726 G.

We did not perform measurements with the MT method
for magnetic fields higher than 750 G because of technical
limitations for the ramping speed. If the field ramp duration
(≈10 ms for the case of 750 G) becomes comparable to the
equilibration time for the atom-molecule mixture (a few mil-
liseconds at 750 G) the measurement does not yield the correct
molecule number anymore. This restriction of the magnetic
field ramp implies that we cannot use the MT method in the
strong interaction crossover regime, but only in the far BEC
regime. There, however, the MT method is quite useful to
check for consistency with the OT method. This consistency
is shown in Fig. 3 where we plot the pair fractions Np/Nσ

obtained at 726 G from both methods as a function of the
temperature (blue circles). Since the temperature was adjusted
by varying the evaporative cooling, different temperatures cor-
respond to different particle numbers Nσ and thus to different
interaction parameters (kFa)−1(orange diamonds). The green
lines are calculated pair fractions using the classical model.
In general, we find good agreement between the experimental
data and the theoretical prediction, which also indicates con-
sistency between the OT and MT methods.

III. RESULTS

We now apply the OT and MT methods to map out the
fraction of pairs on the BEC side. For this, we perform mea-
surements for a variety of magnetic fields and temperatures.
The pair fractions Np/Nσ obtained from both experimental
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FIG. 4. Map of the pair fraction Np/Nσ as a function of tem-
perature and interaction strength on the BEC side of the Feshbach
resonance. The circles (diamonds) are measurements obtained with
the OT (MT) method. The thick solid and dashed lines are classical
model calculations (cf. Fig. 1). They are dashed in the strong-
interaction regime where the classical model is expected to be no
longer valid. The error bars include both a statistical and a systematic
part, i.e., the standard deviation of the mean of 10 temperature mea-
surements and the uncertainty in determining the molecule fraction
from the fit, respectively. The upper-right area bounded by the gray
dash-dotted line exhibits >5 % particle loss due to inelastic collisions
on the time scale of a measurement. The gray shaded area indicates
the superfluid phase below Tc, as in Fig. 1.

methods are shown in Fig. 4 (circles, OT method; diamonds,
MT method). The area on the right-hand side of Fig. 4, as
bounded by the thin dash-dotted line, marks a region where
we observe non-negligible loss of particles (>5 %) during
our measurements due to inelastic collisions of bound pairs.
This loss increases with (kFa)−1; see, e.g., [32,33]. In order to
simplify our discussion we only consider data points outside
this area.

The solid and dashed lines in Fig. 4 represent the statisti-
cal mechanics model without any adjustable parameters. For
higher temperatures we generally observe larger fluctuations
and thus larger error bars, because of the larger atom cloud
within a limited field of view. Overall, we find that the agree-
ment between measurement and model remains quite good
even in the crossover regime where this model of classical
particles with no interaction energy should be expected to
break down. In fact, the model could be expected to work to
the extent that the internal degrees of freedom of the fermion
pairs are frozen and only the degrees of freedom associated
with the center of mass of the pair remain active. This approx-
imately occurs when the fermionic chemical potential changes
sign which, using a t-matrix approach, we estimate to occur
at a coupling value of about (kF a)−1 = 0.5 at Tc. This might
explain the good agreement found between the model and
the experimental data when (kF a)−1 � 0.5 as well as with
the theoretical calculation based on a self-consistent t-matrix
approach.

IV. CONCLUSION

To conclude, we have systematically mapped out the
fermion pair fraction in a strongly interacting Fermi gas

as a function of both temperature and coupling strength.
Our measurements show how pairing of ultracold fermions
changes as we move from the BEC regime into the strong in-
teraction regime. We demonstrate a novel method to measure
the pair fractions from the near-BEC limit to the pseudogap
regime, which is based on a number measurement of fermion
pairs. This method is complementary to existing excitation-
gap measurements and has no counterpart in conventional
condensed matter systems. We find that a statistical mechanics
model treating the fermions and pairs as classical particles
describes the measured data quite well in the investigated
range, as we have also confirmed through an advanced many-
body calculation based on a t-matrix approach. In the future,
we plan to extend our measurements and investigate more in
detail the coupling region [0.1 � (kF a)−1 � 0.5] where the
preformed-pair and the pseudogap regimes overlap with each
other.
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APPENDIX A: MODEL OF A CANONICAL ENSEMBLE OF
NONINTERACTING ATOMS AND MOLECULES

In our simple statistical mechanics model we treat the cold
gas of fermions and fermion pairs as a classical canonical en-
semble of atoms and molecules, respectively, with negligible
interaction energy among each other. In collisions a pair of
|↑〉 and |↓〉 atoms can combine to form a molecule, and vice
versa a molecule can break up into an unbound pair of |↑〉, |↓〉
atoms. At a given temperature the atom and molecule numbers
are in chemical equilibrium. Following [22], the equilibrium
condition is derived by minimizing the Helmholtz free energy
F = kBT ln Z , subject to the constraint of particle number
conservation. Here

Z = Zs
2Na Zs

NpeNpEb/kBT

Na!Na!Np!

is the partition function of the system and Zs and Zse−Eb/kBT

are the single-particle partition functions for atoms and
molecules, respectively. ω = 3

√
ω2

r ωa is the geometric mean
of the trapping frequencies ωa, ωr in axial and in radial direc-
tion, respectively. Using Stirling’s formula to approximate the
factorials a minimum in the free energy is found at a molecule
(pair) number,

Np = 1

Zs
Na

2 e−Eb/kBT ,

for a given temperature T and binding energy Eb =
−h̄2/(ma2). Using the partition function Zs = (kBT/h̄ ω)3,
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FIG. 5. Ratio Nσ (�t )/Nσ (0) after an optical transfer pulse of
length �t at a magnetic field of 820 G for various temperatures (see
legend). The solid lines are fits of an exponential decay towards a
constant offset.

the Fermi energy EF = kBTF = h̄ω 3
√

6Nσ , and the total pair
fraction per spin state Nσ = Na + Np we obtain the following

implicit expression for the pair fraction Np/Nσ in thermal
equilibrium:

(1 − Np/Nσ )2

Np/Nσ

= 6

(
T

TF

)3

exp

[
Eb

kBT

]
.

APPENDIX B: MEASUREMENTS CLOSE TO UNITARITY

As pointed out in the main text we only carry out measure-
ments at magnetic fields of up to 820 G because for higher
magnetic fields we observe deviations from an exponential
decay during the optical excitation of the pairs towards deeply
bound molecules. Such deviations are indeed expected close
to resonance as a result of many-body effects [34]. In addition,
as the optical excitation cross section decreases towards the
resonance its rate becomes increasingly comparable to the one
of photoassociation. In order to clarify that an exponential
fit towards a constant value is still a good description at
820 G, we show corresponding decay curves in Fig. 5. A
slight nonexponential behavior of the measured decay will
increase the uncertainty in the measured equilibrium pair
fraction.
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B.2 Second sound in the crossover from the Bose-
Einstein condensate to the Bardeen-Cooper-Schrieffer
superfluid.
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Second sound is an entropy wave which propagates in the superfluid component of a

quantum liquid. Because it is an entropy wave, it probes the thermodynamic properties of the

quantum liquid. Here, we study second sound propagation for a large range of interaction

strengths within the crossover between a Bose-Einstein condensate (BEC) and the Bardeen-

Cooper-Schrieffer (BCS) superfluid, extending previous work at unitarity. In particular, we

investigate the strongly-interacting regime where currently theoretical predictions only exist

in terms of an interpolation in the crossover. Working with a quantum gas of ultracold fer-

mionic 6Li atoms with tunable interactions, we show that the second sound speed varies only

slightly in the crossover regime. By varying the excitation procedure, we gain deeper insight

on sound propagation. We compare our measurement results with classical-field simulations,

which help with the interpretation of our experiments.
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Second sound is a transport phenomenon of quantum liquids
that emerges below the critical temperature for superfluidity
Tc1–3. It was experimentally discovered4 in 1944 in He II5

and was described with a hydrodynamic two-fluid model2,6–8

which treats He II as a mixture of a superfluid (SF) and a normal
fluid (NF). The SF component has no entropy and flows without
dissipation. The NF component carries all the entropy and has
non-zero viscosity. In the limit of vanishing temperature T→ 0,
the two-fluid model predicts that first sound (i.e., standard sound
waves) corresponds to a propagating pressure oscillation with
constant entropy, while second sound is an entropy oscillation
propagating at constant pressure8.

The properties of a SF naturally depend on parameters such as its
temperature and the interaction strength between its particles. With
the advent of ultracold quantum gases, with tunable interactions,
these dependencies can now be studied. In particular, an ultracold
fermionic quantum gas with a tunable Feshbach resonance offers a
unique opportunity to access various sorts of superfluidity in one
system, ranging continuously between a Bose-Einstein condensate
(BEC) of bosonic molecules, a resonant SF, and a SF gas of Cooper
pairs (BCS superfluid)9–11. In the experiment, this is done by tuning
the interaction parameter ðkFaÞ�1, where a is the scattering length,
kF ¼

ffiffiffiffiffiffiffiffiffiffiffi

2mEF
p

=_ the Fermi wavenumber, EF is the Fermi energy,
and m the atomic mass.

A large range of thermodynamical properties of the BEC-BCS
crossover has been studied, e.g., in refs. 11–19. This includes experi-
ments on first sound (see e.g., ref. 16) and second sound. Second
sound has recently been observed by Sidorenkov et al.20 in a unitary
Fermi gas and by Ville et al.21 and Christodoulou et al.22 in a two-
dimensional bosonic SF. Second sound was also possibly present in
an experiment by Meppelink et al.23 as pointed out in ref. 3.

Here, we experimentally investigate how second sound changes
across the BEC–BCS crossover. This is important, because full
theoretical calculations are not yet available for the entire strongly
interacting regime. Nevertheless, comparing our measurements to
existing calculations and interpolations we find reasonable
agreement. In particular, c-field simulations in the BEC regime
match quite well the observed wave dynamics in experiments at
interaction strengths of up to ðkFaÞ�1 ¼ 1. In addition, we
investigate experimentally and theoretically the system response
when modifying the excitation scheme. As second sound is
mainly an entropy wave and first sound is mainly a pressure
wave, different excitation schemes give rise to different responses
for first and second sound. This helps for separating the generally
weak second sound signals from the first sound ones. We find
that this separation works especially well when first sound is
excited as a density dip wave packet. For this case, we were able to
quantitatively compare the amplitudes of first and second sound
and compare the results with a prediction.

Results
Experimental details. Our experiments are carried out with a
balanced, two-component ultracold gas of fermionic 6Li atoms in
the two lowest hyperfine states F;mF

�

�

� ¼ 1=2; ±1=2
�

�

�

of the
electronic ground state. The gas is confined by a combined magnetic
and optical dipole trap with a trap depth of U0 ≈ 1 μK× kB, for
details see ref. 24,25. The trap is nearly harmonic and cylindrically
symmetric with trapping frequencies ωr= 2π × 305Hz and ωx=
2π × 21Hz. The temperature and the particle density are controlled
by evaporative cooling. In the experiments the temperature ranges
approximately from 0.13 TF to 0.30 TF, where TF ¼ EF=kB ¼
_�ωð3NÞ1=3=kB is the Fermi temperature, �ω ¼ ωxω

2
r

� �1=3
is the

geometric mean of the trapping frequencies and N is the total
number of atoms. The scattering length a is tunable with an external
magnetic field B via a magnetic Feshbach resonance at 832 G26.

To excite sound modes in the system, we focus a blue-detuned
532 nm laser onto the trap center following the approaches
introduced in refs. 16,20,27 (Fig. 1a). The laser beam is aligned
perpendicularly to the optical dipole trap and produces a repulsive
potential barrier of Uex ≈ 0.2U0. At its focus, the beam has a waist
of about 20 μm, which is comparable to the cloud size in the radial
direction. To excite sound waves, the height of this additional
potential is modulated. The excited sound modes generally exhibit
contributions from both first and second sound28–30. However, it
is possible to generate preferentially either one of the two sound
modes by adapting the excitation method.

To excite primarily first sound, we abruptly switch on the
excitation laser beam (Fig. 1b), similarly as for the first
experiments on sound propagation in a dilute BEC27. This
applies pressure on the cold cloud on both sides of the laser beam
and creates two density wave packets (Fig. 1c) which propagate
out in opposite directions along the axial trap axis with the speed
u1. In the experiments, we detect these waves with the help of
absorption imaging by measuring the density distribution of the
atomic cloud as a function of time.

Figure 1d shows such density waves for an experiment at
ðkFaÞ�1 � ð1:61 ± 0:05Þ, B= 735 G and a temperature of
T= (220 ± 30) nK= (0.30 ± 0.06) TF, which corresponds to
T= (0.80 ± 0.15) Tc, where Tc is the critical temperature. For
the given interaction strength, we used Tc= 0.37 TF (see
Supplementary Note 1).

Figure 1d is a time-ordered stack of one-dimensional line
density profiles of the atom cloud31. Each profile was obtained by
integrating the measured column density of the atomic cloud
along the transverse (i.e., y-) direction (see “Methods” for details).
The time-ordered stack shows the propagation of the sound
waves along the axial direction x as a function of time. We
observe two density wave packets which propagate with first
sound velocity from the trap center towards the edge of the cloud
(two bright traces, marked with red arrows). The propagating
waves produce a density modulation of only a few percent of the
peak density and can be considered as a weak perturbation of the
system. To obtain the speed of sound, we examine how the center
position of each wave packet changes with time. The center
positions are determined via a Gaussian fit. Please note that the
central sound speed is determined over a local area of the cloud
where the density varies by about 30%. As a consequence, the
measured sound speed should be considered a mean value. From
Fig. 1d we obtain u1= (17.2 ± 3) mm/s near the trap center. Our
analysis shows that the sound propagation slows down as the
pulse approaches the edge of the cloud where the particle density
decreases. In the following, we focus on the sound speed close to
the trap center.

