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Abstract

For my dissertation, I have carried out experiments with a single Ba+ ion which

is immersed in a cloud of ultracold neutral Rb atoms. The ion is held in a Paul trap

and is initially laser cooled to about 1mK×kB. The atom cloud consists of about

106 Rb atoms at a typical temperature of about 1 µK and it is trapped in an optical

dipole trap. In the experiments, the ion trap and the optical dipole trap are brought

to an overlap and as a consequence, the ion and atoms can collide with each other.

Besides elastic collisions between the two species, also a variety and concatenation

of inelastic and reactive collisions can take place.

My thesis mainly consists of two parts:

In the first part, I use the elastic and reactive collisions between the atoms and the

ion to investigate and fine-tune the properties of the Paul trap. A Paul trap is based

on electric radio-frequency fields which exert oscillating forces on the trapped ion.

In an ideal case, these electrical fields vanish at the precise location of the trapped

ion. Because of imperfections in the setup, however, typically there are still some re-

maining electrical fields. This leads to an unwanted motion of the trapped ion, called

excess-micromotion. For many of our (planned) experiments in Ulm, it is important

to minimize this excess-micromotion, to obtain the lowest possible kinetic energy of

the ion. It turns out that the elastic and reactive collision rates between the ion and

the atoms are strongly correlated with the kinetic energy of the ion and therefore

are correlated with the excess-micromotion. I show in my thesis that by minimizing

losses in the Rb cloud which are due to the elastic and reactive ion-atom collisions

one can suppress excess-micromotion quite well by additional radio-frequency fields

that are applied to the Paul trap.

In the second part, I studied the evolution of a single BaRb+ molecule while it contin-

uously collides with ultracold Rb atoms. The BaRb+ molecule forms within one ms

when we immerse the cold Ba+ ion into a dense gas of Rb. The molecule is initially

weakly-bound and can undergo a sequence of elastic, inelastic, reactive, and radiative

processes. I investigated these processes by developing methods for discriminating

between different ion species, electronic states, and kinetic ion energy ranges. By

comparing the measurements to model calculations a consistent description of the

typical trajectory of the ion through the manifold of available atomic and molecular

states has been gained. As a further result, rates for collisional and radiative relax-

ation as well as photodissociation, spin-flip collisions, and chemical reactions have

been determined.
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Chapter 1

Introduction

For several decays, it was an important goal to reduce the kinetic energy of atoms

and make them cold and trapped, because this allows for precision measurements and

a new generation of experiments in which a high degree of experimental control is

available over internal and external quantum states of atoms. Cold atoms are in two

classes of neutral atoms and ions and can be realized by laser cooling, a well-known

technique that makes cold atoms samples near absolute zero. The idea of cooling

atoms by laser beams goes back to 1975 when in independent works Hänsch and

Schawlow [1] and Wineland and Dehmlet [2] suggested that the radiation pressure of

quasi-monochromatic lights can be used for reducing the average translational energy

of atoms.

First experiments related to the laser cooling of atoms were reported in 1978 for a

cloud of Mg+ [3] ions and Ba+ ions [4]. Making samples of cold ions was more realistic

than that of neutral atoms because ions could be first trapped with an initial tem-

perature above the room temperature and then laser cooled. Nevertheless, in 1985,

trapping of neutral Na atoms in a magnetic trap [5] and in an ”optical molasses” [6]

were reported. An interesting review over early studies in cold neutral atoms can be

found in Ref [7]. Cooling of neutral atoms came to a new phase after successful real-

ization of the Bose-Einstein Condensate (BEC) for rubidium-87 atoms [8] and sodium

atoms [9]. In parallel to developments in cold neutral atoms systems, advances in

cold ion systems reached the point that, in the 1990s, the motional ground state

preparation of ions at the level of a single particle was achieved [10]. Such a great

control on the quantum level led to various applications for cold ion systems such

as high fidelity quantum gates [11, 12], very accurate atomic clocks [13], entangled

quantum bits [14,15] and investigation of variation of fundamental constants [16,17].

Attempts for developing the ion trapping and atom cooling technique, and achieving
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the BEC resulted in physics Nobel prizes 1989, 1997 and 2001. The field of cold

atoms has been exploded nowadays by many topics in ultracold Fermi gases [18],

optical lattices [19], magnetic atom chips [20,21], quantum lattice gases [22], dipolar

quantum gases [23,24], many-body [25], quantum simulation [26,27], quantum com-

putation and information processing [28,29], and cold chemistry [30,31].

Due to good control over these two quantum systems of cold neutral atoms and ions,

coupling them with each other has also become of interest. Merging these two dis-

tinct fields creates the new field of the hybrid atom-ion system to study collisional

properties, investigate the formation, dissociation, reactions, and applications of cold

molecular ions, and it provides a platform for quantum simulation, precision spec-

troscopy, and cold chemistry [32–34].

Currently, a number of groups are working with hybrid atom-ion as e.g., group of

Stefan Willitsch from Basel (Ca+, Ba+ with Rb MOT) [35,36], Eric. R. Hudson from

L. A. (Ba+, Yb+, Ca+
2 , BaCl+ with Ca MOT) [16,37], Roee Ozeri from Rehovot (Sr+

with Rb BEC) [38], Takashi Mukaiyama from Tokyo (Ca+ with Li) [39], Sadiq Rang-

wala from Bangalore (Rb+ with Rb MOT) [40], Winthrop Smith from Storrs (Na+

with Na MOT) [41], Matthias Weidemüller from Heidelburg (OH− with Rb Dark

SPOT 1), Rene Gerritsma from Amsterdam (Yb+ with Rb BEC), Roland Wester

from Innsbruck, Carls Sias from Florence, and excellent progress has been made in

the field as many interesting results were published. Considering the fact that the

hybrid atom-ion field is young, more exciting results are expected to be released by

the present groups in future.

Many of these experimental advances are inspired by theoretical works. There are

even a larger number of theoretical groups in the field which can not all be listed

here, and their contributions to the field have been discussed elsewhere in more de-

tails [34]. There are fascinating theoretical predictions for hybrid atom-ion systems

at low collision energies which are waiting to be observed. Some of my personal

favorites are: Feshbach resonances for atom-ion scattering [43], shape resonances in

cross sections [44], crossing from classical charge mobility to hopping conductiv-

ity for ions [45], polarons in a strongly coupled regimes [46], mesoscopic molecular

ions [47].

The current experimental system in Ulm was built to study dynamics of cold trapped
138Ba+ and 87Rb+ in 87Rb BECs at very low energies [48]. In order to reach this, the

ion excess micromotion should be minimized as possible. One of the main sources

for ion excess micromotion are uncompensated electrical stray fields at the Paul trap

1a dark spontaneous-force optical trap [42]
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center. A partial minimization of ion micromotion energy has been accomplished

previously in our hybrid system by compensating dc-electrical fields via ultracold

gas of Rb atoms [49]. As a first part of my thesis work, I show how to compen-

sate ion excess micromotion due to rf-electrical stray fields. Among other things, I

show how to use reactive collisions to probe the ion kinetic energy. We minimize the

residual rf-electrical field at the Paul trap center down to the level of about 1 Vm−1

comparable to other conventional methods reported by now [50–54].

In the second part of my thesis work, I investigate the evolution of a BaRb+ molecule

in an ultracold gas of Rb atoms. We find that while the molecular evolution is domi-

nated by vibrational relaxation for the most weakly-bound levels, radiative processes

become increasingly important for more deeply bound levels. We also determine

the fraction of other ion species that can be formed in our experiments due to pho-

todissociation of the BaRb+ ion with 1064 nm laser beam, or due to the substitution

reaction of this molecular ion with neutral Rb atoms. We show how differently the

BaRb+ molecular ions behave depending on their electronic state. Some of the meth-

ods presented in this thesis are very general and can be directly adopted for studies

of other ion-atom species. The results of this work can be helpful for developing

novel methods for preparing, manipulating and probing a variety of molecular states.

Overview of thesis

This Ph.D. thesis is structured as follows:

Chapter 2 gives a short introduction to the basics of a hybrid atom-ion system. I

discuss in this chapter the cross-sections that are used for explaining the atom-ion

collisions from classical and semi-classical perspective.

In chapter 3, I shortly introduce our experimental setup and explain in some detail

the procedure of preparing cold Ba+ ions and ultracold Rb atoms. Trapping param-

eters and detection of other ion species that are produced in our experiments are

also discussed in this chapter.

In chapter 4, the ion excess-micromotion caused by rf-electric field sources is dis-

cussed in our ion trap. I explain the methods that are used to compensate parasitic

rf-fields in our Paul trap center and the detail of calculations for determining the ion

kinetic energy.

In chapter 5, we study the evolution of a single BaRb+ molecule while it keeps col-

liding with ultracold Rb atoms. The initially weakly-bound molecule can undergo a
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sequence of elastic, inelastic, reactive, and radiative processes. We investigate these

processes by developing methods for discriminating between different ion species,

electronic states, and kinetic ion energy ranges.

In chapter 6, I summarize the result and give a short outlook about possible future

projects that can be investigated in our hybrid atom-ion system.

Chapter 7 contains all appendices sections including some detail of calculations,

theoretical models and, simulation of experimental data.
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Chapter 2

The basics of a hybrid atom-ion

system

2.1 The atom-ion interaction

An ion considered as a point charge Q with the electrical field of ξ(r) = |Q/4πε0r2|
can induce the dipole moment of p(r) = αatξ(r) to a nearby atom where ε0 and αat

are the vacuum permittivity and the static electric dipole polarizability of the neutral

atom, respectively (see figure 2.1). This leads to a long-range interaction potential

V (r) = −1

2
p(r)ξ(r) = − C4

2r4
. (2.1)

Considering the partial waves l we obtain the effective potential of −C4/2r
4 +

l(l + 1)}2/(2µr2) where µ is the reduced mass of the atom-ion system. For the first

non-zero angular momentum, i.e. p-wave scattering, the potential barrier is located

at

r∗ =

√
µC4

}2
, (2.2)

where r∗ is defined as the characteristic length scale for atom-ion collisions. By using

r∗, one can determine a characteristic collision energy E∗col as

E∗col =
}2

2µr∗2
(2.3)

which indicates how far we should reduce the collision energy to reach to the s-

wave scattering regime in the atom-ion experiment. In our hybrid system, by using

αat=4πε0 × 47.39Å3 for 87Rb atoms [55], r∗ and E∗col for a colliding pair of 138Ba

12



V(r)

r+

+

4

Figure 2.1: An ion as an impurity inside a cloud of ultracold neutral atoms. The
electric field of the ion polarizes nearby atoms. The interaction potential between
the ion and the atom is attractive and inversely proportional to r4.

ion and 87Rb atom are approximately 300 nm and 40 kB×nK, respectively. In the

homonuclear case of a 87Rb ion and a 87Rb atom, these values change to about 280

nm and 70 kB×nK. For the ultracold atomic ensemble of 87Rb atoms, the s-wave

scattering length is roughly 5 nm [56].