To primarily excite second sound, we sinusoidally modulate
the intensity of the excitation beam for 7 ms with a modulation
frequency of ωex= 2π × 570 Hz ≈ 2ωr and a modulation ampli-
tude of ΔU ≈ 0.2U0. This parametrically heats the gas in radial
direction (Fig. 1b). Subsequent thermalization via collisions
occurs within a few milliseconds. As a consequence a local
depletion of the SF density is created, which is filled with normal
gas, forming a region of increased entropy (Fig. 1c). This gives
rise to two wave packets which propagate outwards along the
axial direction with the speed of second sound. Figure 1e shows
corresponding experimental data where we measure the local
density distribution as in Fig. 1d. The second sound wave appears
here as a density dip (dark traces, marked with orange arrows). A
clear indication that the dark trace corresponds to second sound
is the fact that it vanishes at the Thomas-Fermi radius RTF ≈
110 μm where the SF fraction vanishes. Second sound only
propagates inside the SF phase.
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Besides a second sound wave, the excitation also produces a
first sound wave (bright traces, marked with red arrows) which
propagates faster than the second sound wave and travels beyond
the Thomas-Fermi radius. The first sound wave is broader than in
Fig. 1d, which can be mainly explained by the longer excitation
pulse. To obtain u2 we measure the time-dependent position of
the minimum of each dark trace, which is again determined via a
Gaussian fit. For Fig. 1e we obtain u2= (5.1 ± 1.1) mm/s. We note
that for the small excitation amplitudes in our experiments (see
colorbar in Fig. 1d–e), we do not observe the asymmetric sound
wave distortions reported in ref. 23. These distortions were also
absent in ref. 20.

Figure 1f shows numerical simulations of our experiment
applying a dynamical c-field method32 (see Supplementary Note 2
for detailed information on the method). The dimer scattering
length33 is add= 0.6a and we assume all fermionic atoms to be
paired up in molecules. To compare the simulations with the
experimental results we choose the same values of ðkFaÞ�1 and the
same central density of the trapped gas as in the experiment. The
theory value for u2 is (5.7 ± 0.05) mm/s in agreement with the
experimental value (5.1 ± 1.1) mm/s.

Interaction strength dependence of second sound. We now
perform measurements of second sound speed in the region
ð�0:22 ± 0:04Þ< ðkFaÞ�1 < ð1:61 ± 0:05Þ of the BCS-BEC cross-
over. These are shown in Fig. 2 along with theoretical pre-
dictions. The second sound velocity u2 is given in units of the
Fermi velocity vF ¼ _khomF =m. Here, the Fermi wavenumber

khomF ¼ 3π2n0
� �1=3

is determined from the 3D peak density close
to the trap center. The peak density is deduced using the inverse
Abel transformation34 and a self-consistent mean field calculation
(see Supplementary Note 4). We have verified that in the BEC
regime our mean field calculation gives similar results for the
peak density when we input the trapping frequencies, the tem-
perature, the scattering length and the total number of particles.
The blue dash-dotted line is a calculation from ref. 28, based on a
hydrodynamic description in a homogeneous gas for the limiting
cases of the BEC and the BCS regime and unitarity. To connect
these regimes, the results are interpolated across the crossover,
bridging the range jðkFaÞ�1j< 1. The blue solid and the brown
solid lines are our analytic hydrodynamic calculations which are
valid in the BCS and BEC limit, respectively (see Supplementary
Note 3). For comparison, we show the results of the numerical
c-field simulations (green squares), which agree with both, ana-
lytic description and experimental results. Despite the large error
bars the measurements indicate an increase of u2 when
approaching unitarity from the BEC side, in agreement with the
theoretical results.

In general, second sound can only propagate in the SF phase of
the gas. It is therefore natural to ask how the SF density ns and the
speed of second sound u2 are related. Using our measurements
for u2 we can roughly determine the relationship between ns and
u2 for our temperature T and ðkFaÞ�1 > 1:5, since in this regime
the SF density can be estimated. For this, we carry out self-
consistent mean field calculations to determine the density
distributions of the SF and the NF for an interacting BEC in the

a b c

x

y

z excit. 
beam

RTF

SF NF

d e f

0.05

-0.05

0

Fig. 1 Sound excitation in a trapped superfluid Fermi gas in the vicinity of the BEC-BCS crossover. a Set-up: A focussed, intensity-modulated, blue-
detuned laser beam excites sound waves in the cigar-shaped atom cloud. b Two different modulation sequences of the laser intensity. Purple dashed line:
step excitation. Green solid line: heat pulse. The time t is given in units of the axial trapping period 2π/ωx. c Sketch of a bimodal density distribution of a
trapped BEC (purple line) at y= z= 0. At the center of the trap a blue detuned beam produces a dimple in the potential. Modulating the beam intensity
produces first sound waves (red arrows) and second sound (orange arrows) waves. Second sound reduces the local density of the cloud, while for first
sound a density peak emerges. The thin black line shows the profile of the unperturbed cloud. Please note that the crests and troughs of the waves are
shown in an exaggerated way for better visibility. d The false color plot shows the measured local change in the density Δ�nðx; tÞ as a function of axial
position x and time t. Here, ðkFaÞ�1 ¼ ð1:61±0:05Þ at B= 735 G and T/Tc= (0.80 ± 0.15). After excitation, two wave packets (bright traces, marked with
red arrows) propagate with first sound velocity u1 towards the edges of the cloud. The excitation method predominantly excites first sound. Second sound
is present as well but is barely discernible here. e Propagation of first sound waves (bright traces, marked with red arrow) and second sound waves (dark
traces, marked with orange arrows) after excitation with sinusoidal pulse of (b). All other settings are the same as in (d). f Simulated sound propagation for
the same parameters as in (e). The orange arrows mark the propagating second sound and the red arrows the first sound, respectively.
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trap (see Supplementary Note 4). As an important input into
these calculations we make use of the Thomas-Fermi radius
which we have measured in the second sound experiments (the
measured Thomas-Fermi radii can be found in Supplementary
Note 1). As an example, from the measurement at ðkFaÞ�1 ¼
ð1:61 ± 0:05Þ we determine the peak SF fraction to be
ns0/n0= 0.98 close to the trap center at maximum density (see

Supplementary Note 4), where the local ðkhomF aÞ�1 ¼ ð1:06 ± 0:05Þ
and T=Thom

c ¼ ð0:40 ± 0:15Þ, with Thom
c ¼ 0:21Thom

F and

Thom
F ¼ _2ðkhomF Þ2=2mkB. For comparison, for a homogeneous

weakly interacting BEC with a SF fraction close to unity the
temperature would need to be T � Thom

c , according to

ns=n ¼ 1� ðT=Thom
c Þ3=2. At unitarity, by contrast, the SF fraction

reaches unity already at T=Thom
c � 0:55, as shown by Sidorenkov

et al.20. As expected, this comparison shows that for a given
T=Thom

c the SF fraction grows with interaction strength.

Tuning the sound mode excitation. In the following we inves-
tigate how the SF gas responds to different excitation
protocols28–30. For this, we vary the excitation scheme, the
excitation frequency and amplitude. By observing the corre-
sponding response of the system we gain additional insights into
the nature of first and second sound.

In Fig. 3a we show the evolution of the system after a step pulse
excitation at B= 735 G and ΔU= 0.3U0, in which both, first and
second sound are excited. In contrast to the experiment in Fig. 1d,
the laser beam is abruptly switched off - not on. As a
consequence, the wave packets of both first and second sound
now correspond to dips in the particle density. In Fig. 3b we show

the density distribution for the time and position range indicated
by the purple rectangle in Fig. 3a. From a fit of two Gaussian dips
to the two wave packets, we determine an amplitude ratio of
W2/W1 ≈ 1.1. This result approximately matches the predictions
of refs. 29,30 (see also Supplementary Note 3), where the response
of both, a weakly and a strongly interacting molecular Bose gas
has been studied. For an interaction parameter of ðkFaÞ�1 ¼ 2,
the prediction yields W2/W1= 0.9, which is of similar magnitude
as our result.

Next, we study the system response when modifying the
excitation scheme. For this, we vary the excitation frequency and
the number of modulation cycles. Figure 4a–d shows the system
response for a modulation frequency of ωex= 0.61ωr, so that
parametric heating is rather suppressed and coupling to first
sound is enhanced as compared to the measurement shown in
Fig. 1e. While Fig. 4a, b corresponds to a 1.5 cycle modulation,
Fig. 4c, d corresponds to a 1 cycle modulation.

The numerical simulations in Fig. 4b, d demonstrate how the
excitation pattern produces a corresponding wave train of first
sound. Once the simulated waves of first sound have propagated
beyond the Thomas-Fermi radius, they diffuse out and lose signal
strength. In the simulation, the diffusion of the first sound wave
train is stronger than in the experiment. This might be explained by
the choice of the discretization length which was used in the
simulations (see Supplementary Note 2B). The first sound wave
train is always followed by a single dark second sound wave packet.

The experimental data in Fig. 4a agree reasonably well with the
simulation in Fig. 4b. Comparing Fig. 4c and d, there seems to be
a discrepancy. In the experiment clearly a first sound wave
train, consisting of two bright traces and one dark trace,
propagates beyond the Thomas-Fermi radius. In the simulation,
however, the second bright trace of the wave train, which is
clearly visible in the center, disappears before it reaches the
Thomas-Fermi radius (black arrow). The corresponding damping
happens when the bright sound trace crosses the dark second
sound trace (see also insert in Fig. 4d). The reason for the
damping is that first sound waves diffuse in a thermal
environment. This diffusion, however, is apparently too strong
in the simulation results, which is probably a consequence of
constraints in the numerical resolution (for more details see
Supplementary Note 2B).

In conclusion, we have studied second sound propagation in an
ultracold Fermi gas of 6Li atoms throughout the BEC-BCS
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Fig. 3 Comparing signal strength of first and second sound. a Sound
excitation experiment at ðkFaÞ�1 ¼ ð1:61±0:05Þ and at a temperature of
T/Tc= (0.80 ± 0.15). In contrast to Fig. 1d, first sound (red arrows)
and second sound (orange arrows) are now visible simultaneously. For
tωx/2π < 0.15 first and second sound waves overlap and therefore cannot
be distinguished from each other. b shows Δ�n for tωx/2π= 0.43. We fit the
center position of each of the two sound waves using a Gaussian function
(solid line).
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Fig. 2 Second sound velocity u2 as a function of interaction strength. The
purple circles depict measured data for temperatures in the range
T= 105−230 nK which corresponds to T/Tc= 0.66−0.84 (see
Supplementary Note 1). The error bars are due to statistical uncertainties.
The brown and blue solid line show hydrodynamic predictions for the BEC
and BCS regime at T= 0.75Tc, respectively (see Supplementary Note 3).
The shaded areas mark the second sound velocity in the temperature range
of the experiments. The blue dash-dotted line shows a theoretical prediction
of second sound in the crossover28 for a homogeneous gas at T/Tc= 0.75.
It interpolates between the results from hydrodynamic theory in the BEC
and BCS regime. The green squares are results of our numerical c-field
simulations which are consistent with both, analytic and experimental
results. For comparison we also show the second sound velocity on the
resonance measured in ref. 20 at the temperatures T/Tc= 0.65 (blue
triangle), T/Tc= 0.75 (brown triangle), and T/Tc= 0.85 (red triangle).
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crossover for a finite temperature of T ≈ 0.75 Tc. We find the
second sound velocity to vary only slightly across the BCS-BEC
crossover, which is in agreement with an interpolation of
hydrodynamic theory28. In the BEC regime, the results match
numerical predictions based on c-field simulations.

In addition, we investigate the response of the SF gas on
various excitation pulse shapes, ranging from gentle local heating
to an abrupt kick. While a sinusoidal excitation pulse leads to a
corresponding wave train for the first sound, it only produces a
single pulse for the second sound. In the future, it will be useful to
extend our measurements in the strongly interacting regime to a
larger range of temperatures below Tc. Since the second sound
velocity is related to the local SF density, these measurements can
help to determine the correlation between the SF density and the
temperature in the strongly interacting regime.

Methods
Calculating Δ�n from the density profiles. Each of the experimental sound pro-
pagation images in Figs. 1d–e, 3a, 4a and c is a time-ordered stack of one-
dimensional line density profiles Δ�nðx; tÞ of the atom cloud. A one-dimensional
line density profile n(x, t) is produced as follows: After sound excitation has ended
and after an additional propagation time t, we take an absorption image of the
atom cloud to obtain the column density distribution nex(x, y, t). Next, we integrate
the absorption image along the y-axis (which is perpendicular to the symmetry axis
of the cigar-shaped atom cloud) to obtain a one-dimensional line density profile
nex(x, t). To reduce noise, we average 15 density profiles and obtain �nexðx; tÞ. We
repeat this procedure for an unperturbed cloud to obtain �nðxÞ. By subtracting the
two density profiles from each other we obtain Δ�nðx; tÞ ¼ ð�nexðx; tÞ � �nðxÞÞ=�nð0Þ.

Data availability
The data for the measured temperatures and Thomas-Fermi radii are provided in
Supplementary Note 1.

Code availability
The simulation codes and simulated data are available at https://zenodo.org/record/
557257035.
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1

SUPPLEMENTARY INFORMATION

Supplementary Note 1: Temperatures to the measurements in Fig. 1 and Fig. 2

In this section we present the temperatures to the measurements shown in Fig. 1 and

Fig. 2 (see Supp. Table 1). We determine the temperatures by �tting a second order virial

expansion of the density distribution at the wings of the cloud1. To compare the absolute

temperature with Tc for various interaction strengths we use values for Tc as shown in Supp.

Figure 1.

Tc is not precisely known yet in the strongly interacting regime. In the limit of the

BEC regime the BEC mean-�eld model should give accurate values for critical temperature.

Closer towards the resonance we expect the diagrammatic t-matrix calculation to provide

quite good values2. For the range in between (0.5 < (kFa)−1 < 3) we linearly interpolate

between both Tc curves.
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Supplementary Figure 1. Critical temperature Tc in units of TF as a function of (kFa)−1

for a harmonically trapped Fermi gas. The blue dash-dotted line shows a diagrammatic

t-matrix calculation and the orange dash-dotted line a calculation based on a BEC mean-�eld

model2. The green straight line interpolates linearly between the two approaches. In the BEC limit

of noninteracting molecules Tc is given by Tc = 0.94~(ωxω
2
rN)1/3 and therefore Tc/TF = 0.517.

For the measurements on the resonance we compared our result with the temperature

determined using the equation of state from Ref.3. We �nd reasonable agreement between
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2

the temperatures obtained from the two approaches with deviations on the order of 5−10%.

(kFa)−1 T [nK] T/TF Tc/TF T/Tc RTF [µm]

-0.22 ± 0.04 105 ± 23 0.13 ± 0.04 0.176 0.74 ± 0.24 96 ± 5

-0.08 ± 0.03 106 ± 22 0.13 ± 0.04 0.196 0.66 ± 0.21 107 ± 5

0 ± 0.02 158 ± 28 0.17 ± 0.05 0.207 0.82 ± 0.24 108 ± 5

0.13 ± 0.03 140 ± 30 0.18 ± 0.05 0.226 0.80 ± 0.22 121 ± 5

0.28 ± 0.04 140 ± 30 0.19 ± 0.05 0.249 0.76 ± 0.20 156 ± 5

0.38 ± 0.04 190 ± 30 0.22 ± 0.06 0.263 0.84 ± 0.22 153 ± 5

0.68 ± 0.05 190 ± 30 0.24 ± 0.06 0.302 0.79 ± 0.19 139 ± 5

1.03 ± 0.05 200 ± 30 0.25 ± 0.06 0.334 0.75 ± 0.17 124 ± 5

1.44 ± 0.05 230 ± 30 0.29 ± 0.06 0.361 0.80 ± 0.16 115 ± 5

1.61 ± 0.05 220 ± 30 0.30 ± 0.06 0.373 0.80 ± 0.15 110 ± 5

Supplementary Table 1. Temperatures and Thomas-Fermi radii to the measurements

presented in Fig. 2 (main text). The temperatures are given in nK as well as units of TF and

Tc. For expressing the temperature in units of Tc we use an interpolated critical temperature curve

(see Supp. Fig. 1).

Supplementary Note 2: C-�eld simulation method

Here we present our simulation method that is used to simulate sound mode dynamics in

a condensate of 6Li molecules on the BEC side. The system is described by the Hamiltonian

Ĥ0 =

∫
dr
[ ~2

2M
∇ψ̂†(r) · ∇ψ̂(r) + V (r)ψ̂†(r)ψ̂(r) +

g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
. (1)

ψ̂ and ψ̂† are the bosonic annihilation and creation operator, respectively. The 3D interaction

parameter is given by g = 4πadd~2/M , where add is the dimer-dimer scattering length and

M the dimer mass. The external potential V (r) represents the cigar-shaped trap Vtrap(r) =

M(ω2
xx

2 + ω2
rr

2)/2. ωx and ωr are the axial and radial trapping frequencies, respectively.

r = (y2 + z2)1/2 is the radial coordinate.

To perform numerical simulations we discretize space with the lattice of 180×35×35 sites

and the discretization length l = 0.5µm, where l is chosen to be smaller than or comparable
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to the healing length ξ > 0.5µm and the thermal de Broglie wavelength λdB ≈ 1− 1.5µm.

Since λdB determines the scale for thermal �uctuations, the associated thermal energy should

always be below the cuto� energy introduced by the discretization length. We also note that

in the opposite limit l > ξ, λdB the simulation method would be inadequate to capture small-

distance excitations, such as vortices. In our c-�eld representation we replace in Eq. 1 and

in the equations of motion the operators ψ̂ by complex numbers ψ, see Ref.4. We sample

the initial states in a grand-canonical ensemble of temperature T and chemical potential µ

via a classical Metropolis algorithm. We obtain the time evolution of ψ(t) using the classical

equations of motion. As our key observable, we calculate the density n(r, t) = |ψ(r, t)|2 and
average it over the thermal ensemble. For our simulations we use the trapping frequencies

(ωx, ωr) = 2π × (70 Hz, 780 Hz) that are higher than the experimental trap values. This is

because the size of the simulation lattice is needed to be small in order to have a reasonable

calculation time. We show below that this larger value of the trapping frequency does not

a�ect our results of the sound velocity, which is determined from the sound propagation

near the trap center. We choose the scattering length add and the trap central density

n0 according to the experiment. add varies in the range add = 720 − 1650a0, where a0 is

the Bohr radius, and n0 in the range n0 = 5.5 − 11.2µm−3. Together with the trapping

frequencies (ωx, ωr) = 2π×(70 Hz, 780 Hz) these parameters result in a cigar-shaped cloud of

N = 4.0×104−4.5×104 6Li molecules. The temperature varies in the range T = 240−280 nK

or T/Tc = 0.5− 0.8.

To excite sound modes we add the perturbation Hex(t) =
∫

drV (r, t)n(r), where n(r) is

the density at the location r = (x, y, z). The excitation potential V (r, t) is given by

V (r, t) = V0(t) exp
(
−(x− x0)2 + (z − z0)2

2σ2

)
, (2)

where V0(t) is the time-dependent strength and σ is the width. The locations x0, z0 are

chosen to be the trap center. We excite sound modes following the scheme used in the

experiment, where σ and V0 are chosen such that the changes in the local density due to

the excitation potential are consistent with the experiment. We calculate the density pro�le

n̄ex(x, t), which is integrated along the radial direction. For sound propagation we examine

∆n̄(x, t) =
(
n̄ex(x, t)−n̄(x)

)
/n̄(0), where n̄(x) is the density pro�le of the unperturbed cloud

integrated in the radial direction and n̄(0) is the maximum density. As we show in the main

text, the time evolution of ∆n̄(x, t) displays excitation of second sound, which is identi�ed
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by a vanishing sound velocity at RTF. We note that solitonic excitations are not expected as

they involve a steep change of the local phase, whereas our excitation protocol modi�es the

local density. Furthermore the size of solitonic wave features is on the order of the healing

length of 0.5µm whereas the �rst and second sound features we observe have a width of a

few tens of micrometers. We �t ∆n̄(x, t) with a Gaussian to determine the second sound

velocity u2 at the trap center. We note that within the range of T/Tc = 0.5−0.7 the velocity

u2 changes only negligibly with temperature compared to the experimental errorbars.

A. Low versus strong transverse trapping frequency

-2 -1 0 1 2
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0.2

0.4

0.6

0.8

-2 -1 0 1 2

-0.05

0

0.05

a b

Supplementary Figure 2. Low versus strong transverse trapping frequency. a, Time evol-

ution of ∆n̄(x, t) as a function of axial position x and time t for ωr = 2π × 546 Hz, where sound

excitations are created using the excitation frequency ωex/ωr = 0.61 and a half-cycle modulation.

b, ∆n̄(x, t) for ωr = 2π × 780 Hz, where we used the same relative value of ωex/ωr = 0.61 and the

same half-cycle modulation as in the case of a. The red and orange arrows indicate the propaga-

tion of �rst and second sound, respectively. The determined values of the second sound velocity u2

are (4.74± 0.15) mm/s and (4.5± 0.10) mm/s for the systems of low and high trapping frequency,

respectively. Consequently, there is at most a weak dependence of the second sound velocity u2 on

the con�nement in the transverse direction.

To examine whether a stronger con�nement in the transverse direction a�ects the sim-
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ulation result of the sound velocity, we choose a lower transverse trapping frequency of

ωr = 2π × 546 Hz and compare its result with that of ωr = 2π × 780 Hz, while we use the

same axial trapping frequency ωx = 2π× 70 Hz and the same scattering length add = 840a0.

The simulated cloud consists of N ≈ 66, 000 and 55, 000 molecules for the systems of low

and high trapping frequency, respectively. To excite sound modes we use the excitation

frequency ωex/ωr = 0.61 and a half-cycle modulation, which are the same as in the case of

high frequency simulation. In Supp. Fig. 2 we show the time evolution of the density pro�le

for both the systems of low and high trapping frequency. Both simulations show excitation

of �rst and second sound pulses, as indicated by the red and orange arrows in Supp. Fig.

2. The propagation of two sound modes seems similar to the case of high frequency. For a

quantitative comparison we determine the second sound velocity u2, following the procedure

described above. We obtain u2 = (4.74± 0.15) mm/s and (4.5± 0.10) mm/s for the systems

of low and high trapping frequency, respectively. This ensures that within the numerical

error both systems give a consistent result of the sound velocity.

B. In�uence of temperature on the propagation of sound modes

To examine the in�uence of temperature on sound propagation, we simulate the system at

four di�erent temperatures: T = 120, 180, 210, and 240 nK, while the trapping frequencies,

the scattering length and the central density were kept �xed. This resulted in the number

of molecules N ≈ 43000, 56000, 64000, and 72000 for T = 120, 180, 210, and 240 nK,

respectively. The healing length at the trap center is around ξ ≈ 0.5µm and the thermal de

Broglie wavelength is in the range 1.0− 1.5µm, which ful�lls the continuum limit assumed

in our simulation approach. For all simulations we excite sound modes using one cycle

of modulation and the excitation frequency ωex/ωr = 0.61. In Supp. Fig. 3 we show

the time evolution of the density pro�le ∆n̄(x, t) for T = 120, 180, 210, and 240 nK. At

T = 120− 210 nK, the time evolution shows multiple sound excitations. We observe two �rst

sound pulses (a bright pulse followed by a dark pulse) that propagate outside the super�uid

region. These are created while the excitation scheme is carried out as we discussed in the

main text. Following the excitation scheme, also a pulse of second sound is created, which

propagates only within the super�uid region and has a vanishing velocity at the Thomas-

Fermi radius. In Supp. Fig. 3 a-c (upper row) an additional bright �rst sound wave
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Supplementary Figure 3. In�uence of temperature on the propagation of sound modes. a-

d, Sound excitations created using one cycle of modulation and excitation frequency ωex/ωr = 0.61

for the temperatures of T = 120, 180, 210, and 240 nK, respectively. The bottom row shows the 1D

line density pro�le of the perturbed cloud (purple) at time tωx/(2π) = 0.6 and the corresponding

background density pro�le (black) as well as their di�erence ∆n (red).

appears which di�uses after a short propagation time. This happens due to the fact that

this �rst sound wave is created after the dark second sound wave but propagates with higher

velocity within the super�uid region. When it crosses the second sound wave it fades out

in the simulation because mixing of �rst and second sound leads to di�usion. In addition,

second sound signal seems to wash out for increasing temperatures. In fact, at a temperature

near the transition temperature second sound becomes a di�usive sound mode as discussed in

Ref.11. This seems to also increase the di�usion of �rst sound, leading e.g. to the suppression

of the additional bright �rst sound in Supp. Fig. 3 d.

Although predicted in the simulations the di�usion of �rst sound is not observed in the

experiment (see Fig. 4) as its wave is still clearly visible even beyond the Thomas-Fermi

radius. The discrepancy between experiment and theory could be due to the inherent discrete
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nature of the simulation method, where the variation in the density and the phase is not

smooth on the scale of the discretization length, causing an additional dispersion of the

sound wave.

To understand the long time behavior we show in the lower row of Supp. Fig. 3 the 1D

density pro�les at tωx/(2π) = 0.6. The purple line corresponds to the cloud where sound was

excited. The black line corresponds to the cloud without sound excitation. The red curve is

the di�erence. The peak in the center of the second sound dips is due to the fact that very

little or no super�uid phase is present (because the repulsive dipole potential prevents the

gas from reaching the critical density in the center, see Supp. Fig. 5) and therefore second

sound cannot enter the central region after it gets re�ected at the Thomas-Fermi radius.

This re�ection is strongly visible for the lowest temperature of T = 120 nK in Supp. Fig. 3

a (upper row).

Supplementary Note 3: Analytic description of the sound modes

In the following we present an analytic description of �rst and second sound based on the

two-�uid hydrodynamic model for a uniform gas. The total density n of the gas is a sum

of the super�uid ns and normal �uid density nn. The �rst and second sound mode squared

velocities are given by5

u21/2 =
1

2
(c2T + c22 + c23)±

[1

4
(c2T + c22 + c23)

2 − c2T c22
]1/2

, (3)

where c2T = 1/M(∂p/∂n)T and c22 = nss
2T/(nncV) representing the isothermal and en-

tropic sound velocities, respectively. p is the pressure, s the entropy per unit mass, T

the temperature, and cV = T (∂s/∂T )n the heat capacity per unit mass. The quant-

ity c23 ≡ c2S − c2T = (∂s/∂n)2T (n2T/cV ) couples the sound velocities c2 and cT , where

c2S = 1/M(∂p/∂n)s corresponds to the adiabatic sound velocity. The decoupled sound

modes in the limit of vanishing T are

u21 = c2T =
1

M

(∂p
∂n

)
T

and u22 = c22 =
ns

nn

s2T

cV
. (4)

Here, �rst and second sound can be described as a pressure and entropy wave, respectively.

To determine the second sound velocity u2, we calculate the entropy and the normal �uid

density de�ned as
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S =
∑

k

(
− fk log fk ± (1± fk) log(1± fk)

)
(5)

and

nn =
1

M

∫
dk3

(2π)3
~2k2

3

(
− ∂fk
∂Ek

)
, (6)

respectively5. fk = 1/
(
exp(Ek/kBT ) ∓ 1

)
is the thermal occupation number, where Ek

is the excitation energy and k the wavevector. The upper and lower sign correspond to a

Bose and Fermi gas, respectively.

A. BEC

We use the Bogoliubov theory, valid in the dilute limit, to analyze the regime kBT <

gn, where gn is the mean-�eld energy. The Bogoliubov spectrum is given by Ek =
√
εk(εk + 2gn), where εk = ~2k2/(2M) is the free-particle spectrum. M is the molecu-

lar mass. To examine the decoupled modes in Eq. 4 we approximate Ek by the linear

spectrum Ek ≈ ~ck, where c =
√
gn/M is the Bogoliubov sound velocity. We obtain the

entropy and the normal �uid density, respectively,

S = V
2π2

45~3
(kBT )3

(M
gn

)3/2
and nn =

2π2

45

(kBT )4

~3
M3/2

(gn)5/2
. (7)

The entropy per unit mass is s = S/(NM) = gnn/(MT ) and the heat capacity per unit

mass is cV = 3s.