2.1.1 Langevin cross section

In a classical description (see figure 2.2) we distinguish two types of collisions: glanc-

ing collisions and Langevin collisions. If the impact parameter b is smaller than the

critical impact parameter bc a Langevin collision takes place otherwise we expect a

glancing collision. In the Langevin collision, the kinetic energy exchange can be large

while in the glancing collision there is a small momentum transfer between colliding

particles. The trajectory can be described by taking the atom and the ion in the

same plane during the collision which we take to be in x-y plane, ~r = r cos x̂+r sin ŷ.

Here, r is the distance between atom and ion. The total collision energy of the

particle is given by

Ecol =
µ

2
(ṙ2 + r2ϕ̇2)− C4

2r4
. (2.4)

Furthermore, at r −→ ∞ the relative velocity of the atom and the ion is v0 which

gives the total energy of

13



Ecol =
µ

2
v2

0 . (2.5)

The angular momentum conservation of the system before and after the collision

says that L = bµv0 = µr2ϕ̇ where ~L = Lẑ, in our coordinates and b is the impact pa-

rameter. By considering equations (2.4) and (2.5) and using the angular momentum

conservation, ṙ can be expressed by

ṙ = ±v0(1− b2

r2
+

C4

µr4v2
0

)1/2 . (2.6)

By taking ṙ = 0, the above expression gives the closest distance of the atom to the

ion. This distance is introduced as r0 in figure 2.2 and it’s given by

r2
0 =

b2

2
± (

b4

4
− C4

µv2
0

)1/2 . (2.7)

We can define a critical impact parameter bc = (4C4/µv
2
0)1/4. For the case b < bc,

the atom and the ion have a spiraling motion onto each other until a hardcore col-

lision takes place between two nuclei. After having a hardcore collision, the atom

will be scattered outward almost isotropically. Langevin collisions [57] have the cross

section of σLng = πb2
c.

Langevin collisions can give rise to inelastic and reactive collisions, e.g. forming a

molecule, spin-exchange or charge transfer. If inelastic and reactive collisions happen

at a close distance, then the rate of these collisions should be independent of collision

energy. This can be seen in the Langevin collision rate of ΓLng = natσLng

√
2Ecol/µ

where nat is the atomic density and the square root is the relative velocity. Consid-

ering that σLng ∝ E
−1/2
col , the Langevin rate becomes a collision energy independent

rate which is given by ΓLng = 2π × nat

√
C4/µ. For a Ba+ that collides with a Rb

atom, ΓLng ' nat × 2.44× 10−9 cm3s−1. It gives rise to a Langevin rate of about 2.4

ms−1 for atomic density nat = 1× 1012cm−3.

2.1.2 Semi-classical cross section

To obtain a cross-section for elastic two-body collisions in an atom-ion system, one

needs to consider Langevin collisions and glancing collisions. The cross-section of

the atom-ion system can be written as sum of the contribution of each partial wave

14



φ

r

bc

v0

r0

+

Figure 2.2: A classical picture for trajectories of atoms with a velocity of v0 entering
the polarization potential of the ion. For impact parameters larger than bc, there
are glancing collisions during which the atom trajectory gets slightly deflected as the
blue curves show for two different incoming atoms. For impact parameters smaller
than bc, e.g. the red dashed curve, a hardcore collision is expected between two nuclei
known as Langevin collisions which lead to an isotropic scattering. r0 is the minimal
distance between atom and ion for the collision with the critical impact parameter
bc.

as [58]

σel =
4π

k2

∞∑
l=0

(2l + 1) sin2(ηl) , (2.8)

where k and ηl are the corresponding wave number of the collision and the phase shift

of the lth partial wave, respectively. The exact value of ηl depends on the potential of

the scatterer. To determine the cross-section for each partial wave, the Schrödinger

equation for that partial wave has to be solved to calculate the corresponding phase

shift of the wave function. The elastic scattering phase shift can be obtained from

the asymptotic form of

ψl(kr) ∼ sin[kr − lπ

2
+ ηl] , (2.9)

for large distances r. In our cold atom-ion experiments in Ulm, the collision energy

is typically around a few mK×kB. Some lower partial waves can pass over the

angular momentum and collide with the core. For some collision energies and partial

waves, there are resonance features (called shape resonances) in the scattering cross

section. It occurs when for a specific partial wave, the energy level behind the

15



centrifugal potential barrier matches the collision energy. In this case, the probability

of tunneling through the potential barrier increases significantly allowing a collision

with the core potential. The atoms which are reflected back from the centrifugal

barrier correspond to glancing collisions and the other ones correspond to Langevin

collisions.

Without knowing the exact form of the interaction potential in equation (2.8) and by

assuming that partial waves are scattered either by the centrifugal barrier or the core

potential, one can make an independent approximation for each part, calculate the

cross section and sum up the results which lead to a semi-classical approximation [59]

σel(Ecol) ' π
(µC2

4

~2

)1/3(
1 +

π2

16

)
E
−1/3
col . (2.10)

For a hybrid system of Ba+-Rb, the rate of elastic binary collision is given by Γel =

natσel

√
2Ecol/µ. For a collision energy of 1 mK×kB and atomic density nat = 1 ×

1012 cm−3, Γel ≈ 12.4 ms−1 which is almost a factor of 6 larger compared with the

Langevin rate.

2.2 Reactive collisions in the Ba+-Rb system

In our hybrid system, the following two-body reactive collisions

1) Rb + Ba+ −→ Ba + Rb+ + γ (Radiative charge exchange)

2) Rb + Ba+ −→ BaRb+ + γ (Radiative association) ,

are possible between the Ba+ ion and the Rb atom due to the shape of the inter-

nuclear potential energy curves (see figure 2.3). The energy difference between the

input channel (i.e., the Rb(5s)+Ba+ (6s) asymptote) and the output channel (i.e.,

Rb+Ba+(6s2) asymptote) is mainly taken away by the emitted photon γ and, the

RA process leads to the formation of a translationally cold and deeply bound BaRb+

while the RCT process produces a translationally cold Rb+ ion.

Besides two-body collisons, three-body collisions are also observed in our experiment.

In this case, a Ba+ ion can react with two Rb atoms to form a translationally cold

and weakly-bound BaRb+ ion. The total reaction rate of Ba+ inside the Rb atomic

cloud is given by Γ
(2)
rec.+Γ

(3)
rec. where Γ

(2)
rec. and Γ

(3)
rec. are the two- and three-body reaction

rates, respectively. More details about two- and three-body reactive collisions in our

Ba+-Rb system can be found in Appendices C and D.
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Figure 2.3: Three possible reactions in a Ba+-Rb hybrid system. The processes A,
B, and C are radiative charge transfer(RCT), radiative association (RA) and bound
to bound radiative relaxation. Potential curves are taken from Ref [60].

2.3 Cold molecular ion-atom hybrid system

Besides the atomic ions, the collisional dynamics of molecular ions with neutral atoms

can also be investigated in a hybrid atom-ion system. Molecules have more internal

degrees of freedom than that of atoms and therefore, providing a system in which

molecules and atoms can interact is a very interesting platform for investigating

chemical processes.

By a hybrid atom-ion system, the collisional dynamics of a molecular ion in a bath

of neutral atoms can also be investigated. There are inelastic collisions that change

the rovibrational state of the molecule as well as the spin-state. There are also

reactive collisions that dissociate the molecule or make substitution reactions. Elastic

collisions with neutral atoms can also occur in a molecular ion-atom system which

leads to the sympathetic cooling of the molecule.

In chapter 5, I discuss the collisions of a single BaRb+ ion with neutral Rb atoms

in our hybrid atom-ion system. A weakly-bound BaRb+ ion can be understood as

consisting of two almost unperturbed individual atoms; a Ba+ ion and a neutral

atom. When another free Rb atom approaches such a system with a distance much

larger than the binding length of the molecule, one can consider the whole system as

17



a single charged particle with a total mass of the BaRb molecule that collides with a

Rb atom. In this case, all cross-sections discussed in subsections 2.1.1 and 2.1.2 can

also be applied to the molecular ion-atom system.
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Chapter 3

Experimental setup

In our hybrid atom-ion system, we work with a single 138Ba+ ion or a crystal of 138Ba+

ions and an ensemble of spin-polarized 87Rb neutral atoms. We can run experiments

with different atomic densities of nat ∼ 1011-1014 cm−3 and collision energies of a

few mK to a few hundred mK×kB. An overview of our experimental setup can be

found elsewhere [48]. In following sections, I shortly review how ions and atoms are

prepared for the experiments.

3.1 The cold ion system

3.1.1 A linear Paul trap

We use a symmetric linear Paul trap to confine the Ba+ (or BaRb+, Rb+
2 , Rb+) ions.

Linear Paul traps consist of four electrodes known as rf-electrodes which confine the

ion radially by producing an oscillating quadrupole electric field. Two end-cap elec-

trodes with static potentials lead to axial confinement of the ion. In the symmetric

Paul trap, the rf electrodes are held an electrostatic potential of ±V0 cos Ωt. We use

Ω ' 2π×4.2 MHz and V0 ≈ 150 V for our ion trap and a static potential of about 7.6

V for end-cap electrodes. Near the Paul trap center, the potential can be estimated

by

Φ(x, y, z, t) =
V0

R0
2 [x2 − y2] cos Ωt+

κU0

Z2
0

[z2 − (x2 + y2)

2
] , (3.1)

where R0 = 2.6 mm and Z0 = 7 mm are the distance of the rf- and endcap

electrode to the Paul trap center. Here, κ = 0.29 is a geometrical factor related

to the Paul trap configuration. For an ion with a mass of mi and the charge of e,

the equation of motion can be written as −e~OΦ(x, y, z, t)/mi = ~̈r(x, y, z, t) where
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Figure 3.1: The linear Paul trap in our science chamber. The optical trap for atoms
and the ion cooling beams are not shown here.