Within upper description we can deduce following sound speeds

u1 =

√
gn

M
and u2 =

√
1

3

gn

M
. (8)

Here, u2 is u1/
√

3. This result is only valid at zero temperature, see Supp. Fig. 4a, where

we show the full numerical solutions of Eq. 3 using the Bogoliubov description.

For kBT > gn instead we make use of a thermal gas description to determine s, cV , and nn,

which are given by s = 2.568kBnn/(2Mn), cV = 3s/2, and nn = n(T/Tc)
3/2, respectively5.

In this regime, solving Eq. 3 the sound velocities read,

u1 =

√
gn

M
+

0.856kBT

M
and u2 =

√
ns

n

gn

M
. (9)
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u2 is proportional to
√
ns/n and can be approximated by u2 =

√(
1− (T/Tc)3/2

)
gn/M

(see Supp. Fig. 4a).

Sound amplitudes

Besides the sound velocity, our analytic description can be used to determine the amp-

litudes of the propagating sound modes, described as6

δn(x, t) = W1δñ(x± u1t) +W2δñ(x± u2t). (10)

where δñ(x, t) is the density variation created by the excitation potential. δñ(x± u1/2t)
represent wave packets of �rst and second sound with weights W1/2. The relative weight is

given by6

W2

W1

=
c22 − u22
u21 − c22

u21
u22

(11)

We determine W2/W1 by numerically solving Eq. 3 for the regimes kBT < gn and

kBT > gn using the Bogoliubov and thermal gas description, respectively.

We show these results in Supp. Fig. 4b. The Bogoliubov description of the weight works

only for kBT � gn. We note that at higher temperatures terms beyond Bogoliubov are

needed to account for the thermal damping of the modes. The Bogoliubov description thus

leads to an overestimation of the weight at high temperatures. For temperatures above the

mean-�eld energy the weight is described by the thermal gas description, which we use to

estimate the relative weight of the two modes in the main text. Please note that the thermal

description gives unphysical solutions for kBT/gn→ 1. In the experiment presented in �g. 3

of the main text kBT/gn ≈ 0.8 in the central region and therefore the Bogoliubov description

should be valid.

B. BCS

A condensate of an interacting Fermi gas is described by the BCS spectrum Ek =
√
ξ2k + ∆2, with ξk = ~2k2/(2m) − µ, where µ is the chemical potential and ∆(T ) the

gap. At low kBT � ∆, we use µ ≈ EF and expand ξk near the Fermi surface, i.e.
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Supplementary Figure 4. Sound velocities and amplitudes. a, Sound velocities u1/2 are

determined from Eq. 3 and are shown as a function of kBT/gn using the Bogoliubov (blue lines)

and thermal gas description (red lines). Here, c is the Bogoliubov sound speed introduced in the

text. b, shows the relative weight W2/W1 for kBT < gn (blue line) and kBT > gn (red line). In

the experiment in �g. 3 of the main text kBT/gn ≈ 0.8 in the central region.

ξk = ~2k2/(2m)− EF ≈ ~vF|k − kF| (see Ref.7). The entropy in Eq. 5 results in

S =
3Ntot

EF

∫ ∞

0

dξk
Ek

kBT
exp
(
− Ek

kBT

)
= 3Ntot

∆0

EF

√
π∆0

2kBT
exp
(
− ∆0

kBT

)
, (12)

with

∆0 = (2/e)7/3EF exp
(
π/(2kFa)

)
(13)

which is the gap at zero temperature8. With Eq. 12 we determine s = S/(mNtot) and cV .

The normal �uid density in Eq. 6 gives

nn

ntot

= 2

∫ ∞

0

dξk

(
− ∂fk
∂Ek

)
=

√
2π∆0

kBT
exp
(
− ∆0

kBT

)
. (14)

Using s, cV , and nn in Eq. 4 we obtain the second sound velocity

u2 =

√
3

2

kBT

EF

vF, (15)

which is valid for T < Tc. The BCS critical temperature is given by kBTc = (γ/π)∆0 =

0.567∆0, which depends on the interaction parameter (kFa)−1. We show in the main text

the result u2 at various interactions on the BCS side (see Fig. 2). u2 vanishes at zero
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temperature contrary to the BEC super�uids. We note that this result is consistent with

Ref.9.

Supplementary Note 4: BEC mean-�eld model

To estimate the density distribution of a partially Bose condensed cloud in the BEC re-

gime we carry out a self-consistent calculation where the condensate phase is treated within

the Thomas-Fermi approximation and for the normal phase we use a standard thermody-

namical approach. Speci�cally, we solve the following set of coupled equations10

ns(r) =
µs − Vext(r)− 2gnn(r)

g
Θ (µs − Vext(r)− 2gnn(r)) (16)

nn(r) =
1

λ3dB
Li3/2

(
exp

{
µn − Vext(r)− 2gns(r)− 2gnn(r)

kBT

})
. (17)

Here, λdB is the thermal de Broglie wavelength, g = 4π~2add/M is the coupling constant,

T is the temperature and Vext(r) is the external potential consisting of the harmonic trapping

potential and the repulsive potential of the excitation beam, µs and µn are the chemical

potentials of the super�uid and the normal �uid part, respectively. For the calculation we

set µn = min[Vext(r) + 2gns(r) + 2gnn(r)] which ensures that the normal gas reaches the

critical density nn,crit = Li3/2(1)/λ3dB at the Thomas-Fermi radius. This way, the number

of normal �uid atoms is �xed. µs is chosen such that the total atom number matches the

experimental value.

Equation 16 represents the Thomas-Fermi approximation where we take into account

the repulsive mean-�eld potential of the normal �uid part. Equation 17 is the density

distribution of a thermal bosonic cloud, again including the additional mean-�eld potential

produced by the atoms. By self-consistently solving the coupled equations we obtain the

density distributions of the super�uid and the normal �uid gas as shown in Supp. Fig. 5.

The repulsive excitation beam pushes the atoms away from the trap center which creates

a density pro�le with two peaks of the same height. Interestingly in our self-consistent

calculations we �nd that the peak density with and without the excitation beam is almost

the same. This holds both for the line density and the 3D density. This allows for extracing

the peak density in our experiments, when the excitation laser is present, from reference

absorption images of an unperturbed cloud when no excitation laser is present. To do this,
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Supplementary Figure 5. Calculated and measured atom densities at (kFa)−1 = 1.61 and

a temperature of T = 220 nK. The repulsive excitation laser beam in the trap center

locally reduces the atom density. The shown density distributions correspond to the

state just before modulation starts. a, The blue and red line show the line densities of the

super�uid and the normal phase obtained from a self-consistent calculation, the measured total

line density is shown is black. The vertical dotted lines indicate the Thomas-Fermi radius at

x = ±110µm. b, Calculated absorption image of the atom cloud. c, Measured absorption image

of the atom cloud.

we apply the inverse Abel transformation to the reference absorption images to reconstruct

the 3D density pro�le. Note that this transformation is in generally valid only for rotationally

symmetric clouds, which is the case when no exciation beam is present. We have veri�ed

that we obtain the same density using our self-consistent calculations where we input the

temperature, the total number of atoms, the trapping frequencies and the scattering length.

This is possible since the interaction parameter of (kFa)−1 = 1.61 is still close to the BEC

regime. Supplementary Figure 5 a-c shows there is good agreement for the calculated and

measured density distributions, which validates this approach.
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Abstract
In a recent paper (2019 Phys. Rev. A 99, 053617), the total number of fermion pairs in a
spin-balanced two-component Fermi gas of 6Li atoms was experimentally probed in the normal
phase above the superfluid critical temperature, in order to investigate the sectors of pseudogap
and preformed-pair in the temperature–coupling phase diagram. Here, we present a theoretical
account of these experimental results in terms of an ab initio self-consistent t-matrix calculation,
which emphasizes the role of the pair-correlation function between opposite-spin fermions at
equilibrium. Good agreement is found between the available experimental data and the theoretical
results obtained with no adjustable parameter.

1. Introduction

Preformed pairs are meant to be bound states which form above the critical temperature of a fermionic
superfluid [1, 2]. They are usually associated with the occurrence of a pseudo-gap which can be viewed as a
carry-over of the pairing gap in the superfluid phase to the normal phase [3]. Although in the limit of low
density and strong fermionic attraction, a preformed pair can be approximately described by a bound state
of two fermions of opposite spin, in general it has intrinsically a many-body nature. In order to take into
account the many-body character of a pair, it is convenient to describe the pair problem in terms of
correlations between the fermions. These correlations are a non-trivial function of temperature, particle
density, and the inter-particle coupling.

Preformed pairs were recently studied in an experiment with a spin-balanced two-component Fermi gas
of 6Li in the normal phase [4], where the number of fermion pairs Np was determined by converting all
atom pairs to tightly-bound diatomic molecules which afterward were detected. The pairing fraction Np/Nσ

(where Nσ is the number of all atoms per spin-state) was reported for various temperatures and couplings
on the BEC side of the BCS–BEC crossover.

A preliminary theoretical account of the pairing fractions was already presented in reference [4], which
was obtained by a statistical model of non-interacting atoms and molecules at equilibrium [5, 6] as well as
by an ab initio diagrammatic t-matrix approach [7]. However, the comparison between experiment and
theory presented in reference [4] called for further improvements, because the statistical model could not
be confidently extended to the crossover region and the t-matrix calculation was lacking refinements which
turned out to be important for the crossover region.

Here, we present an improved account of the theoretical approach. We investigate correlations between
spin-up and spin-down fermions at thermal equilibrium. On the basis of this, we derive a meaningful
definition and measure for preformed pairs. We calculate thermodynamic quantities such as the pairing
fraction, rather than dynamical quantities such as the pseudo-gap. Nevertheless, the pseudo-gap physics is
well contained in our approach. As a consequence, the results of our quantum many-body approach in the
crossover region differ significantly from the ones of the statistical atom–molecule model where the
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fermionic character of the pairs is neglected. In general, we find good agreement between theory and
experiment, giving us confidence on the validity of our approach.

Our detailed theoretical interpretation of the experimental data of reference [4] and new insights on the
separation between the molecular and pseudo-gap regimes are the main results of this paper. In addition,
we calculate for a homogeneous Fermi gas (i) the pair correlation function, (ii) Tan’s contact (a quantity
that sets the overall scale of the pair correlation function), and (iii) the pairing fraction. These three
quantities are calculated for different temperatures and couplings across the BCS–BEC crossover. For a
trapped system, we also report density profiles and compare them to experimental measurements, and we
provide the superfluid critical temperature across the BCS–BEC crossover.

It should be mentioned that the temperature dependence of the contact in the homogeneous case and of
the density profiles in the trapped case were already reported in references [8, 9] within the same
self-consistent t-matrix approach of our work, albeit only for the unitary case. We have verified that for this
case our results fully agree with the published ones.

The paper is organized as follows. Section 2 describes the theoretical approach. Section 3 presents
calculated pair fractions Np/Nσ for the homogeneous system. Section 4 compares these results to the
experimental data of reference [4] after suitable averaging for the trap. Section 5 presents our conclusions.
Appendix A discusses the use of conserving approximations for the many-body structure of the pair
fraction. Appendix B highlights the circumstances under which the many-body approach to the pair
fraction reduces to that of the statistical model. Finally, appendix C obtains the critical temperature of a
trapped low-density Bose gas. Throughout the paper, we set � = 1.

2. Theoretical approach

The theoretical approach that we set up to account for the experimental results of reference [4] on the pair
fraction builds on the following ingredients: (i) the definition of the many-body propagator for composite
bosons introduced in appendix A of reference [10]; (ii) the formalism developed in reference [11] to
calculate the pair correlation function of opposite-spin fermions also in the normal phase; (iii) the
experience recently nurtured in reference [7] on the fully self-consistent solution of the t-matrix approach
to a Fermi gas with an attractive inter-particle interaction.

This Fermi gas is made to span the BCS–BEC crossover by varying the (dimensionless) coupling
parameter (kFaF)−1, where kF = (3π2n)1/3 is the Fermi wave vector associated with the number density n
and aF is the scattering length of the two-fermion problem [12]. In practice, the crossover between the BCS
and BEC regimes is exhausted within the range −1 � (kFaF)−1 � +1 about unitarity where (kFaF)−1 = 0.
In the following, we shall mostly be interested in the coupling region 0 � (kFaF)−1 � +1.5 on the BEC side
of unitarity for which the experimental data of reference [4] are available.

2.1. Outline of the theoretical expressions to be related with the experimental data
Strictly speaking, a pair of spin-up and spin-down fermions can be regarded as a purely bosonic entity only
in the BEC regime and at sufficiently low temperatures. In all other cases, one should search for correlations
between fermions and define the occurrence of pairing accordingly. Adopting this point of view, which
applies also to the so-called Cooper pairs in the BCS regime, is definitely required on the BEC side of
unitarity in the normal phase, where the experimental data reported in reference [4] were collected. To this
end, a suitable definition is needed of what would loosely speaking be referred to as a ‘preformed pair’ in
the normal phase of a fermionic superfluid. This definition should be based on a quantum many-body
approach where fermions are the elementary constituents of the theory, with no a priori reference to the
preformed pairs themselves.