~r(x, y, z, t) is the displacement vector of the ion around the Paul trap center. The

equation of motion leads to the Mathieu equation

~̈rj + [aj + 2qj cos(2τ)]~rj = 0 , (3.2)

where j = (x, y, z) and τ = Ωt/2. Here, aj and qj, are defined as {ax, ay, az} =

{a, a,−2a} and {qx, qy, qz} = {q,−q, 0} where a = −4eκU0/miZ
2
0Ω2 and q = 4eV0/miR

2
0Ω2.

Mathieu equation (3.2) has several stability regions for different values of a and q.

Ions are confined in the Paul trap if they are in these stability regions. For our case,

i.e., |a| � 1 and |q| � 1, we are in the first stability region of the Mathieu equation

(see figure 3.2) and the ion position can be well described by [61]

rj(t) = rj0 cos(ωjt+ φ∗j)[1 +
qj
2

cos Ωt] , (3.3)

where ωj ∼= Ω
2

√
aj + q2

j/2 is the trapping frequency and rj0 is the oscillation

amplitude of the ion around the Paul trap center for j = (x, y, z). Here, φ∗j is a

phase related to the initial position and the velocity of the ion. I listed in table 3.1

the typical trapping frequencies and the values of a and q for the ion species we use

in our experiments.
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Figure 3.2: The stability diagram of ion species given in table 3.1. All ions are inside
the first stability region (colored area) of the Paul trap. Parameters a and q are
related to the Paul trap configuration and the mass of the charged particle, see text
for more detail.

Figure 3.1 shows the schematic of our Paul trap and its location in the vacuum

chamber. The trapping potential is deep enough (∼ 1eV) to confine ions with kinetic

energies of up to 10.000K×kB. There are four additional electrodes (colored green in

figure 3.1) that are used for compensating stray electric fields at the ion trap center.

A stray dc electric field of ~Edc at the Paul trap center changes equation (3.3) to [61]

rj(t) = [r
′

j0 + rj0 cos(ωjt+ φ∗j)][1 +
qj
2

cos Ωt] , (3.4)

and causes an excess micromotion for the ion with an amplitude of r
′
j0 = e~Edc.ĵ/(miω

2
j ).

From equation (3.4), the average kinetic energy of the ion can be written as [61]

EKj ∼=
mi

4
r2
j0(ω2

j +
1

8
q2
jΩ

2) +
mi

16
(r

′

j0qjΩ)2 . (3.5)

As equation (3.5) shows, uncompensated electric fields at the Paul trap center de-

termines on average the atom-ion collision energy. Therefore, the compensation

electrodes can be used to vary the collision energy in the experiments.
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Table 3.1: Typical trapping frequencies of different ion species in our linear Paul
trap.

ion radial (kHz) axial (kHz) a q

138Ba+ 130 38.8 1.7× 10−4 0.08

87Rb+ 206 49 2.7× 10−4 0.13

Rb+
2 103 34.5 1.3× 10−4 0.068

BaRb+ 80 30 1× 10−4 0.05

3.1.2 Production of Ba+ ions

A beam of neutral barium atoms is released toward the ion trap center by heating

the barium oven with a high current. Ba+ ions are produced by ionizing the neutral

Barium atoms with 413 nm and 560 nm laser beams. The relevant energy levels for

the Barium ionization scheme are shown in figure 3.3. We perform our experiment

with 138Ba ions which have an abundance of 71.7%. To avoid exciting other isotopes

of the barium, we align the path of the 413 nm beam to be orthogonal to the path

of the emitted atomic beam of the barium.

The rate of producing the Ba+ ions depends on the atomic flux of Barium atoms and

the time during which the Ba atoms are exposed to the ionization beam. Therefore,

by adjusting the ionization time and the heating rate of the oven, we can select to

either dominantly catch a single ion or to produce a crystal of Ba ions.

3.1.3 Laser cooling of the Ba+ ion

In the beginning, the trapped Ba ions are extremely hot and need to be cooled

down. We use a 493 nm laser beam and a 650 nm laser beam which are spatially

overlapped as cooling and re-pumper beams, respectively. As it is shown in figure

3.3, the 493 nm laser drives the transition between 6S1/2 and 6P1/2. The Ba+ in the

excited 6P1/2 state can decay to the ground state 6S1/2 or to the meta-stable state

5D3/2 with a ratio of 3 to 1. The selected isotope (138Ba) has no nuclear spin and

therefore no hyperfine structure. There is no initial polarization for the spin of the

ground state Ba+ ion in our experiments. The excited state 6P1/2 has a natural

linewidth 15.1 MHz which leads to a Doppler temperature of around 360µK. Since

the transition 6P1/2 →5D5/2 is not dipole allowed, decay into this meta-stable state

is very unlikely during laser cooling. To depopulate the ion from this meta-stable
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Figure 3.3: Left: The schematic of relevant barium energy levels (not to scale) for
the ionization procedure in the left and, Right: the energy level of the barium ion
for laser cooling on the right hand side.

state, a 614 nm laser beam is used. We collect around 1% of the scattered photons of

the Ba ion(s) with a lens and the light will be imaged onto the chip of the EM-CCD

camera. The resolution of the imaging system (i.e., diffraction limit) is about 1.6µm

which is much smaller than the distance between two ions in an ion string.

3.1.4 Detection of non-laser cooled ions

When there is no laser cooling available, we use another detector which is the dilute

atomic clouds of 87Rb with a density nat ∼ 1011 − 1012 cm−3. Here, the detected

signal is the atom loss which is mostly due to elastic collisions between the atom and

the ion. Since the kinetic energy of ions are orders of magnitude larger than that of

atoms, collisions transfer kinetic energy from the ion to the atoms. Consequently,

atoms find an energy well above their trapping depth and leave the trap 1.

We start to detect ions by modulating the voltages on the compensation electrodes of

the Paul trap. For modulation frequency, we use the radial trapping frequency of the

ion species we would like to detect (see table 3.1). The method is very mass-selective

meaning ion species will be only excited with their radial trapping frequencies. When

1To read more about how the atom loss can be modeled in our atom-ion system, see section
4.4.1.
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Figure 3.4: A sample histogram which shows the number of Rb atoms after overlap-
ping the atom trap and the ion trap centers for a fixed interaction time of 15 s. Data
is for 120 iterations and all cases with atoms number larger than the discriminator
line of 80 K have no atom loss due to collision with Rb atoms meaning there was no
ion inside the Paul trap after the modulation. Data belongs to the detection of the
BaRb+ ion in one of our experiments explained in chapter 5.

the ion trap modulation is over, we prepare a dilute cloud of Rb atoms and overlap

the atoms center with the ion trap center letting them interact for fixed interaction

time. It causes a significant atom loss if there is a charged particle in the Paul trap

and, atoms number remains unchanged when the ion trap is empty. Therefore, the

probability of observing the X+ ion, where X+ is one of the given ion species in table

3.1, is calculated by

PX+ =
number of iterations with no atom loss

total number of iterations
. (3.6)

Figure 3.4 shows one sample data by which we can determine PBaRb+ . Data were

obtained after modulating the ion trap with the trapping frequency of ωBaRb+/2π =

80 kHz for 3 s and then overlapping the ion and atom trap centers for 15 s. To get

some statistics, the process of detection has been repeated 120 times. The relatively

long interaction time of 15 s was used mainly because of detecting ions which have

very high kinetic energy. When the ion is kinematically hot, it has an orbit that is

much larger than the probe atomic cloud with typical radial and axial sizes of 9µm

60µm, respectively. In this case, the atom-ion overlap and consequently that atom
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Figure 3.5: Overlap coefficients between the probe atomic cloud and ion species in
our experiments as functions of ions kinetic energies. Curves are just lines connecting
data points.

loss signal decrease significantly or it may stop.

By running a simple simulation based on parameters of our atom - ion system, one

can determine an overlap coefficient for ion species of table 3.1 as functions of their

initial kinetic energies. Figure 3.5 shows the simulation results. The simulation uses

equation (3.3) to calculate the ion position by taking random values for φ∗j based on

the given initial kinetic energy of Ek, ion. For simplicity, we assume only a secular

motion and no micromotion for the ion by taking (1 + qj cos Ωt/2) ≈ 1 in equation

(3.3). The simulation calculates the ion position for 1 s after overlapping the atoms

and the ion centers. The time advances in small steps of 10 ns which results in 108

calculated positions for the ion. We repeat the simulation above for 103 times every

time starting with a new initial phase φ∗j for j = (x, y, z) to get some average for

the ion positions during its secular motions around the Paul trap center. We simply

define an atom-ion overlap coefficient by taking the number of ion positions in which

the ion is inside the atomic cloud divided by the number of total positions. We use

a Gaussian distribution for the Rb cloud with the radial and the axial size of 6 µm

and 9 µm, respectively.

For instance, for a Ba+ ion that is shifted into the atomic cloud and has an initial

kinetic energy of 50 K× kB, the overlap coefficient is about 0.02 meaning that it will

take a factor of 50 longer than for the case where the ion is fully immersed in the

cloud to a collision takes place between the ion and the atom.
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Figure 3.6: The schematic of 87Rb energy levels (not to scale) for the D2 transition
line and laser frequencies which are used to create the MOT. The dark red arrow
depicts the master frequency which is locked on the transition between F = 2 of
the ground state and F = 3 of the excited state. This laser drives the main cooling
cycle. The lighter red arrow represents the re-pumper beam (tuned to the red by
∼ 87.5 MHz) which is locked on the transition between F = 1 and the crossover peak
of F = 1 and F = 2. The dashed-blue arrows show spontaneous emissions to the
ground state. Data for the transition frequencies are taken from [62,63].

Collisions with atoms reduce the ion kinetic energy and increase the overlap coef-

ficient. The cooling process takes always some time that varies depending on the

atom-ion mass ratio and the initial kinetic energy of the ion.

3.2 Preparation of cold atoms

We prepare atoms in three steps in our experimental setup. Figure 3.7 shows a

simplified schematic of our experimental setup. In the following, I discuss each step

very briefly.
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Figure 3.7: A simplified schematic of our experimental setup.

3.2.1 Magneto-optical trap (MOT)

In the first step, a Rb MOT is created in the MOT chamber using 780 nm laser

beams which are locked to the D2 line of the Rb atom (see figure 3.6). Atoms are

then optically pumped into the quantum state F = 1, mF = −1 to polarize the atoms

and prepare them in a low seeking magnetic field state for magnetic transportation.

Afterward, the atoms are pushed toward the next chamber called the BEC chamber

via a magnetic transport system which has around 50% efficiency.

3.2.2 Quadrupole-Ioffe configuration (QUIC) magnetic trap

After reaching the BEC chamber, Rb atoms are loaded into a QUIC trap (i.e., quadr-

pol ioffe configuration trap) [64]. A strong magnetic gradient is used to confine atoms

within the BEC chamber and at the same time, an optical dipole trap consists of a

1064 nm focussed high power laser beam is utilized to provide an additional trapping

potential. By applying forced evaporative cooling, the temperature of the atomic

cloud is reduced by two orders of magnitude. At this temperature (i.e., ∼ 1µK), the

thermal vapor can be entirely trapped by the dipole trap beam. In the optical trap,

we can continue with evaporation to reach the sub µK regime and to achieve BEC.
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3.2.3 Optical dipole trap

As the final step of preparation, atoms in the BEC chamber are transported to the

last chamber (i.e., Science chamber) where the Paul trap is located. For transferring

atoms from the BEC to the Science chamber, an optical elevator (moving optical

lattice) is used which consists of two high power, and counter-propagating 1064 nm

laser beams. The beams have been aligned such that they connect the Paul trap

center with the center of the BEC chamber. The process of transporting and loading

the atoms is aimed to be adiabatic and again approximately half of the trapped

atoms can be brought into the upper chamber. Finally, when the transportation is

over, another 1064 nm beam with a beam waist of about 95µm and the intensity

of 14 kW/cm2 crosses the lattice beam at a right angle and form a crossed dipole

trap for atoms in the Science chamber. The atoms form a cigar-shaped cloud with

the radial and the axial size of about 9 and 60µm, respectively, for typical trap

frequencies (ωr;ωz) = 2π × (145, 23) Hz. Here, subscripts r and z denote the radial

and the axial axes of the atomic dipole trap. The axial axis of the atomic cloud

forms an angle of 45◦ with respect to the ion trap axis. The depth of the crossed

optical trap is about 20µK so that atoms with 1µK temperature or colder can be

easily trapped. We image the cloud after some time of flight (TOF) to determine

the atom number and the temperature of the atomic cloud. Thermal atomic clouds

as well as a BEC can be obtained in the Science chamber in a controlled way.
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Chapter 4

Minimizing rf-induced excess

micromotion of a trapped ion
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Abstract

We report on the compensation of excess micromotion due to parasitic rf-electric

fields in a Paul trap. The parasitic rf-electric fields stem from the Paul trap drive

but cause excess micromotion, e.g. due to imperfections in the setup of the Paul

trap. We compensate these fields by applying rf-voltages of the same frequency

but adequate phases and amplitudes to Paul trap electrodes. The magnitude of

micromotion is probed by studying elastic collision rates of the trapped ion with

a gas of ultracold neutral atoms. Furthermore, we demonstrate that also reactive

collisions can be used to quantify micromotion. We achieve compensation efficiencies

of about 1 Vm−1, which is comparable to other conventional methods.

4.1 Introduction

Ideally, a single ion located in the center of a Paul trap experiences vanishing rf-

trap fields, leading to vanishing micromotion. Typically, however, electrical stray

fields and imperfections of the trap setup lead to a remaining level of micromotion,

the excess micromotion. Minimization of this micromotion is important for many

research fields such as quantum information processing [65,66], quantum simulation

[67], high precision spectroscopy [68,69], single-ion atomic clocks [70], and cold atom-

ion collisions where reaching the s-wave regime is a challenge [34,71,72]. Therefore,

in recent years much effort has been put into the investigation and minimization of

micromotion. A variety of detection and compensation methods have been developed,

which generally rely on optical probing the motional state of the ion (see, e.g. [50–

54, 61, 73–75]). Recently, our group has demonstrated that excess micromotion due

to static stray electrical fields can be sensitively probed and compensated with the

help of a cold cloud of atoms which elastically collide with the ion [49]. This method

can also be applied to ions that are not laser-cooled. Furthermore, it is direction

independent, in contrast to sideband techniques as described e.g. in [61].

Here, we extend our work of [49] and demonstrate the minimization of excess

micromotion which is linked to rf-electric fields of the Paul trap. In particular, we

compensate phase micromotion which is due to a time delay in the oscillating rf-

voltages of opposite Paul trap electrodes. Furthermore, we compensate rf-induced

micromotion along the axial direction of our linear Paul trap which can arise from

rf-pick up on the endcap dc-electrodes or simply from imperfections in the alignment

of electrodes. As a further development of the minimization method as compared
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to [49] we show that instead of elastic collisions also reactive collisions between the

ion and atoms can be used to probe excess micromotion. In fact, making use of the

known scaling law of the reaction rate with collisional energy we can determine by

which factor the kinetic energy of the ion is decreased. After minimization of the

excess micromotion due to both dc- and rf-fields we estimate the remaining total

residual excess rf-field amplitudes to be about 1 Vm−1 and the excess dc-fields to

be about 0.02 Vm−1. These compensation results are comparable to values reported

using other methods [50–54].

This chapter is structured as follows. In section 4.2 we describe our ion trap setup

and provide a brief review on excess micromotion. Then, in section 4.3 our detection

method for micromotion is introduced. Section 4.4 is dedicated to the discussion of

the minimization of phase and axial rf-excess micromotion, respectively. Here, atom

loss due to elastic collisions is used as signal for optimization. In section 4.5 we

describe the probing of micromotion via reactive collisions. Finally, in section 4.6 a

summary is given and future prospects are addressed.

4.2 Ion trap and excess micromotion

In the following we consider micromotion in a linear Paul trap. Figure 4.1 shows

the setup in our lab, which has been described in detail in [48, 49]. The four gray

electrodes (e1-e4) are the rf-electrodes of the Paul trap. They are driven with a

rf-frequency of Ω = 2π × 4.2 MHz and generate the radial trapping confinement

(i.e. within the x̂-ŷ-plane) while the static field of two endcap electrodes (yellow)

confines the ion in the axial direction (ẑ-direction). The effective distance from the

trap center to the tips of the four rf-electrodes is R0 = 2.6 mm, while the spacing

between the two endcap electrodes is 2×Z0 = 14mm. We nominally operate the ion

trap in a symmetric manner. In a perfectly aligned linear Paul trap with vanishing

rf-potentials on the endcaps such a symmetric rf-drive leads to a vanishing axial

micromotion on the trap axis. The rf-electrode pair (e1, e2) is driven by a voltage

+V0 cos(Ωt) and the rf-electrode pair (e3, e4) by a voltage −V0 cos(Ωt). The voltage

amplitude1 is V0 ≈ 150 V. At the center of the Paul trap this gives rise to the

1Measurements of the electrode voltages indicate, however, that the voltage amplitude V0 for the
electrode pair (e1, e2) and the pair (e3, e4) are not equal but 160 V and 143 V, respectively. There-
fore, a cancellation of micromotion along the axial direction might be compromised. A simulation
of the electrical fields for our setup can be found in [76].
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a) b)

v̂

ĥ
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Figure 4.1: Schematic of the linear Paul trap. Shown is the configuration in the
radial x̂-ŷ-plane (a) and in the axial direction ẑ (b). The rf-electrodes are indicated
in gray, the endcap electrodes are yellow and the compensation electrodes (c1, c2,
c3, c4) are green. For better visibility, the endcap electrodes are not depicted in a
and the compensation electrodes are omitted in b. The orange lines illustrate some
rf-electric field lines between the electrodes.

following electrical field

~E(x, y, z, t) =− 2V0

R′2
(xx̂− yŷ)cos(Ωt)

− κU0

Z2
0

(2zẑ − xx̂− yŷ) .
(4.1)

We use {x̂, ŷ, ẑ} to denote the unit vectors for the directions of the coordinate system

given in figure 4.1. The first term in equation (4.1) represents the electrical field

generated by the rf-electrodes. Here, R′ ∼= R0. The second term expresses the

electrical field due to the endcap electrodes, which are held at constant electrostatic

potential U0 = 7.6 V, and κ = 0.29 is a geometrical factor for our setup. We work

with single 138Ba+ ions at trapping frequencies (for the secular motion) of ωx,y,z =

2π × (131, 130, 38.8) kHz. The trap depth is about 2 eV. Before each measurement

the ion is laser-cooled to the Doppler limit.

For the ideal case of equation (4.1), the particle is trapped exactly at the origin

(x = y = z = 0) and exhibits vanishing micromotion. An additional quasi-constant

stray electrical offset field with components in the transverse direction, however,

shifts the ion to a different position where it experiences oscillating electrical fields

and therefore undergoes micromotion. Applying the experimental technique that
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we have demonstrated in Ref. [49] such an electrical stray field can be very well

compensated to values smaller than 0.02Vm−1 in our setup. This is the starting point

for the measurements described in the present work. The kinetic energy contribution

due to dc-stray electric fields is negligible as compared to the excess micromotion

energies discussed in the remainder. In the following we simply assume the dc-stray

fields to be fully compensated and we focus on excess micromotion resulting from

phase delay and rf-fields in axial direction. A more general discussion can be found

in appendix section A. Excess micromotion due to phase delay occurs when there is

a relative phase ϕx between the oscillating voltages of the electrode pair (e1, e2) or a

relative phase ϕy for the pair (e3, e4). Using the same approach as in Ref. [61], such

phase differences give rise to additional oscillating electrical field terms. For ϕxi � 1

(xi ∈ {x, y}) these terms can be approximated by

~Exi = V0
αxiϕxi
2R0

sin(Ωt)x̂i ≡ Exi,0 sin(Ωt)x̂i , (4.2)

where the factors αxi depend on the trap geometry. We note that our configuration

is characterized by αxi ≈ 0.8.

Rf-induced axial micromotion occurs when rf-electric fields are created along the

trap axis, e.g. due to slight misalignment of the rf-electrodes or as a consequence of

unwanted, asymmetric pick up of the rf-drive voltage on the endcap electrodes. This

produces dominantly the electric field

~Ez = Ez,0 sin(Ωt+ ϕz) ẑ , (4.3)

in the trap center, with unknown amplitude Ez,0 and phase ϕz.

Excess micromotion readily increases the kinetic energy of the ion. This fact

is also exploited for our detection scheme. The average kinetic energy is given by

Ekin = mBa〈u̇2〉/2 (see also [61] and Appendix A for more detail), where mBa and

u̇ are the mass and the velocity of the Ba+ ion, and 〈 〉 represents the time average

over a period of the secular motion at frequency Ω. The individual components of

u̇ are derived from the equations of motion. Using this approach, the kinetic energy

contributions of motion in the three directions of space are given by

Ekin
xi

=
e2E2

xi

4mBaΩ2
, (4.4)

where e is the elementary charge and xi ∈ {x, y, z}.
The four green electrodes (c1-c4) in figure 4.1a are used to compensate the ac-
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electric fields due to phase delay. We denote the pairs of compensation electrodes

(c1, c2) and (c3, c4) as vertical (v) and horizontal (h) electrode pairs, respectively.