We begin by introducing the bosonic propagator

GB(x, x′) = −〈Tτ [ΨB(x)Ψ†
B(x′)]〉, (1)

where x = (r, τ) groups the spatial position r and imaginary time τ , ΨB(r) is a bosonic field operator, Tτ

the time-ordered operator, and 〈· · ·〉 a thermal average taken at temperature T [13]. In terms of this
propagator, the total number of bosons is given by

Np = −
∫

dr GB(x, x+)

= −
∫

dr

∫
dq

(2π)3

1

β

∑

ν

eiΩνη GB(q, Ων), (2)

2
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where q is a wave vector, Ων = 2πν/β (ν integer) a bosonic Matsubara frequency with β = (kBT)−1 and kB

the Boltzmann constant, and η = 0+. In the last line of equation (2) a homogeneous system has been
assumed, for which one may simply write Np = V np where V is the volume occupied by the system and np

the boson density.
To the extent that the bosonic entities we are considering are made up of fermion pairs, the bosonic

operator ΨB(r) has to be related to its fermionic counterparts ψσ(r), where σ = (↑, ↓) is the spin projection.
This can be achieved by setting

ΨB(r) =

∫
dρ φ(ρ) ψ↓(r − ρ/2) ψ↑(r + ρ/2) (3)

where φ(ρ) is a suitable function that should itself embody the correlations within a fermion pair we are
after.

On physical grounds, at sufficiently low temperature in the BEC regime it is reasonable to take φ(ρ) as
the (normalized) bound-state wave function of the fermionic two-body problem in vacuum, namely,

φ(ρ) =
1√

2πaF

e−ρ/aF

ρ
(4)

where ρ = |ρ|, whose Fourier transform reads

φ(p) =

√
8π

aF

1

p2 + a−2
F

. (5)

As already mentioned, the definition (3) together with the expression (4) was originally used in reference
[10] to describe condensed composite bosons well below the superfluid transition temperature Tc with
fermions treated within the mean-field approximation [14]. The same combination of the expressions (3)
and (4) was then utilized in reference [4], aiming to account for the quantity Np of equation (2) on the BEC
side of unitarity in the normal phase above Tc, even up to a few times the Fermi temperature TF. In
addition, in this case fermions were treated within the self-consistent t-matrix approach [7], with a further
trap averaging to comply with the experimental procedure of reference [4].

To account for the experimental data of reference [4] in a comprehensive way, however, the function
φ(ρ) with which the projection is performed in equation (3) should acquire a more general form than the
expression (4), which is expected to be valid only in the BEC regime at low temperature. Accordingly, in
what follows (cf section 3.1) we will replace the expression (4) by a more general form obtained from the
pair correlation function studied in reference [11], a form which can thus be utilized even past unitarity
toward the BCS regime and up to a temperature of even several times TF.

In addition, we shall see below (cf section 2.2) that in the diagrammatic expansion of the expressions (1)
and (3) one should also retain an ‘unbound’ term that was disregarded in the analysis of reference [4] since
it is negligible in the BEC limit.

It turns out (cf section 4.2) that both these refinements (namely, the inclusion of the above unbound
term and the improvement of the expression (4) in terms of the pair correlation function) improve the
comparison with the experimental data of reference [4], especially just on the BEC side of unitarity. This
comparison will also make it possible to distinguish between the pseudo-gap and the molecular regimes
mentioned in the Introduction. Specifically, we argue that the molecular regime should be reached when the
unbound term contributes in a negligible way to the quantity Np of equation (2).

2.2. Diagrammatic approach to the pair fraction
We pass now to describe the diagrammatic approach that we have adopted for the calculation of the
expressions (1)–(3). Although we are interested in the normal phase above Tc which the experimental data
of reference [4] are restricted to, we find it convenient to adopt the Nambu representation of the fermionic
field operators

Ψ(r) =

(
ψ↑(r)

ψ†
↓(r)

)
, (6)

in terms of which the diagrammatic approach for the superfluid phase below Tc is usually formulated [15].
This is mainly because the concept of fermion pairing originates from the superfluid phase [14], from
which it can be extrapolated to the normal phase in the context of the BCS–BEC crossover [12] under
suitable circumstances, like in the present case. In addition, through the Nambu representation (6) one
finds it easier to deal with the issue of conserving approximations for a fermionic superfluid [16]. This

3
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proves important when one selects the set of diagrams that would describe at best the physical problem of
interest, with the condition that their numerical implementation remains affordable. We shall discuss this
issue in appendix A.

In terms of the Nambu representation (6), one writes for the fermionic single-particle Green’s function

G(1, 2) = −〈Tτ [Ψ(1)Ψ†(2)]〉 (7)

and for the fermionic two-particle Green’s function

G2(1, 2; 1′, 2′) = 〈Tτ [Ψ(1)Ψ(2)Ψ†(2′)Ψ†(1′)]〉, (8)

with the short-hand notation 1 = (r1, τ 1, �1) and so on, where the Nambu index � = (1, 2) refers to the
upper or lower component in the expression (6). Here, G2 is related to the two-particle correlation
function

L(1, 2; 1′, 2′) = G2(1, 2; 1′, 2′) − G(1, 1′) G(2, 2′) (9)

which satisfies the Bethe–Salpeter equation [10, 16, 17]

L(1, 2; 1′, 2′) = −G(1, 2′)G(2, 1′) +

∫
d3456 G(1, 3)G(6, 1′)Ξ(3, 5; 6, 4)L(4, 2; 5, 2′) (10)

where

Ξ(1, 2; 1′, 2′) =
δΣ(1, 1′)

δG(2′, 2)
(11)

is an effective two-particle interaction with Σ the fermionic self-energy. Equation (10) can be formally
solved in terms of the many-particle T-matrix, defined as the solution to the equation [10, 16, 17]

T(1, 2; 1′, 2′) = Ξ(1, 2; 1′, 2′) +

∫
d3456 Ξ(1, 4; 1′, 3)G(3, 6)G(5, 4)T(6, 2; 5, 2′), (12)

by writing

− L(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′) +

∫
d3456 G(1, 3)G(6, 1′)T(3, 5; 6, 4)G(4, 2′)G(2, 5). (13)

The above equations hold quite generally, regardless of the specific approximation for the kernel Ξ

defined in equation (11). In particular, to the BCS approximation ΣBCS for the self-energy there
corresponds the kernel:

ΞBCS(1, 2; 1′, 2′) =
δΣBCS(1, 1′)

δGBCS(2′, 2)

= −τ 3
�1�2′ δ(x1 − x2′ )v(x+

1 − x1′ )δ(x1′ − x2)τ 3
�1′ �2

(1 − δ�1�1′ ) (14)

where only the off-diagonal terms of the BCS self-energy have been retained following a common practice.
In the expression (14), τ 3 is the third Pauli matrix [15], x1 = (r1, τ 1) and so on, and v(x+

1 − x1′ ) =

δ(τ+
1 − τ1′ )v(r1 − r1′ ) is the attractive fermionic interaction. For the ultra-cold Fermi atoms of interest, one

takes v(r1 − r1′ ) = v0δ(r1 − r1′ ) of the contact form, where the (negative) strength v0 is further eliminated
in favor of the scattering length aF through a standard regularization procedure [12].

We return at this point to the expression (1) of the bosonic propagator GB with the definition (3) for the
bosonic field, which we rewrite in the Nambu representation (6). The following compact form then results
for GB in terms of the two-particle correlation function (9):

GB(rτ , r′τ ′) = −
∫

dρ

∫
dρ′φ(ρ)φ∗(ρ′) L(1, 2; 1′, 2′) (15)

with the identification 1 = (r + ρ/2, τ , � = 1), 2 = (r′ − ρ′/2, τ ′, � = 2), 1′ = (r − ρ/2, τ+, � = 2), and
2′ = (r′ + ρ′/2, τ ′+, � = 1). Hereafter, it will be understood that only the terms that survive once carried
over from below to above Tc will be retained in the expression (15). Accordingly, in passing from
equation (9) to equation (15) we have neglected the second term on the right-hand side of equation (9),
which corresponds to the (square magnitude of the) condensate amplitude and thus vanishes above
Tc [10].

In addition, it will be shown in appendix A that, due to the specific identification of the Nambu indices
relevant to equation (15), the many-particle T-matrix of equation (12) which solves the Bethe–Salpeter
equation for L can be built only in terms of the effective two-particle interaction Ξ of the form (14) [18].

4
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This leaves us with the freedom of endowing the fermionic single-particle Green’s function G of
equation (7) with a suitable additional self-energy Σ to be selected on physical grounds, without being
forced to introduce at the same time related additional terms in the kernel Ξ via equation (11).

With these considerations in mind, we have selected this additional self-energy of the form of the fully
self-consistent t-matrix approach, whose performance in the normal phase above Tc has been recently
tested against those of the non-self-consistent as well as of other partially self-consistent t-matrix
approaches [7], with the result that the fully self-consistent one performs best at least as far as
thermodynamic quantities are concerned. To the extent that the quantity Np given by the expression (2) of
interest here is itself a thermodynamic quantity (consistently with the fact that no analytic continuation
from Matsubara to real frequencies is required to calculate it), this choice for Σ within the fully
self-consistent t-matrix approach appears to be adequate for our purposes. In addition, the BCS self-energy
ΣBCS, which has served to obtain the kernel ΞBCS of equation (14), vanishes identically in the normal phase
and no longer needs to be considered in what follows.

For a homogeneous system, we can further make use of the Fourier representation and rewrite
equation (15) as:

GB(q, Ων) = −
∫

dp

(2π)3

1

β

∑

n

∫
dp′

(2π)3

1

β

∑

n′
φ(p + q/2)φ(p′ + q/2) L11

22(pωn, p′ωn′ ; qΩν) (16)

where ωn = (2n + 1)π/β (n integer) is a fermionic Matsubara frequency (the conventions for the Nambu
indices are specified in figure A1 of appendix A). The expression (16) will be utilized in equation (2) to
obtain the number of pairs Np. Solving then for the many-particle T-matrix of equation (12) as described
above and entering the result in equation (13) for L, equation (16) reduces eventually to the form:

GB(q, Ων) = −F2(q, Ων) − F1(q, Ων)2 Γ(q, Ων). (17)

Here,

Fj(q, Ων) =

∫
dp

(2π)3
φ(p + q/2)j 1

β

∑

n

G(p + q, ωn + Ων)G(−p, −ωn) (18)

are ‘form factors’ associated with the particle–particle bubble where j = (1, 2), and

Γ(q, Ων) = −
(

m

4πaF
+ Rpp(q, Ων)

)−1

(19)

is the particle–particle propagator in the normal phase where

Rpp(q, Ων) =

∫
dp

(2π)3

1

β

∑

n

G(p + q, ωn + Ων)G(−p, −ωn) −
∫

dp

(2π)3

m

p2
(20)

is the regularized particle–particle bubble [12]. We emphasize again that the fermionic single-particle
Green’s functions G entering the expressions (18) and (20) are meant to be obtained within the
self-consistent t-matrix approach in the normal phase [7].

What is still left to be specified is the form of the wave function φ(p) that enters equation (18). We have
already mentioned that, in the theoretical diagrammatic approach to Np presented in reference [4], φ(p)
was taken of the form (5) corresponding to the fermionic two-body problem. With this choice, however,
meaningful results could be obtained only toward the BEC edge of the BEC side of the unitary region. To
overcome this limitation, here we adopt a more general form for φ(p) which will be obtained from the pair
correlation function, as discussed in section 3.1 below.

In addition, in reference [4] the first term on the right-hand side of equation (17) was not retained. As
anticipated in section 2.1, this term will be referred to as the ‘unbound’ term as opposed to the ‘bound’
term discussed below. Here, we are going to keep this ‘unbound’ term and show that it gives a
non-negligible contribution to Np, through the pairing correlations contained both in the fermionic
single-particle Green’s function G and in the wave function φ(p) that enter the expression (18) with j = 2.
Accordingly, through this term spin-↑ and spin-↓ fermions correlate with each other indirectly via their
separate interaction with the environment.

In contrast, the second term on the right-hand side of equation (17) is referred to as the ‘bound’ term,
because in this case spin-↑ and spin-↓ fermions correlate with each other directly through their
inter-particle attractive interaction. The result for Np obtained from this term will be shown to reduce to
that of the statistical model of atom–molecule equilibrium introduced in references [5, 6], past the BEC
side of the unitary region and for not too high temperatures above Tc. The reasons for the success of the
statistical atom–molecule model in this sector of the phase diagram will be discussed in appendix B.

5
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2.3. Single-particle Green’s function
As discussed in section 2.2, the single-particle Green’s function G(p, ωn) that enters the expressions (18) and
(20) is taken within the fully self-consistent t-matrix approach. It then reads:

G(p, ωn) =
[
G0(p, ωn)−1 − Σ(p, ωn)

]−1
(21)

where G0(p, ωn) = [iωn − ξ(p)]−1 is the non-interacting counterpart with ξ(p) = p2/(2m) − μ (m being
the fermion mass and μ the chemical potential) and

Σ(p, ωn) = −
∫

dq

(2π)3

1

β

∑

ν

Γ(q, Ων) G(q − p, Ων − ωn) (22)

is the self-energy with Γ(q, Ων) given by equations (19) and (20). The chemical potential is eventually
obtained from the fermionic density nσ via the relation

nσ =

∫
dp

(2π)3

1

β

∑

n

eiωnη G(p, ωn) (23)

where n↑ = n↓ = n/2 like in reference [4]. The numerical calculation of the expressions (21)–(23) will be
implemented by taking advantage of the detailed procedures recently reported in reference [7].

In addition, the strong-coupling (BEC) limit of the expressions (21)–(23), together with that of the
expressions (2) and (17)–(20), will be examined in appendix B, to determine under what circumstances the
results for np and nσ obtained by our diagrammatic quantum many-body theory reduce to those of the
statistical model of atom–molecule equilibrium developed in references [5, 6].

3. Results for a homogeneous gas

In this section, we implement the calculation of the bosonic density np obtained from equations (2) and
(17) for a homogeneous gas, as a function of coupling and temperature. The information gathered in this
way will be used in section 4 when dealing with a trapped gas, by performing a trap average within a
local-density approximation. At that point it will be possible to compare the theoretical results with the
experimental data of reference [4].

The main ingredients of the calculation of np are the single-particle Green’s function G(p, ωn) and the
wave function φ(p) that enter equations (18)–(20). The calculation of G(p, ωn) was already considered in
section 2.3. It thus remains to consider the calculation of the wave function φ(p), as discussed next.