Driving the vertical pair of compensation electrodes with the same ac-voltage will

create an rf- electrical field at the position of the ion, which is pointing along the

v̂-direction. An ac-voltage applied at the horizontal pair of compensation electrodes

produces an rf- electric field along ĥ. One of the endcaps is utilized to compensate

ac-electric fields along the z-axis. Here, besides applying ac-voltages to compensa-

tion electrodes, one can also use alternative compensation methods. For example,

phase delays can be implemented by adjusting cable lengths or by using additional

capacitances similarly as in [77]. Besides excess micromotion arising from dc electri-

cal stray fields and parasitic rf-fields, there is yet another kind of excess micromotion

present in our setup. It is linked to elastic collisions of the ion with the cold atoms

and has been predicted and investigated in [34,54,78,79]. In simple terms its origin

can be understood as follows: In a collision the ion can be pulled out from the center

of the ideal Paul trap where no micromotion occurs to a location with non-vanishing

electrical rf-fields and micromotion. Thus, even at negligible temperatures of the

atom cloud the ion can acquire a non-vanishing average kinetic energy. The typical

kinetic energy scale for collisional excess micromotion can be calculated. Using the

approach of [78] for a 3D trap and taking our current trap parameters we obtain

about 40 µK× kB for a Ba+ ion colliding with ultracold Rb atoms. Such collisional

micromotion cannot be compensated. However, as it is a function of the atom-ion

mass ratio and the general ion trap parameters, setups and configurations can be

optimized to minimize it.

4.3 General method for minimizing excess micro-

motion using cold atoms

In order to minimize excess micromotion we generalize here the method we introduced

in [49]. A single, cold Ba+ ion in a Paul trap is immersed into an ultracold cloud

of Rb atoms. In the cloud elastic and reactive atom-ion collisions take place with

rates that depend on the micromotion energy. The experiments are done in two

different atomic densities since for elastic collisions a relatively dilute cloud and for

reactive collisions a dense atomic clouds are needed to be created. We find the

minimum of micromotion by steering towards a local minimum (maximum) for the

elastic (reactive) rate, respectively. Tuning of the micromotion is done via suitable

electrical rf-fields at the center of the Paul trap which are produced by applying
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rf-voltages on the compensation electrodes or on one of the endcap electrodes of the

Paul trap.

The ultracold Rb atoms are held in a far-off-resonant, crossed optical-dipole trap

at a wavelength of 1064 nm with a trap depth of about 22 µK × kB. The atomic

temperature is about 700 nK. The atoms are spin-polarized in the hyperfine state

f = 1,mf = −1. We work with 1 to 3×104 87Rb atoms and shot-to-shot fluctuations

of the atom number are typically on the level of a few percent.

Once it is immersed into an atomic cloud, a trapped ion undergoes elastic colli-

sions with the atoms, which quickly leads to a non-thermal kinetic energy distribution

of the ion. Because of its relevance for the developing field of cold atom-ion inter-

actions [34, 71, 72], this issue has been recently investigated in a number of studies

(e.g. [40, 54, 80–85]). The ionic energy distribution depends in a non-trivial way on

quantities such as the atom-ion mass ratio, the atomic cloud size, and the ion trap

parameters. In our case of Rb and Ba+, the kinetic energy distribution of the ion

is still nearly thermal, and the ion’s average kinetic energy Ekin,a in the presence of

atoms is given approximately by 5 × Ekin, where Ekin represents the excess micro-

motion energy in the absence of atoms, see Appendix D. When we only compensate

excess micromotion due to dc-electrical fields the remaining kinetic energy of the ion

is about Ekin,a = 4 mK × kB (see Appendices C and D) in our trap. This energy is

partially due to phase delay and axial rf-fields.

4.4 Probing micromotion compensation via elas-

tic atom-ion collisions

Here, we describe how we use elastic collisions between atoms and the ion to minimize

rf-induced excess micromotion. As already discussed the typical kinetic energy of the

ion in the atomic cloud is in the range of a few mK× kB for our experiments. Thus,

when the ion elastically collides with an ultracold atom it will typically kick the atom

out of its shallow dipole trap. Alternatively, it only heats the atomic cloud at first,

which finally also leads to atomic loss due to evaporation. In general, we expect the

atomic loss to increase weakly with the average ion energy and therefore with the

excess micromotion. The rate Γel for elastic binary collisions of an atom and an ion

with reduced mass µ is given by [59]

Γel = σelnat

√
2Ecol/µ ∝ E

1/6
col , (4.5)
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where nat is the atomic particle density, σel is the atom-ion elastic scattering cross

section given by equation(2.10) and Ecol is the two-body collision energy of the

particles in the center-of-mass reference frame.

In order to probe excess micromotion, we measure the loss rate of the atom

number in the atomic cloud for various rf-voltages applied on the respective electrodes

used for compensation.

Besides the elastic collisions between atom and ion also inelastic and reactive col-

lisions can take place which disturb our minimization scheme. As it is discussed in

chapter C, a typical reactive process is the three-body recombination of Ba++Rb+Rb

for which the reaction rate is given by Γinel = k3n
2
at with k3 = 1.04 × 10−24 cm6s−1

for a three-body collisional energy of 2.2 mK × kB. Another reaction is charge ex-

change, Ba+ + Rb → Ba + Rb+, with an energy independent rate k2nat, where

k2 = 3.1×10−13 cm3s−1 In order to suppress three-body recombination we work with

comparatively low densities nat ranging from 2 to 4 × 1011 cm−3. This reduces the

total reaction rate to about 0.3 Hz. Nevertheless, since for our experiments typical

interaction times of up to 1 s are needed in order to gain enough atom loss due to

elastic collisions, there is still a sizeable probability that the Ba+ ion undergoes a

reaction. We therefore use post-selection to only take into account runs where no

reaction between the Ba+ ion and an atom has occurred. For this, we determine via

fluorescence imaging whether the Ba+ ion is still present in the trap center immedi-

ately after the interaction time with the atom cloud. All runs for which this is not

the case, are discarded.

4.4.1 Compensation of phase micromotion

Following equation (4.2) we compensate transverse phase micromotion by applying

suitable voltages Vc,h sin(Ωt) and Vc,v sin(Ωt) to the compensation electrode pairs h

and v. These rf-voltages are added on top of the dc compensation voltages. For this,

we use a two-channel signal generator which is phase-locked to the rf-drive of the

Paul trap.

Because we do not precisely know the phases of the rf-compensation voltages at

the location of the respective electrodes we first carry out calibration measurements

to determine these phases. We use the fact, that according to the trigonometric ad-

dition formulas a phase deviation of the compensation voltage, i.e. ∝ sin(Ωt+φ) can

be written as ∝ [sin(φ) cos(Ωt) + cos(φ) sin(Ωt)]. The component ∝ sin(φ) cos(Ωt)

leads to a position shift [see equation (4.1)] and the corresponding spatial displace-

ment of the ion is proportional to sin(φ). Instead of only a single phase φ, there
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Figure 4.2: Measured position shifts of a Ba+ ion along the directions v̂ (blue filled
circles) and ĥ (red filled circles) (see figure 4.1a) as functions of the phases φh and
φv, respectively. The solid lines are functions ∝ −sin(φh) (blue) and ∝ sin(φv) (red).

are two different phases φh and φv in our experiment, associated with the compen-

sation electrode pairs h and v. A phase φh (φv) leads to a displacement in the v̂

(ĥ) -direction, respectively. We carry out two measurements of the Ba+ ion position

(using fluorescence imaging) where we vary either φh or φv. Figure 4.2 shows the

data. For simplicity, we have defined the phases φh and φv such that φv = 0 and

φh = 0 correspond to a vanishing position shift. Both data sets were obtained using

ac voltage amplitudes of Vc,v = 10V (Vc,h = 10V), respectively, on the compensation

rods, individually creating an electric field amplitude of 31 Vm−1 at the trap center.

In order to obtain larger position shifts of the ion, the voltage amplitude for the

quadrupole blades was reduced by about a factor of 0.6. With these parameters the

maximum position shifts are between 1 to 2µm. The position shifts are detected via

accumulating the scattered photons from the ion within 100µs. We note that the

line of view of the camera detecting the ion is perpendicular to the v̂-direction but

has an angle of about 45◦ with respect to the ĥ-direction. Therefore, the position

shift along the ĥ-axis appears smaller than it is.

We now work with phases φh = 0 and φv = 0, and minimize phase micromotion.

For this, we step through a range of ac voltage amplitudes Vc,v and Vc,h and search

for a minimum in atomic loss. Figures 4.3a and b show the remaining atom numbers

as a function of the field amplitudes εc,v = Vc,v × 3.1 m−1 and εc,h = Vc,h × 3.1 m−1,
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respectively. For plot (a) we set Vc,h = 0 while in (b) Vc,v = 0 was used. The

interaction time was 1 s. We change the sign of the electric field by flipping its

phase by π at the rf-generator. On the top axis of the figures the electrical field

amplitudes εc,h(v) are translated into the corresponding micromotion energies Ekin
c,h(v)

using equation (4.4).

As can be read off from figure 4.3a, an electric compensation field amplitude of

εc,v ≈ 4 Vm−1 reduces the micromotion energy by about 50 µK× kB. In contrast to

that, figure 4.3b reveals that micromotion in the horizontal direction is already close

to the minimum such that only small compensation fields εc,h are needed. In order

to determine optimal electric field amplitudes for compensation more precisely, we

heuristically use a cusp-like fit function Nj = −χj|εc,j− εmax
c,j |+Nmax

j with j ∈ {v,h}
for the remaining atom numbers Nj. Here, χj, ε

max
c,j , and Nmax

j represent fit param-

eters for the respective cusp. The given approach is simple and in general describes

the data quite well. The cusp-like behavior was also observed in our previous mea-

surements on the compensation of excess micromotion due to dc-stray fields [49].

Our fit results for the optimal amplitudes for the electric field compensation are

εmax
c,v = 4.2 ± 0.4 Vm−1 and εmax

c,h = 0.6 ± 0.7 Vm−1, respectively. We note that

although at these fields the atomic loss is minimized, it still remains at a level of

about 15%, which is mainly due to other uncompensated excess micromotion. For

comparison, the atom loss in the absence of an ion after a hold time of 1 s is only

about 3%.