3.1. Pair correlation function
Our interpretation of the experimental data of reference [4] rests on the occurrence of correlations between
spin-up and spin-down fermions at equilibrium. The preliminary theoretical account of those experimental
data presented in reference [4] took the wave function φ(p) entering equation (18) of the form (5)
associated with the fermionic two-body problem. This form, however, proves able to account for the
correlations between spin-up and spin-down fermions only in the BEC regime of coupling and at low
enough temperature. As anticipated in section 2.2, we now consider a more general form for φ(p) which is
obtained from the pair correlation function

g↑↓(ρ) =
〈
ψ†

↑

(ρ

2

)
ψ†

↓

(
−ρ

2

)
ψ↓

(
−ρ

2

)
ψ↑

(ρ

2

)〉
−

(n

2

)2
. (24)

This function contains information about correlations between fermions of opposite spins at a distance
ρ = |ρ| apart. This quantity was studied in detail in reference [11] throughout the BCS–BEC crossover,
both in the superfluid phase below Tc and in the normal phase above Tc. Here, we consider the formalism
of reference [11] above Tc and rephrase it in terms of the fully self-consistent t-matrix approach that was
summarized in section 2.3.

Within the fully self-consistent t-matrix approach, the expression (24) for g↑↓(ρ) can be cast in the form
[11]:

g↑↓(ρ) =

∫
dq

(2π)3

1

β

∑

ν

eiΩνη Γ(q, Ων)

∫
dp

(2π)3
eip·ρ Π̃(p; q, Ων)

∫
dp′

(2π)3
e−ip′·ρ Π̃(p′; q, Ων) (25)

where

Π̃(p; q, Ων) =
1

β

∑

n

G(p + q, ωn + Ων) G(−p, −ωn). (26)

6

B.3. Pair correlations in the normal phase of an attractive Fermi gas. 211



New J. Phys. 22 (2020) 083008 M Pini et al

Figure 1. Spatial profiles of ρ2g↑↓(ρ) are shown vs ρ (in units of k−1
F ), for several couplings about unitarity and different

temperatures in the normal phase. In each panel, the inset gives the dependence of the contact C over an extended range of
temperature (in units of the Fermi temperature TF), where the dots correspond to the temperatures reported in the same panel.
In panels (c) and (d), the expression (2πaF)ρ2|φ(ρ)|2 = e−2ρ/aF corresponding to the two-body bound state (4) is reported for
comparison (long dash-dotted lines).

Here, the fully self-consistent G’s are considered, while in the original reference [11] non-interacting G0

corresponding to the non-self-consistent approximation were utilized.
It was also shown in reference [11] that g↑↓(ρ) given by the expression (25) recovers the short-range

behavior related to Tan’s contact C [20–22]

g↑↓(ρ) −−−−→
(ρ→0)

C

(4π)2

(
1

ρ2
− 2

ρ aF
+ · · ·

)
, (27)

such that limρ→0
(4π)2

C ρ2 g↑↓(ρ) = 1 irrespective of coupling and temperature. We have reproduced here these
analytic results within our fully self-consistent t-matrix approach, with the numerical values of C obtained
in agreement with reference [7].

Examples of the spatial profiles of the pair correlation function g↑↓(ρ) are shown in figure 1, for several
couplings and temperatures above Tc. Reported in each inset are also the respective values of the contact C
[23], from which the numerical values of g↑↓(ρ) can be explicitly reconstructed. Note the oscillatory
behavior of g↑↓(ρ), which is present on the BCS side at low temperatures but quickly fades away either by
moving toward the BEC side or by increasing temperature. Due to this oscillatory behavior, g↑↓(ρ) may
acquire negative values which correspond to a weaker correlation with respect to the uncorrelated value
n↑n↓ = (n/2)2 [11]. This behavior, however, will not affect our argument below, whereby the oscillations
about zero (whenever present) will be averaged out.

It can be verified from the expression (25) that, in the BEC limit at sufficiently low temperatures, g↑↓(ρ)
reduces to the product of the density nσ = n/2 of a single fermionic species times the square of the wave
function (4) corresponding to the fermionic two-body problem. It can be also verified that, within mean
field in the superfluid phase, the square of the pair wave function obtained from the two-particle reduced
density matrix [26] corresponds to g↑↓(ρ) [11, 27]. This suggests that the function φ(p), to be utilized in the
form factors (18), can be quite generally extracted from the pair correlation function g↑↓(ρ). To this end, we
adopt the following strategy.
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Figure 2. Temperature dependence of the parameter b of the expressions (29)–(31) for several values (reported above each line)
of the coupling (kFaF)−1 across the BCS–BEC crossover. The inset shows the derivative of b with respect to T for the same
couplings of the main panel to better evidence the high-temperature behavior.

We begin by fitting the spatial profiles of the function (4π)2

C ρ2g↑↓(ρ) of figure 1 with the expression

ρ2φ(ρ)2 = exp(−2ρ/aF) exp(−2bρ2), (28)

where b is a parameter that depends on coupling and temperature (note that the function (28), too, has unit
value at ρ = 0). We then take the square root of the expression (28) to extract φ(ρ), and multiply the result
by a suitable normalization factor N , thus writing:

φ(ρ) = N (aF, b)
e−ρ/aF

ρ
exp(−bρ2) (29)

with

N (aF, b) =
1

π3/4

(
b

2

)1/4 exp

[
− 1

4ba2
F

]

√
erfc

[
1√

2baF

] (30)

where erfc(z) is the complementary error function of (complex) argument z [28]. Note that the two-body
wave function (4) is recovered for b → 0. Finally, we take the Fourier transform of the expression (29) and
obtain the desired result:

φ(p) =
2π3/2N (aF, b)√

b p
Im

{
exp

[(
a−1

F − ip
)2

4b

]
erfc

(
a−1

F − ip

2
√

b

)}
(31)

where p = |p|. This expression recovers equation (5) in the limit b → 0.
Figure 2 shows the behavior of the parameter b obtained in this way, over a wide range of coupling and

temperature relevant to the experiment of reference [4]. In particular, for sufficiently high temperature and

irrespective of coupling, b is expected to become proportional to λ−2
T where λT =

√
2π

mkBT is the thermal

wavelength. To evidence this linear behavior of b vs T at high temperature, the inset of figure 2 plots the
derivative of b with respect to T for the same temperature range and couplings of the main panel. In all
cases, we have found that, at high temperature, this derivative is well reproduced by the expression
kB

2 m
∂b
∂T = 0.25 − 0.175(kFaF)−1

√
TF/T.

The fitting function φ(ρ) given by equation (29) focuses on the short-range part of the pair-correlation
function g↑↓(ρ) given by equation (24), which is dominated by the intra-pair correlations of relevance here.
It thus disregards a possible long-range part of g↑↓(ρ) which may include correlations between spin-↑ and
spin-↓ fermions belonging to different pairs (although this long-range part does not occur within the
t-matrix approach adopted here).

3.2. Pair fraction
We are now in a position to calculate the pair density np given by

np = −
∫

dq

(2π)3

1

β

∑

ν

eiΩνη GB(q, Ων) (32)

together with the fermionic density nσ given by equation (23), for a homogeneous system as a function of
coupling and temperature.
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Figure 3. Pair fraction np/nσ at Tc vs (kFaF)−1, obtained by the fully self-consistent (full line) and non-self-consistent (dashed
line) t-matrix approaches. In both cases, φ(p) in the form factors (18) is obtained from the expression (31) within the respective
approximations for the pair correlation function. Also shown is the result obtained by the fully self-consistent calculation, with
φ(p) approximated instead by the two-body form (5) (dashed-dotted line).

Figure 4. Pair fraction np/nσ vs T/TF for four couplings, obtained by the fully self-consistent t-matrix approach including (full
lines) or neglecting (dashed lines) the ‘unbound’ term in equation (17). In the latter case, only the ‘bound’ term is retained in
equation (17), as specified in the panels.

To begin with, figure 3 compares the pair fraction np/nσ at Tc over a wide range of the coupling
(kFaF)−1, as obtained by the fully self-consistent and non-self-consistent t-matrix approaches. As for other
thermodynamic quantities [7], also in this case the fully self-consistent approach proves superior to the
non-self-consistent one, to the extent that the ratio np/nσ should never exceed unity. Accordingly, from now
on results obtained by the fully self-consistent approach will only be presented. In addition, the use of the
two-body form (5) for φ(p) in the form factors (18) is seen to lead to unstable results upon entering the
unitary regime with (kFaF)−1 � +1. Abandoning the two-body form (5) in favor of the expression (31)
associated with the pair correlation function is thus expected to yield a definite improvement over the
theoretical analysis made in reference [4] when accounting for the experimental values of the pair fraction
for the trapped system (cf section 4.2 below).

In figure 4 the pair fraction np/nσ is shown over a wide range of temperature and a selected number of
couplings across unitarity. In particular, this figure compares the results obtained by including (full lines) or
neglecting (dashed lines) the ‘unbound’ term represented by the term −F2 on the right-hand side of
equation (17). One sees that inclusion of this unbound term over and above the bound term (represented
by the second term on the right-hand side of equation (17)) leads to substantial differences, especially in the
unitary regime at low temperature. The unbound term was not included in the diagrammatic approach to

9
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Figure 5. Contour plots of the pair fraction np/nσ in the temperature–coupling phase diagram of the homogeneous system,
obtained by the fully self-consistent t-matrix approach by including (full lines) or neglecting (dashed lines) the ‘unbound’ term
in equation (17). Also shown are the results of the statistical model obtained from equation (33) (dotted lines). In each panel, the
coupling dependence of the critical temperature Tc (in units of TF) is reported (dashed-dotted line), which sets the boundary of
the normal phase for the homogeneous system. Note that a different vertical scale is used in each of the three panels.

the pair fraction presented in reference [4]. It will be shown in section 4.2 that the agreement with
experimental data will be definitively improved by its inclusion.

In preparation for this comparison, figure 5 shows three contour plots where a given value of the pair
fraction np/nσ is seen to evolve in the T-vs-(kFaF)−1 phase diagram. Similarly to what was done in figure 4,
for each of the three values of np/nσ here reported the numerical results have been obtained by including
(full lines) or neglecting (dashed lines) the unbound term in equation (17). In all cases, the difference
between these two sets of results turns out to be substantial as soon as entering the unitary regime with
(kFaF)−1 � +1. This implies that, in this regime of most physical interest, the fermionic character of the
constituent particles reveals itself.

To confirm this point of view, figure 5 also shows for comparison the contour plots of np/nσ

corresponding to the statistical model (dotted lines), as obtained from the law of mass action

n2
f

np
=

1

8

(
mkBT

π

)3/2

e−ε0/kBT (33)

where ε0 = (ma2
F)−1 is the two-body binding energy, which results from the integrals in equation (B11) of

appendix B by neglecting ±1 in the denominators therein. It turns out that the results of the statistical
model coincides with those of the quantum many-body approach that includes only the bound term, but
only at most up to (kFaF)−1 ≈ 0.6 after which the molecular regime with the two-body wave function (4)
loses its meaning.

From figure 5 one also notes that the pairing fraction is still appreciable on the BCS side of unitarity,
especially with the inclusion of the unbound term. This is because the pairing fraction, as obtained in terms
of the expression (17), is meant to count correlated fermionic pairs that are present throughout the
BCS–BEC crossover, and not only the bosonic dimers that exist in isolation only in the BEC limit at low
temperature. The above larger than expected value of the pairing fraction could appear surprising, since
other physical quantities, like the single-particle density of states or the single-particle spectral function [7,
29, 30], present less marked effects of pairing correlations on the BCS side of unitarity above Tc. To support
our results, it may be remarked that also the pair correlation function of figure 1 shows a similar persistence
of pairing like the pairing fraction in the same temperature and coupling region. It may thus be concluded
that the pairing fraction, which is defined in terms of a two-particle Green’s function, is more sensitive to
pair correlations than single-particle quantities.
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4. Results for a trapped gas and comparison with experimental data

The results obtained in section 3 for np given by equation (32) and for nσ given by equation (23) refer to a
homogeneous system. In order to compare with the experimental data of reference [4], these theoretical
results need to be averaged over the trap that contains the Fermi gas.

4.1. Trap average
When considering a Fermi gas trapped in an anisotropic harmonic potential of the type

V(r) =
1

2
m

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

, (34)

one can adopt a local-density approximation and obtain the total number Np of pairs and the total number
Nσ of fermions in the trap in the following way. One first replaces the fermionic chemical potential μ

entering the single-particle Green’s function G(p, ωn) of equation (21) by μ → μ − V(r), thereby obtaining
the local function G(p, ωn; r). One then replaces G(p, ωn) → G(p, ωn; r) everywhere this function occurs,
namely, in the expressions (17)–(20) for pairs and the expressions (21)–(23) for fermions. Finally, one
integrates the expressions of the local densities np(r) and nσ(r) obtained in this way over the spatial variable
r, to get the total number of pairs Np and the total number of fermions Nσ with spin σ. The value of the
fermionic chemical potential μ for the trap is eventually determined for given coupling and temperature by
solving for μ as a function of Nσ . In practice, in the experiment of reference [4] typical values of ωx = ωy

range from 2π × 300 Hz to 2π × 1.6 kHz, while ωz = λωx = 2π × 21 Hz (with λ < 1).
In the theoretical expressions, it is convenient to map at the outset the anisotropic potential (34) into a

spherical one by rescaling the variables from (x, y, z) to (x′ = λ−1/3x, y′ = λ−1/3y, z′ = λ2/3z), such that the
trapping potential becomes

V(x′, y′, z′) =
1

2
m ω2

0 r′2 (35)

where r′ =
√

x′2 + y′2 + z′2 and ω0 = (ωxωyωz)1/3 = λ1/3ωx is the average trap frequency. Accordingly, the
original spatial distribution n(x, y, z) of the fermionic density with an ellipsoidal shape is mapped onto a
spherical distribution n′(x′, y′, z′) = n′(r′) through the rescaling n(x, y, z) = n′(λ−1/3x, λ−1/3y, λ2/3z) (with
both spin components included).