To check for consistency we carry out model calculations for the remaining

number of atoms N as a function of micromotion energy. In our model we take

into account atom loss due to elastic atom-ion collisions with a loss rate Γel [see

equations (4.5) and (2.10)]. This elastic rate depends on the average two-body colli-

sion energy Ecol = (1−µ/mRb)×Ekin,a, where mRb is the mass of a 87Rb atom. Here,

Ekin,a is a function of the electrical field amplitudes εc,j. We calculate Ekin,a using

equation(4.4) and Ekin,a(εc,j = 0) = 4mK×kB. Furthermore, we include background

atom loss with a rate of about Γbg = 500 s−1 in our model. The rate equation for

the atom loss reads

Ṅ = −Γel + Γbg

N0

N , (4.6)

where N0 is the initial atom number. This yields the solution

N(t) = N0 exp

(
−Γel + Γbg

N0

t

)
. (4.7)

The red dashed lines in Figs. 4.3a and b show the results of our model calculations
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Figure 4.3: Remaining atom number after 1s of interaction with the ion as a function
of the electric field amplitude εc,v (a) and εc,h (b), respectively. The upper horizontal
axis translates the electric field amplitudes into the corresponding kinetic micromo-
tion energies Ekin

c,h(v) as determined by equation (4.4). Measurements are given by
blue data points. Each of these data points is the average value of 170 experimental
runs. The error bars represent the 1σ statistical uncertainty. Black solid lines are
fits of the cusp function Nj = −χj|εc,j − εmax

c,j | + Nmax
j with j ∈ {v,h}. The red

dashed lines represent model calculations for the remaining number of atoms for the
given experimental parameters and assuming elastic two-body atom-ion collisions
[equation (4.7)]. In the model, also the background atom loss is taken into account
(see text).
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using equation (4.7). In order to ease the comparison between the theory curve and

the experimental data, we scaled the initial atom number by a factor 0.98 for the

calculations, which is, however, still well within the uncertainty of our atom number

calibration. Figure 4.3 shows that after this scaling the agreement between our

model calculations and the experimental data is reasonably good.

4.4.2 Compensation of rf-induced axial micromotion

In order to compensate for rf-induced axial excess micromotion, we apply [in ac-

cordance with equation (4.3)] an ac-voltage of Vz = V0,z sin(Ωt + φz) to one of the

endcap electrodes. We search for the optimal amplitude V0,z and phase φz, again

using the scheme of minimizing atomic losses. For this we work with an atom cloud

of 1.7 × 104 atoms and with an ion trap where phase micromotion is not compen-

sated, i.e. Vc,v = Vc,h = 0. We start by optimizing φz. The voltage amplitude is

set to a fixed value of V0,z = 1 V which corresponds to an electric field amplitude

of about ε0,z = 8 Vm−1 at the position of the ion in the trap center. Figure 4.4

shows the measured remaining number of atoms as a function of the phase φz for an

interaction time of 500 ms with the ion. We can fit a sine function, ∝ sin(φz + ∆φz),

to the data and obtain ∆φz = (−0.77 ± 0.02)π. The atomic losses are minimal for
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φz = −∆φz + π/2.

We fix this phase for the search of the optimal voltage amplitude V0,z, which is

carried out next. This time, we work with a configuration where phase micromotion is

already compensated for as discussed in subsection 4.4.1. Now, initial atom densities

of about nat = 3.6×1011cm−3 are used. Figure 4.5 shows the remaining atom number

for an interaction time of 1 s as a function of the electric field amplitude ε0,z =

V0,z × 8 m−1. As in figure 4.3, the top abscissa indicates the electric field amplitude

in terms of a corresponding micromotion energy Ekin
z according to equation (4.4).

To determine the optimum compensation voltage amplitude we fit the cusp function

−χ|ε0,z − εmax
0,z | + Nmax to the data (see solid lines in figure 4.5) and obtain εmax

0,z =

10.4 ± 0.5 Vm−1. This electric field amplitude corresponds to V0,z = 1.3 ± 0.06 V.

Furthermore, the given value for εmax
0,z corresponds to a decrease in micromotion

energy of almost 300µK×kB. This is about six times larger than the energy regarding

phase micromotion, as discussed in subsection 4.4.1. Again, the red dashed line in

figure 4.5 represents the result of model calculations using equation (4.7). Here,

we take into account that phase micromotion was already compensated. As before,

we applied a 0.98 scale factor to the initial atom number in the calculations. The

agreement between the model calculations and the experimental data is again quite

good.

4.5 Probing micromotion compensation via reac-

tive atom-ion collisions

We now probe micromotion via reactive collisions instead of elastic ones. For this,

we work with large atomic densities of about nat = 7× 1013 cm−3 where three-body

recombination, Ba+ + Rb + Rb → (BaRb)+ + Rb, is by far the dominant reaction

process (see chapter C for more detail). The three-body recombination rate is given

by k3 n
2
at and the rate constant k3 scales as (see Appendices C and D)

k3 ∝ Ẽ
−3/4
col . (4.8)

Here, Ẽcol is the three-body collision energy in the center-of-mass frame. Since the

kinetic energies of the atoms can be neglected as compared to the ion energy, the

average three-body collision energy is given by

Ẽcol =

(
1− mBa

mBa + 2mRb

)
Ekin,a = 0.56Ekin,a . (4.9)
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atom number obtained from model calculations.

As stated earlier at Ẽcol = 2.2mK×kB the rate constant is k3 = 1.04×10−24 cm6s−1.

equation (4.8) shows that the reaction rate will strongly scale with the micromotion

energy of the ion. We measure the reaction rate as follows. The ion is immersed into

the atomic cloud for a variable time t. Afterwards, we use near-resonant fluorescence

imaging for a duration of 100 ms to detect the ion. If no cold Ba+ ion is detected,

we infer that a reaction has occurred. After repeating the experiment 90 times we

obtain a probability that a reaction has taken place within a given time t. Figure

4.6 shows the probability PBa+ that the Ba+ ion has not reacted as a function of

t. The open purple circles correspond to a measurement without compensation of

phase and of rf-induced axial excess micromotion. In contrast, the filled blue circles

represent a measurement where we have compensated micromotion, as described in

sections 4.4.1 and 4.4.2. The inelastic rate clearly increases when micromotion is

compensated, as expected.

The decays can be well fit by exponentials PBa+ = exp(−Γinelt), where Γw
inel =

(8.0±0.6)×103 s−1 and Γwo
inel = (5.2±0.3)×103 s−1 for the case with (w) and without
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(wo) micromotion compensation, respectively. Using equation (4.8) we obtain

Ẽw
col

Ẽwo
col

=

(
Γwo

inel

Γw
inel

)4/3

= 0.56± 0.07 . (4.10)

Therefore, the compensation of phase and rf-induced axial micromotion in our setup

reduces the original kinetic energy Ekin,a
wo of the ion by about 0.44Ekin,a

wo .

In sections 4.4.1 and 4.4.2 we have determined that this reduction of excess mi-

cromotion energy is 350 µK × kB, which corresponds to a decrease of ∆Ekin,a =

5 × 350 µK × kB = 1.75 mK × kB. Since 0.44Ekin,a
wo = 1.75 mK × kB, we obtain

Ekin,a
wo ≈ 4 mK× kB. This is in agreement with the value stated in section 4.4.1. The

given comparison demonstrates the good consistency between the two methods.

The remaining kinetic energy Ekin,a of about 2.2 mK × kB after compensation

in our setup is still substantial. It can probably only partially be explained by

collisionally induced micromotion for which the typical energy scale is expected to

be on the order of 40 µK × kB for our trap parameters [78]. We are planning to

investigate this in detail in the near future.
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4.6 Summary and Discussion

In conclusion, we demonstrate how to compensate rf-excess micromotion by studying

elastic or reactive collisions of an ion with ultracold neutral atoms. We minimize

unwanted rf-electrical fields down to the level of about 1 Vm−1, which is of similar

quality as achieved via other conventional compensation schemes [50–54]. In our

setup the compensation decreased the ionic excess micromotion energy by about

350µK×kB. Furthermore, we deduce from known scaling laws of collision rates that

the ion after full dc- and rf-field compensation still has a substantial amount of kinetic

energy of about 2.2 mK× kB when located inside the cold atomic gas. This residual

kinetic energy might be partially explained by collision-induced micromotion. In the

future it will be interesting to investigate this fundamental limit in more detail, e.g.

by varying trap parameters of the Paul trap such as the q and a parameters. Due to

characteristic scaling properties of the relevant energy terms with q and a this will

allow for discriminating between different sources of micromotion [49].

The method discussed here is especially convenient for atom-ion hybrid systems

since both species are readily available. Compensating excess micromotion allows for

reaching low collisional energies between atom and ion. This could be of interest e.g.

in the search for shape resonances in atom-ion collisions, see e.g. [86]. Finally, it has

been predicted [78] that the s-wave collisional regime can be reached for large atom-

ion mass ratios, e.g. as for Yb++Li [87], since here micromotion-induced heating is

comparatively small. For further suppressing micromotion-induced heating, Rydberg

dressing of atoms [79] could be applied.
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Chapter 5

Life and death of a cold BaRb+

molecule inside an ultracold cloud

of Rb atoms
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cloud of Rb atoms”
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Jesús Pérez-Ŕıos, Humberto da Silva Jr., Maurice Raoult, Olivier
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Abstract

We study the evolution of a single BaRb+ molecule while it continuously collides with

ultracold Rb atoms. The initially weakly-bound molecule can undergo a sequence

of elastic, inelastic, reactive, and radiative processes. We investigate these processes

by developing methods for discriminating between different ion species, electronic

states, and kinetic ion energy ranges. By comparing the measurements to model

calculations we obtain a consistent description of the typical trajectory of the ion

through the manifold of available atomic and molecular states. As a further result, we

determine rates for collisional and radiative relaxation as well as photodissociation,

spin-flip collisions, and chemical reactions.

5.1 Introduction

In recent years, methods have been developed to produce ultracold molecules out

of ultracold atoms, e.g. by photoassociation [88–90], sweeping over a Feshbach

resonance [91, 92], radiative association in a two-body collision (e.g. [86, 93]), or

three-body recombination [94]. Typically, the resulting cold molecules are internally

highly-excited and very reactive. Therefore, several questions arise. What are the

reaction and relaxation paths that the particles take while they are exposed to light

fields and collisions? What are the dynamics?