Profiles of the total fermion isotropic density n′(r ′) = n′
↑(r ′) + n′

↓(r ′) obtained from equation (23) in
this way are shown in figure 6, for several couplings across unitarity and temperatures in the normal phase.
The coupling parameter (kt

FaF)−1 associated with the trap is expressed in terms of kt
F =

√
2 mEt

F, where
Et

F = ω0(3N)1/3 is the Fermi energy in the trap and N = N↑ + N↓ is the total number of fermions. (In the
experiment of reference [4], typical values of N range from 3 × 104 to 3 × 105).

The values of the critical temperature Tc for the trap case, reported in figure 6 only for three specific
couplings, can be obtained throughout the whole BCS–BEC crossover. This information is important also
to verify whether the experimental values of the pair fraction in the trap of reference [4] were measured in
the normal phase. To calculate Tc for the trap, we adopt again a local-density approximation and define a

local Fermi temperature TF(r) such that kBTF(r) =
[
3π2n(r)

]2/3
/(2 m). This implies that the local Fermi

temperature, like the density n(r), has its maximum value at r = 0, to which there corresponds a minimum
value of T/TF(r) for given temperature T. Accordingly, the central portion of the cloud density is where
superfluidity is first established upon lowering the temperature from the normal phase.

To obtain Tc for the trapped system, we then apply the Thouless criterion

Γ(q = 0, Ων = 0; μ(r = 0), Tc)−1 = 0 (36)

in terms of the particle–particle propagator (19) in the normal phase, where now
μ(r = 0) = μ − V(r = 0) = μ is the fermionic chemical potential for the trap calculated at the critical
temperature Tc. Details on how the variables (Tc, μc) have been determined by solving the Thouless
criterion in conjunction with the density equation are given in appendix B of reference [7].

Figure 7 shows the results of our calculation for Tc in the trap across the BCS–BEC crossover. The
results of the fully self-consistent t-matrix approach (full line) are also compared with those of its
non-self-consistent counterpart (dashed line). While the two calculations essentially coincide with each
other in the BCS regime (kt

FaF)−1 � −1, they differ considerably on the BEC side of unitarity. We attribute
this difference to the occurrence of a residual interaction between composite bosons in the BEC regime
(kt

FaF)−1 � + 1, which is present within the fully self-consistent but absent within the non-self-consistent
calculation [7].
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Figure 6. Total fermion isotropic radial density n′(r ′) vs r′ for couplings: (a) (kt
FaF)−1 = −0.5; (b) (kt

FaF)−1 = 0.0; (c)
(kt

FaF)−1 = +0.5. In each panel, the results for T = Tc (dots), T = 0.5Tt
F (squares), T = Tt

F (diamonds) are shown. Lengths are
in units of the Thomas–Fermi radius RTF given by 1

2 mω2
0 R2

TF = Et
F where Et

F = ω0(3N)1/3 is the trap Fermi energy, such that
8N/(π2R3

TF) is the value of n(r = 0) for the non-interacting gas at T = 0 within a local-density approximation.

Figure 7. Critical temperature Tc (in units of the Fermi temperature Tt
F = Et

F/kB) vs (kt
FaF)−1 for the trapped system. Results are

shown for the fully self-consistent (full line) and for the non-self-consistent (dashed line) t-matrix approaches. In the BEC
regime, the results of a model calculation for trapped bosons with a mean-field-type interaction (cf appendix C) are also shown
with the value aB = 1.16aF for the bosonic scattering length (dashed-dotted line). The inset shows the results of additional
bosonic calculations with different values of aB (see text).

To make a check on the results of our numerical calculation, also shown in figure 7 are the results for Tc

(dashed-dotted line) obtained for a low-density trapped Bose gas with a residual interaction specified by the
scattering length aB (cf appendix C), where for internal consistency the approximate value aB = 1.16aF that
results from the fully self-consistent t-matrix approach [7] was considered. In this way, we can confirm
quantitatively the effects of aB on Tc for the trapped system in the BEC regime, which are contained in the
fully self-consistent t-matrix approach. For comparison, the inset reports additional bosonic calculations
for: (i) aB = 2.0aF which corresponds to the residual bosonic interaction being treated at the level of the
fermionic exchange diagrams [31]; (ii) aB = 0.75aF when the T-matrix for the dimer–dimer scattering built
on these exchange diagrams is further considered [31]; (iii) the exact value aB = 0.6aF obtained either by a
numerical solution of the four-body Schrödinger equation [32] or by a full diagrammatic treatment in the
zero-density limit [33].
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Figure 8. Comparison between the axial densities along the main axis of the trap, as observed experimentally (full lines) and
calculated with the self-consistent t-matrix approach (dashed lines) and the statistical atom–molecule model (dotted lines),
when (a) T/Tt

F = 0.51(4) and (kt
FaF)−1 = 0.20(3), (b) T/Tt

F = 0.49(4) and (kt
FaF)−1 = 0.49(3), and (c) T/Tt

F = 0.99(6) and
(kt

FaF)−1 = 1.00(5). The ratio λ between the axial and radial trap frequencies equals 0.0435(8) in (a), 0.0424(7) in (b), and
0.0272(4) in (c). The axial Thomas–Fermi radius Ra

TF = λ−2/3 RTF is used for normalization.

Finally, it should be mentioned that the value Tc/Tt
F = 0.2074, which we have obtained at unitarity by

the fully self-consistent calculation, coincides with that obtained in reference [9] by the same approach.
However, our calculation for Tc is extended to the whole BCS–BEC crossover while that of reference [9] was
limited to unitarity only.

4.2. Comparison between theory and experiment
A first quantity to be compared with the experimental data of reference [4] is the axial density na(z) where z
runs along the main axis of the trap, which is obtained by integrating the total fermion density n(x, y, z)
over the radial directions x and y. Specifically, the experimental profiles na(z) can be compared with their
theoretical counterparts n′

a(z′), obtained by integrating over x′ and y′ the isotropic profiles
n′(r′) = n′(x′, y′, z′) (like those shown in figure 6) and then performing the rescaling

na(z) = λ2/3 n′
a(λ2/3z). (37)

Figure 8 shows this comparison for three sets of values of temperature, coupling, and anisotropy λ. In all
cases, excellent agreement results between the experiment and the quantum many-body approach with no
adjustable parameter. The figure shows also the comparison with the fermion axial density profiles
calculated within the statistical atom–molecule model [34], for which notable deviations from the
experiment occur, as expected, for low temperature and close to unitarity.

Note that the comparison shown in figure 8, between the experimental and theoretical fermion axial
density profiles, does not provide a test on the validity of the pairing fraction theory described in
section 2.2. It is only meant to be an independent check on the fully self-consistent t-matrix approach for a
thermodynamic property which is an essential ingredient of the trap averaging procedure.

Finally, figure 9 presents the comparison of the pairing fraction Np/Nσ obtained by our ab initio
quantum many-body calculation with the experimental data of reference [4] over the temperature–coupling
phase diagram (where kt

F and Tt
F now refer to the trapped system). The comparison is made for three
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Figure 9. Contour plots of the pair fraction Np/Nσ in the temperature–coupling phase diagram of the trapped system, obtained
by the fully self-consistent t-matrix approach by including in equation (17) (i) both bound and unbound terms (full lines), (ii)
only the bound term (dashed lines), and (iii) only the bound term with the two-body form (4) of φ(ρ) (dashed-dotted lines). The
theoretical curves are compared with the experimental data of reference [4] (diamonds with vertical error bars). For
(kt

FaF)−1 � 0.3 the results of the statistical model obtained from equation (B15) of appendix B are also shown (dotted lines). In
each panel, the coupling dependence of the critical temperature Tc (in units of Tt

F) is reported (long dashed-dotted line), which
sets the boundary of the normal phase for the trapped system.

characteristic values of Np/Nσ . In all cases, good agreement is obtained between theory and experiment (we
emphasize that the theoretical results have been obtained with no adjustable parameter).

In particular, this comparison shows that both the inclusion of the unbound term and the improvement
in the description of φ(ρ) in terms of the pair correlation function (with respect to the preliminary
description in terms of the two-body bound state of reference [4]) significantly improve the agreement of
our calculations with the experimental data. And this is despite the presence of the trap, which acts to
suppress the contribution of the unbound term (as evident by comparing figures 5 and 9). This suggests
that the experimental data probe indeed the pairing correlations between spin-up and spin-down fermions
as defined by our formalism.

From this comparison one can argue that the crossover, between the pseudo-gap regime (where the
fermionic character of the constituent particles matters) and the molecular regime (where only the presence
of bosonic pairs is relevant), sets in about where the theoretical results for Np/Nσ , obtained with and
without the unbound term, start departing from each other. This argument cannot be made in terms of the
statistical atom–molecule model [4], that misses the contribution of the unbound term.

Finally, we have performed a χ2 test to better quantify the agreement between the experimental data
and the theoretical many-body predictions of figure 9. To this end, we have adopted the standard
definition

χ2 =
1

nexp − 1

nexp∑

i=1

(yth
i − yexp

i )2

(σexp
i )2

, (38)

where yth
i is the theoretical prediction corresponding to each of the nexp experimental points yexp

i and σ
exp
i

are the (symmetrized) errors. The results of the test for the three values of Np/Nσ of figure 9 are reported in
table 1. They clearly show that the full bound + unbound calculation better agrees with the experimental
data than the bound and bound (φ two-body) calculations, since it minimizes the χ2 test function of
equation (38) in each case. (Consistently with figure 9, for Np/Nσ = 0.75 the two experimental points
closest to unitarity have not been taken into account in the χ2 test when the unbound term is not included
in the theoretical calculation).
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Table 1. χ2 test on the theoretical contour plots of figure 9 with
given pairing fraction Np/Nσ against the corresponding
experimental data.

Np/Nσ Bound + unbound Bound Bound (φ two-body)

0.25 2.92 3.75 4.26
0.50 1.33 2.37 2.85
0.75 0.54 1.57 1.74

5. Concluding remarks

In this paper, we have provided a detailed account of a theoretical approach to interpret the experimental
data reported in reference [4] in a quantitative way. By this approach, from the data reference [4] we have
been able to unravel how the occurrence of pairing correlations between spin-up and spin-down fermions
at equilibrium develops, as a function of temperature in the normal phase and of coupling on the BEC side
of unitarity. What we claim to have learned from this is how the pseudo-gap regime (where fermions
matter) and the molecular regime (where only composite bosons matter) separate from each other. This
should be considered rather remarkable, since this result was extracted from experiment [4] where an
equilibrium quantity was measured (i.e. the number of fermion pairs) and not a dynamical quantity (the
excitation gap).

From the theoretical side, to account for the experimental data we have taken advantage of several
favorable circumstances. On the one hand, since the number of fermion pairs in a Fermi gas undergoing the
BCS–BEC crossover is an equilibrium quantity, it can be accounted for quite well in terms of the fully
self-consistent t-matrix approach [7]. On the other hand, this physical quantity that was measured
experimentally by its own nature does not require one to endow the theory with a series of complicated
Aslamazov–Larkin and Maki–Thompson diagrams, which should otherwise be included to fulfill
conservation criteria when addressing dynamical response functions [16], to the extent that the
single-particle self-energy is treated within the fully self-consistent t-matrix approach. In addition, our
emphasis here on fermionic correlations has drawn on our previous experience on the pair-correlation
function in the normal phase, which was addressed in detail in reference [11] within the non-self-consistent
t-matrix approach and here extended to the fully self-consistent one.

Along these lines, future perspectives, that could reinforce our argument about the evidence for the
separation between the (fermionic) pseudo-gap and the (bosonic) molecular regimes, may hinge on the
possibility of extending the measurements of the ratio Np/Nσ toward unitarity at temperatures close
enough to Tc.

In addition, to highlight experimentally the relevance of the correlations induced indirectly by the
environment between spin-↑ and spin-↓ fermions, which are embodied in the ‘unbound’ term in the
expression (17), it could be worth to consider repeating the experiment of reference [4] by replacing the
harmonic trap with a box trap along the lines of reference [35]. In this way, one should be able to amplify
the difference between the values of the pair fraction obtained with and without the inclusion of the
unbound term, as one may anticipate by comparing the results of figure 5 for the homogeneous case with
those of figure 9 for the trapped case.

It is, finally, interesting to draw a physical connection between our finding about the indirect
correlations established between spin-↑ and spin-↓ fermions through their environment and the recent
results of reference [36] about the way the quark-gluon structure of a nucleon bound in an atomic nucleus
is modified by the surrounding nucleons. In both cases, it is the environment that plays an important role
in modifying the properties of what would be a bound system in isolation.

Acknowledgments

MP, PP, and GCS acknowledge financial support from the Italian MIUR under Projects PRIN2015
(2015C5SEJJ001) and PRIN2017 (CEnTraL 20172H2SC4). MJ and JHD acknowledge financial support
from DFG (LI988/6-1), and thank W Limmer, T Paintner and D Hoffmann for discussions.

Appendix A. About the use of conserving approximations for the pair fraction

In section 2.2 we have argued that only the form (14) of the effective two-particle interaction Ξ is of
relevance for the calculation of the bosonic propagator GB(q, Ων) of equation (16) (and thus of the quantity
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Figure A1. (a) Ladder diagrams for the T-matrix in the superfluid phase, where dots delimiting potential (dashed) lines
represent τ 3 Pauli matrices. (b) Corresponding diagram for the t-matrix fermionic self-energy. Examples of (c) MT and (d) AL
diagrammatic contributions to the pair propagator GB, which are bound to vanish when carried over to the normal phase owing
to the presence of two anomalous fermionic single-particle Green’s functions which connect 1 ↔ 2. For simplicity, only Nambu
spin indices have been explicitly indicated in all diagrams.

Np of experimental interest). We have also anticipated that the reason for this is to be found in the specific
sequence of Nambu indices appearing in the expression (15) from which equation (16) is derived. Here, we
show specifically how the diagrammatic contributions to Ξ, that would derive from the t-matrix approach
for the fermionic self-energy Σ, cannot modify this result. Under different circumstances, like for the
calculation of the density and spin response functions, on the other hand, the diagrams for Ξ corresponding
to the Aslamazov–Larkin (AL) and Maki–Thomson (MT) contributions would instead result from the
t-matrix approach for Σ (see, e.g., figure 3 of reference [37]). In our case, the importance of introducing the
t-matrix approach for Σ arises from the need of obtaining an accurate description of the thermodynamic
properties of the Fermi gas in the normal phase [7].