Investigations on these topics can be conveniently performed in hybrid-atom-ion

systems where trapped, cold molecular ions are immersed in a trapped gas of ul-

tracold atoms [34, 71, 72, 95–98]. Ion traps can be very deep so that an ion is still

trapped even if large amounts of energy are released in an inelastic or reactive pro-

cess. Furthermore, it is possible to selectively detect ionic products on the single

particle level. Control over the locations of the traps allows for deterministically

starting or stopping collisional dynamics between atoms and ion. In addition, low

temperatures in the mK regime and below enable a high level of control for the

preparation of the initial quantum state of the reactants and of the collision param-

eters such as the collision energy. A specific property of ion-neutral collisions is the

long-range interaction between a charge and an induced dipole, which depends on

the interatomic distance as 1/R4 [34, 71]. The combination of long-range interac-

tion and low temperature corresponds to an interesting regime where reactions and

inelastic processes can already take place at comparatively large inter-particle dis-

tances (see, e.g., [99]). This leads to large cross sections and promotes the formation
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of weakly-bound molecular states.

The young field of cold hybrid-atom-ion systems has shown tremendous progress

studying inelastic collisions and reactions. This includes charge exchange between

atoms and atomic ions [40, 100–105], and spin flips [106, 107]. It was possible to

observe collisionally induced vibrational or rotational relaxation of a deeply bound

molecular ion [16, 108], which is a collision at short internuclear distances. Further-

more, the formation of cold molecular ions from cold neutral and electrically charged

atoms has been realized for several species (e.g., [93,109–111]), and reactive behavior

of molecular ions has been investigated [112–115].

Here we take a different approach, focussing less on a single, particular physical

or chemical process. Instead we study the progression and interplay of the elas-

tic, inelastic and reactive processes which take place. Concretely, we investigate,

both experimentally and theoretically, the evolution of a cold, weakly-bound BaRb+

molecular ion as it continuously collides with ultracold Rb atoms. These collisions

can be elastic, inelastic, or reactive. Our investigation includes the deterministic

birth of the molecular ion inside the atom cloud, its typical life undergoing changes

in the electronic and vibrational states, and its death as it reacts away. We find that

the evolution of the BaRb+ ion directly after its formation is mainly dominated by

vibrational relaxation collisions with Rb atoms at large internuclear distance. With

increasing binding energy, radiative processes become progressively important until

they are dominant. We observe Ba+, Rb+
2 and Rb+ ions as reaction products, re-

sulting from a range of photo- or collisionally-induced processes which are discussed

in detail. Interestingly, in the experiments of Ref. [110] where the formation of

BaRb+ molecules from cold Ba+ ions and Rb atoms was studied, also Rb+ and Rb+
2

as final products were detected. How these products came about, however, remained

unclear. The results of our work, presented here, may be a key to also explain these

findings.

This chapter is organized as follows. In sections 5.2 to 5.9, we study the elastic,

inelastic and reactive processes of the BaRb+ ion for different phases of its evolution.

A detailed discussion of experimental parameters and detection methods is provided

in sections B1 to B3 of the Appendix. Finally, in sections B4 and B5 of the Ap-

pendix we give additional infromation on the theoretical models, calculations, and

Monte-Carlo (MC) simulations.
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Figure 5.1: (a) Illustration of various inelastic and reactive processes. (i) Formation
of a BaRb+ molecule via three-body recombination, (ii) collisional relaxation of a
BaRb+, (iii) substitution reaction, (iv) collisional dissociation, (v) collisional spin
exchange, (vi) photodissociation, and (vii) radiative relaxation. (b) PECs for BaRb+,
taken from [110]. The entrance channel Rb(5s 2S) + Ba+(6s 2S) marks zero energy.
Solid black, blue, and red arrows show possible photodissociation transitions for
1064 nm, 493 nm, and 650 nm light, respectively. The dashed green arrow indicates
radiative relaxation to the electronic ground state.
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5.2 Experimental setup and production of molec-

ular ion

Our experiments are carried out in a hybrid atom-ion apparatus. The basic setup

is described in detail in [48]. For the investigations presented here, we produce a

single BaRb+ molecule which is trapped in a linear Paul trap with trap frequencies

of 2π × (80, 30) kHz in radial and axial direction, respectively. The BaRb+ ion

is in contact with a cloud of 6 × 106 ultracold 87Rb atoms with a temperature of

T = 750 nK. The atoms are prepared in the electronic ground state 5S1/2 and are

spin-polarized, having a total angular momentum F = 1 and mF = −1. The atomic

cloud is held in a far off-resonant crossed optical dipole trap (ODT) at 1064 nm with

a trap depth of approximately 20µK×kB, where kB is the Boltzmann constant. The

density distribution of the cigar-shaped cloud can be described by a Gaussian with

root mean square widths of 9 and 60 µm in radial and axial direction, respectively

(see Appendix B1).

Initially, the cold BaRb+ molecule is produced via three-body recombination

Ba+ + Rb + Rb→ BaRb+ + Rb, typically at large internuclear distances, see Appen-

dices C and D for more detail, and see (i) in figure 5.1(a). For this, we prepare in

the Paul trap a single, laser-cooled 138Ba+ ion in the electronic ground state 6S1/2,

and a dense Rb atom cloud in the ODT. At that time the two traps are separated

by about 100 µm. Right before we start our experiments with the single Ba+ ion we

remove unwanted Rb+ and Rb+
2 ions, which can form spontaneously in our trapped

atom cloud, with a mass-filter scheme, see Appendix B2. After this purification step

the 493 nm and 650 nm laser-cooling beams for the Ba+ ion are switched off and the

Ba+ ion is moved into the atom cloud center. This is done within 100µs by abruptly

changing the voltage on one of the endcap electrodes of the Paul trap by 1.5 V.

Once the Ba+ ion is in the atom cloud the Ba+ + Rb + Rb → BaRb+ + Rb

three-body recombination leads to the formation of BaRb+ molecules with a rate

Γtbr = k3n(t)2, where k3 = 1.04(4) × 10−24 cm6s−1 is the three-body rate constant

(see Appendix C), and n(t) is the density of the atom cloud at a given time t at

the ion trap center. For the central atomic density of 8.1 × 1013cm−3 we obtain

Γtbr ≈ 6.8 × 103 s−1. Three-body recombination is by orders of magnitude the

leading reaction process of the Ba+ ion, and BaRb+ is the main product, as it is

discussed in Appendices C and D. Initially, the BaRb+ molecule is weakly-bound

below the atomic Rb(5s 2S) + Ba+(6s 2S) asymptote [see figure 5.1(b)]. Its binding

energy is expected to be ∼ 2mK×kB corresponding to the typical atom-ion collision
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energy in our Paul trap, see Appendices C and D. Furthermore, according to simple

statistical arguments, we expect the BaRb+ molecular ion to be produced in the

singlet state (2)1Σ+ and triplet state (1)3Σ+ with a probability of 25% and 75%,

respectively. For both of them the initial binding energy of ∼ 2mK×kB corresponds

to a vibrational state v = −5 (see also figure B1 of Appendix B4.1). The negative

vibrational quantum number v indicates that it is counted downwards from the

atomic asymptote, starting with v = −1 for the most weakly bound vibrational

state. When v has a positive value, it is counted upwards from the most deeply

bound vibrational state v = 0.

5.3 Experimental Investigation of the evolution of

the molecular ion

As will become clear later, we can learn a lot about the evolution of the BaRb+

molecule by monitoring the presence of the Ba+ ion and its state in the trap. Figure

5.2(a) shows data for the measured probability PBa+ for detecting a Ba+ ion as a

function of time for four different experiments. After immersing the cold Ba+ ion

into the cloud for a variable time τ we quickly (within 20 µs) pull out the remaining

ion and take two fluorescence images (see Appendix B3.1 for details). For the first

image the imaging parameters are chosen such, that only a cold Ba+ ion with a

temperature of about 100 mK or below can be detected. The filled blue circles in

figure 5.2(a) show these measurements for various immersion times τ . We essentially

observe here the three-body recombination of Ba+ towards BaRb+. Next, we take

a second fluorescence image which is preceded by a long laser cooling stage (for

details see Appendix B3.1). This retrieves almost 60% of the Ba+ ions that had

reacted away [filled red circles in figure 5.2(a)]. We can explain this retrieval by

the following scenario. There is a sizable probability for a freshly formed BaRb+

molecular ion to break up via photodissociation. The break up produces a hot

Ba+ ion which is subsequently cooled down to below ≈ 100 mK by the long laser

cooling stage so that it can be detected by fluorescence imaging (see Appendix B3.1).

Photodissociation can occur, e.g., by the ODT laser at 1064 nm. Figure 5.1(b)

shows indeed that 1064 nm photons can excite weakly-bound BaRb+ ions below

the Rb(5s 2S) + Ba+(6s 2S) asymptote to repulsive potential energy curves (PECs).

The most relevant transitions to produce a hot Ba+ ion are (2)1Σ+ → (4)1Σ+ and

(1)3Σ+ → (3)3Π. After the excitation, the Ba+ ion and the Rb atom are accelerated

away from each other, following the repulsive molecular potential. The Ba+ ion will
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obtain a high kinetic energy of up to 0.2 eV. As a consequence, it will afterwards

orbit most of the time outside the atom cloud, having a small probability for collisions

with Rb atoms. Therefore, sympathetic cooling and three-body recombination are

strongly suppressed and the hot Ba+ ion remains hot until it is cooled down during

the long laser cooling stage. We have direct evidence for this photodissociation

process, since we detect a fraction of the Ba+ ions in the electronically excited 5D5/2

state which corresponds to one of the asymptotic states of the (4)1Σ+ and (3)3Π

potentials [see figure 5.1(b)]. Concretely, we find that about half of the retrieved

hot Ba+ ions populate the metastable 5D5/2 state with its natural lifetime of ∼
30 s. As the Rb(5s) + Ba+(5dD3/2,5/2) asymptotes are located more than 5000 cm−1

above the initially formed BaRb+ molecular states, they only can be reached by

photodissocation. We discriminate the population of the Ba+ 5D5/2 state from the

population in the other Ba+ states by using the fact, that a Ba+ ion in state 5D5/2

can only be laser-cooled and detected after pumping it out of this metastable level

with a 614 nm laser. Thus, when we switch off the 614 nm laser we lose the signal

from the metastable 5D5/2 Ba+ ion.