Probably the simplest way to convince oneself that the AL-type and MT-type contributions to Ξ, which
would result from the t-matrix self-energy taken below Tc, do not contribute to the expression (15) of the
pair propagator GB once carried over to the normal phase above Tc, is to draw these contributions in a
diagrammatic way. This is done in figure A1. Here, the series of ladder diagrams that approximate the
many-particle T-matrix in the broken-symmetry phase is reported in panel (a), while the corresponding
t-matrix self-energy is shown in panel (b). For simplicity, in these diagrams only the Nambu indices have
been explicitly indicated, while the space and imaginary time variables are not reported since they are not
essential to the following argument. The crucial point is that for the T-matrix of panel (b) only
combinations with Nambu indices �L �= �′

L and �R �= �′
R occur, owing to the inter-particle interaction of the

contact form that we have adopted (cf also reference [10]). In addition, only combinations with �L = �R and
�′

L = �′
R will survive when these diagrams are extrapolated to the normal phase. As a consequence, a typical

example of MT contribution is shown in figure A1(c), while a typical example of AL contribution is shown
in figure A1(d). In all cases, it turns out that at least two single-particle Green’s functions with off-diagonal
Nambu indices would be required to match these contributions to Ξ with the Nambu indices appearing in
the expression (15). Since the off-diagonal (anomalous) single-particle Green’s functions vanish in the
normal phase above Tc, the MT- and AL-type contributions to Ξ vanish, too, and do not affect the
expression (15) which is relevant for the calculation of Np above Tc. This proves our statement.

Appendix B. Comparison between the quantum many-body approach and the
statistical atom–molecule model for the pair fraction

It is interesting to determine under what physical circumstances the expressions for the total
number of bosons Np and for the total number of spin-σ fermions Nσ of our fully quantum
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many-body approach reduce to those of a statistical model of a fermion–boson mixture at equilibrium
[5, 6].

To this end, we consider a homogeneous system, for which Np = V np and Nσ = V nσ are expressed in
terms of the respective densities. By our quantum many-body approach, np is given by equation (32) with
GB given by the expression (17), while nσ is given by the expression (23). To recover the physics of a
fermion–boson (or atom–molecule) mixture, one requires the fermionic coupling to be sufficiently strong
in the BEC regime and the temperature sufficiently low, for the internal structure of the composite bosons
(dimers) to become irrelevant.

In this limit, the fermionic chemical potential μ becomes the largest energy scale of the problem and is
written in the form μB = 2μ + ε0, where ε0 = (ma2

F)−1 is the dimer binding energy and μB the dimer
chemical potential [12]. The expression (26) then reduces to

Π̃(p; q, Ων) 
 1

2ξ(p)
, (B1)

which, together with the expression (5) for φ(p) appropriate to this limit, yields the following approximate
form for the form factors (18) [10]:

F1(q, Ων) 

√

m2aF

8π
, F2(q, Ων) 
 ma2

F

4
. (B2)

This implies that, in the BEC limit where aF → 0+, the ‘unbound’ term F2 vanishes faster than F1 and can
thus be neglected in the expression (17). In addition, in the same limit the particle–particle propagator
Γ(q, Ων) of the ‘bound’ term in the expression (17) acquires the polar form [12]:

Γ(q, Ων) 
 − 8π

m2aF

1

iΩν − q2

4 m + μB

. (B3)

Combining these results together, one gets eventually for the bosonic density:

np 
 −
∫

dq

(2π)3

1

β

∑

ν

eiΩνη

iΩν − q2

4 m + μB

=

∫
dq

(2π)3

1

eβξB(q) − 1
(B4)

in terms of the Bose–Einstein distribution of argument ξB(q) = q2

4 m − μB.
To determine nσ in the BEC limit at sufficiently low temperature, we consider the expression (23) where

we expand the single-particle Green’s function (21) in series of the self-energy Σ

G(p, ωn) 
 G0(p, ωn) + G0(p, ωn) Σ(p, ωn) G0(p, ωn) + · · · (B5)

where G0(p, ωn) = [iωn − ξ(p)]−1 is the non-interacting single-particle Green’s function, by again relying
on the fact that the fermionic chemical potential μ entering ξ(p) = p2/(2m) − μ is the largest energy scale
in the problem. We thus obtain:

nσ 

∫

dp

(2π)3

1

β

∑

n

eiωnη G0(p, ωn)

+

∫
dp

(2π)3

1

β

∑

n

G0(p, ωn)2 Σ(p, ωn) + · · ·

≡ n(0)
σ + n(1)

σ . (B6)

Here,

n(0)
σ =

∫
dp

(2π)3

1

β

∑

n

eiωnη G0(p, ωn)

=

∫
dp

(2π)3

1

eβξ(p) + 1
(B7)

coincides with the density nf of unpaired fermions (atoms) with spin σ and expressed in terms of the
Fermi–Dirac distribution of argument ξ(p), and
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n(1)
σ =

∫
dp

(2π)3

1

β

∑

n

G0(p, ωn)2 Σ(p, ωn)


 −
∫

dp

(2π)3

1

β

∑

n

G0(p, ωn)2 G0(−p, −ωn)

×
∫

dq

(2π)3

1

β

∑

ν

eiΩνη Γ(q, Ων) (B8)

owing to the approximate form for the self-energy (22) which is valid in this limit. With the polar
approximation (B3) for Γ(q, Ων) and the further approximate result (cf, e.g., section 3.1 of reference
[12]) ∫

dp

(2π)3

1

β

∑

n

G0(p, ωn)2 G0(−p, −ωn) 
 − m2 aF

8π
, (B9)

the expression (B8) reduces to

n(1)
σ =

∫
dq

(2π)3

1

eβξB(q) − 1
(B10)

which coincides with the density np of bosons (molecules) given by equation (B4). A combination of
equations (B6), (B7), and (B10) yields eventually the result:

nσ = nf + np =

∫
dp

(2π)3

1

eβξ(p) + 1

+

∫
dq

(2π)3

1

eβξB(q) − 1
. (B11)

At this point, the fermionic chemical potential μ can be eliminated from equation (B11) by fixing the value
of nσ therein, with the bosonic chemical potential μB = 2μ + ε0 following in a consistent way.

There remains to find an explicit connection with the expressions of the fermion–boson
(atom–molecule) model, which were obtained in references [5, 6] in the classical limit and used in reference
[4] to account for the experimental data in the BEC regime of the phase diagram. To this end, we consider
the classical limit of the expressions (B11) by neglecting ±1 in the denominators, and perform the trap
average by replacing μ → μ − Vf (r) and μB → μB − Vp(r) and integrating over the space variable r,
similarly to what was done in section 4.1. Here,

Vf/p(r) =
1

2
Mf/p

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

(B12)

is the (anisotropic) harmonic oscillator potential commonly considered for ultra-cold gases, with Mf = m
for fermions (atoms) and Mp = 2m for bosons (molecules). The results for the total number of unpaired
fermions Nf (per spin component) and the total number of bosons Np then become:

Nf 

∫

dr

∫
dp

(2π)3
e
−β

[
p2

2 m +Vf(r)−μ

]

=

(
kBT

ω0

)3

eμ/kBT (B13)

and

Np 

∫

dr

∫
dq

(2π)3
e
−β

[
q2

4 m +Vp(r)−μB

]

=

(
kBT

ω0

)3

eμB/kBT (B14)

where ω0 = (ωxωyωz)1/3 is the average trap frequency (cf, e.g., references [38, 39]). From these results it
follows that

N2
f

Np
=

(
kBT

ω0

)3

e(2μ−μB)/kBT =

(
kBT

ω0

)3

e−ε0/kBT , (B15)

from which, by replacing ω0 = Et
F/(6Nσ)1/3 where Et

F is the Fermi energy for the trap, one recovers the
expression reported in appendix A of reference [4]. More generally, Np and Nf for the trapped case could be
obtained in closed form directly from equations (B4) and (B7), in terms of Li3(eβμB ) for bosons and
Li3(−eβμ) for fermions (where Lin(z) is the poly-logarithmic function of index n and argument z). The
expression (B15) generalizes to a harmonically trapped system the law of mass action valid for a
homogeneous system [40].

Finally, it is worth summarizing what is lost when passing from the fully quantum many-body approach
to its simplified version obtained above. To get this simplified version, in equation (17) we have (i)
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Figure B1. Temperature dependence of the relative difference δnp/n(Q)
p with δnp = n(Q)

p − n(C)
p between the quantum

many-body (Q) and classical statistical (C) calculations of the pair density np for the homogeneous system at various couplings.
The vertical lines indicate the corresponding binding energies ε0 (in units of EF), for increasing coupling from left to right.

neglected the ‘unbound’ term −F2(q, Ων), (ii) approximated φ(p) in the expression (18) for F1(q, Ων) by
the two-body form (5) and taken μ = −ε0/2 therein with ε0 � kBT, and (iii) approximated Γ(q, Ων) by
the polar form (B3); while in equation (23) we have performed the expansion (B5) with the typical
approximations that apply to the BEC limit at low temperature when μ is the largest energy scale in the
problem. None of these approximations, however, is valid either away from the BEC limit when
approaching unitarity at any temperature, or in the BEC limit itself for sufficiently high temperature. In
both these cases, the fermionic nature of the ‘preformed pairs’ manifests itself and only fermionic
correlations remain physically relevant. On physical grounds, the results of the quantum many-body
approach and of the statistical fermion–boson model differ from each other to the extent that the latter
bears essentially on the chemical reaction (dimer ↔ spin-↑ + spin-↓) for molecules that break up into atom
pairs and vice versa, with no regard on the way the molecules are formed by the laws of quantum
mechanics and on the effects that the surrounding environment might exert on them through inter-particle
collisions.

In this context, it is interesting to explicitly verify to what extent the results of the quantum many-body
approach (Q) and of the classical statistical model (C) differ from each other in the BEC limit of the
homogeneous system at sufficiently high temperature. To this end, figure B1 shows the temperature
dependence of the relative difference δnp/n(Q)

p for the couplings (kFaF)−1 = (0.5, 1.0, 1.5), where

δnp = n(Q)
p − n(C)

p . One sees that this relative difference can be substantial in all cases. In particular, for
kBT � ε0 the relative difference increases with increasing temperature and decreases with increasing
coupling, as expected. The following apparent reduction of the relative difference for kBT�ε0 then turns
into a substantial increase (in absolute value) when kBT � ε0. Again in favor of the results obtained by the
quantum many-body (t-matrix) approach, one should recall that in the high-temperature limit this
approach correctly recovers the controlled high-temperature (virial) expansion to second order [41].
Specifically, when this high-temperature expansion is made on the self-energy, keeping both the
bound-state (pole) and scattering (continuum) contributions to the particle–particle propagator Γ of
equation (19) turns out to be essential to correctly recover the virial expansion. Since the statistical model
includes only the bound-state contribution, it unavoidably fails in the high-temperature limit.

Appendix C. Critical temperature of a low-density trapped Bose gas

In this appendix, we calculate the superfluid critical temperature of a low-density Bose gas in a trap, where
the interaction is treated at the level of the two-body t-matrix specified by the scattering length aB. Similarly
to what we did in section 4.1 for the trapped Fermi gas, we adopt a local-density approximation whereby
the bosonic chemical potential μB is replaced by a local chemical potential μB(r). We thus write for the
bosonic density

nB(r) =

∫
dq

(2π)3

1

e
β

[
q2

2mB
−μB(r)

]

− 1

(C1)

where μB(r) = μB − VB(r) − 2t0nB(r). Here, VB(r) is the trapping potential of the form (34) with m → mB

(we also assume ωx = ωy = ωz = ω0 for simplicity), and 2t0nB(r) is the leading approximation to the
self-energy of a dilute Bose gas in the normal phase where t0 = 4πaB/mB [42]. Note that, owing to the
presence of the local self-energy 2t0nB(r), equation (C1) is a self-consistent condition for nB(r). Once nB(r)
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is known, the total number of bosons is obtained as follows:

NB =

∫
dr nB(r). (C2)

We are interested in determining the dependence on NB of the critical temperature Tc for the transition
to the superfluid phase. Similarly to what happens for a trapped Fermi gas (cf section 4.1), also for a
trapped Bose gas the central portion of the cloud density is where superfluidity first manifests itself upon
lowering the temperature from the normal phase. At r = 0, the Hugenholtz–Pines condition [43] for Tc

then yields
μB = 2 t0 nB(r = 0) (C3)

for the thermodynamic bosonic potential in the trap. At Tc, we can then write μB(r) = −VB(r) − 2t0 δnB(r)
with δnB(r) = [nB(r) − nB(r = 0)], such that equation (C1) becomes:

nB(r) =

∫
dq

(2π)3

1

e
βc

[
q2

2mB
+VB(r)+2t0δnB(r)

]

− 1

(C4)

where βc = (kBTc)−1. For any given value of r, this equation is solved self-consistently for the variable nB(r)
by fixing an arbitrary value of nB(r = 0) to start with, in such a way that nB(r) never exceeds nB(r = 0).
Once the entire density profile nB(r) is obtained in this way, one calculates NB from equation (C2) so as to
obtain Tc as a function of NB and aB. In addition, upon measuring the values of Tc obtained in this way in

units of the critical temperature for non-interacting trapped bosons kBTBEC
c = ω0

[
NB/ζ(3)

]1/3
(where ζ(z)

is the Riemann zeta function of argument z), one finds that Tc/TBEC
c is a function only of the scaling

variable aB

√
kBTBEC

c /mB. By translating back into the language of the BCS–BEC crossover of the main text,
one gets eventually that Tc/Tt

F is a function of the coupling parameter (kt
FaF)−1 in the trap since aB is

proportional to aF (cf figure 7).
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