To double check whether it is really the 1064 nm ODT laser which is responsible

for photodissociation we carry out a second set of measurements, where the ODT

is turned off 250 µs before the Ba+ ion is immersed into the cold atom cloud. As

a consequence the atomic cloud is now free falling and ballistically expanding. The

calculated time evolution of the atomic density at the center of the ion trap is shown

in figure 5.2(b) (see also Appendix B1). When we detect cold Ba+ ions via fluores-

cence imaging [hollow blue circles in figure 5.2(a)] there is essentially no change in

signal as compared to the case with the ODT being on. This is expected since the

atomic density is nearly constant on the time scale of the three-body recombination.

However, the signal solely for the hot Ba+ ion, which is obtained by subtracting the

signal for cold Ba+ from the signal for both cold+hot Ba+, is significantly smaller

compared to when the ODT laser is on. Thus, this indeed shows that 1064 nm light

photodissociates BaRb+ molecules into hot Ba+ ions and Rb atoms. Nevertheless,

the signal for the hot Ba+ ion is still on the order of 10% for sufficiently large times

τ . Therefore, also light with a different wavelength than 1064 nm must contribute

to the production of hot Ba+ ions. As we will show in section 5.8 the remaining

signal for hot Ba+ can be explained due to photodissociation of ground state (X)1Σ+

molecules via the laser cooling light at 493 nm.

We note that photodissociation by 1064 nm light can also produce a hot Rb+ ion,

instead of a hot Ba+ ion. This occurs in the transition (1)3Σ+ → (3)3Σ+. So far, we
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Figure 5.2: (a) Probability PBa+ of detecting a Ba+ ion as a function of time τ after
immersion into a Rb atomic cloud. Circles are measured data. Each data point is
the mean value of 50 repetitions of the experiment and the error bars represent the
1σ statistical uncertainty. Curves are the results of MC simulations (see Appendix
B5). (b) Time evolution of the atomic density n at the ion trap center after the ODT
beams have been switched off at τ = −250 µs.

have not experimentally studied this process in detail.

5.4 Insights from calculations

We now combine the information from our experimental data with insights from

theoretical calculations. This sets strong constraints on possible scenarios for the

evolution of the BaRb+ molecule and essentially fixes all free parameters of our the-

oretical model. Our analysis mainly involves electronic and vibrational states, while

rotational and hyperfine degrees of freedom are not taken into account to a large

part.

For example, we have carried out calculations for photodissociation cross sections

which are based on computed PECs and transition dipole moments for highly-excited

electronic states [86, 110] (for details see Appendix B4.3). In the calculations we

find that the photodissociation cross section for the v = −5 BaRb+ molecule with
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1064 nm light is about two orders of magnitude too small to explain the hot Ba+

signal. However, the calculations also show that the photodissociation cross sec-

tion increases approximately as ∝ E0.75
b for both singlet (2)1Σ+ and triplet (1)3Σ+

BaRb+ molecules, where Eb is the binding energy (see figure B4 of Appendix B4.3).

Apparently, shortly after production, while it is still immersed in the Rb cloud,

the weakly-bound BaRb+ molecule must vibrationally relax by a number of vibra-

tional levels before it is photodissociated. A theoretical treatment shows that the

vibrational relaxation is due to inelastic atom-molecule collisions, for which we have

derived cross sections in Appendix B4.1 via quasi-classical trajectory (QCT) calcu-

lations. Furthermore, our calculations predict that while photodissociation of singlet

(2)1Σ+ molecules via the 1064 nm laser indeed dominantly produces hot Ba+ ions,

photodissociation of triplet (1)3Σ+ molecules mainly leads to hot Rb+ ions. Thus, in

order to explain the measured substantial percentage of hot Ba+ ions, there has to be

a mechanism which converts triplet molecules into singlet molecules. This spin-flip

mechanism is provided by inelastic atom-molecule collisions, for which the cross sec-

tion is estimated to be a fraction of the Langevin cross section (see Appendix B4.2).

Finally, our theoretical treatment reveals that radiative relaxation of the (2)1Σ+

molecules towards the electronic ground state (X)1Σ+ due to spontaneous emission

[as illustrated by the green downward arrow in figure 5.1(b)] needs to be taken into

account. According to our calculations we obtain a broad population distribution

of final vibrational levels in the ground state, ranging from about v = 10 to above

v = 200, with a peak at v = 55, see figure B8 in Appendix B4.3. For a relaxation

towards the v = 55 level a photon at a wavelength of about 850 nm is emitted.

The relaxation rate is predicted to scale as ∝ E0.75
b , which is the same power law

as for photodissociation, see figure B7 in Appendix B4.3. Hence, there is a constant

competition between photodissociation and radiative relaxation for the singlet state

(2)1Σ+. Once in the ground state the molecule is immune to photodissociation by

1064 nm light, because the photon energy is not sufficient. Photodissociation via

laser cooling light, however, is possible.

We note that triplet (1)3Σ+ molecules cannot radiatively relax to (X)1Σ+ accord-

ing to the selection rules for electric dipole transitions. Therefore, in the absence of

any collisional or light-induced processes, these molecules remain within the triplet

state (1)3Σ+.

Besides the already mentioned inelastic and reactive processes also collisional

dissociation, substitution reactions and elastic collisions play a role for the evolu-

tion of the BaRb+ molecule. In order to theoretically model the evolution of the
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BaRb+ molecular ion in the atom cloud we carry out MC simulations and compare

them to the measured data. In the simulations we take into account the most rel-

evant processes shown in figure 5.1(a), as well as additional ones. Details on the

simulations, the various processes, and their respective cross sections can be found

in the Appendices B4 and B5. The simulations produce the lines in figure 5.2(a),

showing reasonable agreement with the experimental data. Additional results of the

calculations can be found in figure B13 in Appendix B5.2.

5.5 Evolution of the molecular ion

In the following, we discuss the results of our analysis. Our theoretical investigations

show that the evolution of the BaRb+ molecule both for the singlet state (2)1Σ+

and the triplet state (1)3Σ+ will at first be dominated by vibrational relaxation

collisions, which occur approximately with the Langevin rate ΓL = 164 ms−1 for the

peak atomic density of 8.1× 1013cm−3 in our cloud (see Appendix B4.1). Typically,

these collisions lead to vibrational relaxation in steps of one or two vibrational quanta,

with an average of 1.4 vibrational quanta per Langevin collision (see Appendix B5.1).

Vibrational relaxation heats up the ion since binding energy is released in form of

kinetic energy. This is counteracted by sympathetic cooling due to elastic collisions

with Rb atoms, which occur at an average rate of about one elastic collision (with

sizable momentum exchange) per vibrational relaxation step (see Appendix B5.1).

As a consequence the typical temperature of the BaRb+ ion is below 15 mK during

the initial, collision-dominated phase of the evolution. In general, when the collision

energy is larger than the binding energy of the BaRb+ molecule, the molecule can

also dissociate into a (cold) Ba+ ion and a Rb atom. For the initial vibrational level

v = −5 with its binding energy of 2 mK× kB this process occurs, however, only with

a comparatively small rate of about ΓL/7 (see Appendix B4.1), and is negligible for

deeper vibrational levels. Furthermore, our calculations reveal that for weakly-bound

BaRb+ ions in the states (2)1Σ+ and (1)3Σ+ the rate for the substitution reaction

BaRb+ + Rb → Rb2 + Ba+ is negligible. This is a consequence of the fact that

the interaction between the Rb atoms is much more short range than between a Rb

atom and the Ba+ ion, see also Appendix B4.1. Concerning the spin-flip collisions

we obtain good agreement with the experimental data when using a spin-flip rate of

ΓL/42 for flips from triplet to singlet (see Appendix B4.2).

Our calculations predict that for the experiments with ODT, which is operated

at an intensity of 18 kW cm−2, the (2)1Σ+ molecules vibrationally relax typically to
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a level v = −12 (Eb ≈ 50 mK × kB) before either photodissociation or radiative

relaxation to the ground state. By contrast, (1)3Σ+ molecules, which cannot radia-

tively relax to the ground state, typically reach a deeper vibrational level of v = −21

(Eb ≈ 460 mK × kB). The photodissociation rates are given by ΓPD = σPDI/(hν),

where I, h, and ν are the laser intensity, the Planck constant, and the laser fre-

quency, respectively, and σPD is the photodissociation cross section. Calculations for

σPD are presented in Appendix B4.3. For the experiments without ODT (and thus

without corresponding photodissociation channel) (2)1Σ+ molecules are expected to

relax typically to v = −18 (Eb ≈ 230 mK × kB) before radiative relaxation to the

ground state takes place.

5.6 Radiative relaxation

Since radiative relaxation to the ground state is predicted to be a central process

in the evolution of the BaRb+ ion, we now test for it experimentally. The idea is

to measure for how long BaRb+ molecules remain in the excited states (2)1Σ+ or

(1)3Σ+ before they radiatively relax to the ground state (X)1Σ+. We probe the

presence of a BaRb+ molecule in the states (2)1Σ+ or (1)3Σ+ by photodissociating
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it into a Ba+ ion and a Rb atom with the 1064 nm laser, and then detecting the hot

Ba+ ion. BaRb+ molecules in the ground state (X)1Σ+ cannot be photodissociated

by the 1064 nm laser because the photon energy is not sufficient. We start this

experiment by moving a single and cold Ba+ ion into the atom cloud 250 µs after

the 1064 nm ODT laser has been switched off. As before, a BaRb+ molecule will

form on a time scale of Γ−1
tbr = 0.15 ms. After the immersion of the Ba+ ion, we wait

for a time τ ′ before we switch on again the 1064 nm laser [116] to photodissociate

the molecule. Before applying the detection scheme for the released hot Ba+ ion, i.e.

long laser cooling and subsequent fluorescence imaging, we remove any remaining

BaRb+ molecule by mass-filtering (see Appendix B2). The removal is done, because

a remaining BaRb+ molecule can give rise to a spurious hot Ba+ signal as the laser

cooling step can also photodissociate a BaRb+ molecule into a Ba+ ion and a Rb

atom. This is discussed in detail later in section 5.8.

The red data points in figure 5.3 show the probability PBa+ to detect a Ba+ ion

(hot or cold) at the end of the given experimental sequence for various times τ ′. As

expected, the Ba+ signal decreases as τ ′ increases because the BaRb+ molecule has

more time to relax to the (X)1Σ+ state. The decrease to about 1/3 of the initial value

takes place within about τ ′ = 0.5 ms, which represents an approximate time scale

for the lifetime of the (2)1Σ+ and (1)3Σ+ BaRb+ molecule, respectively, in the cloud

of Rb atoms. For times longer than 2 ms an almost constant value of PBa+ ≈ 6% is

observed. This remaining population is composed of the following contributions: 4%

are cold Ba+ ions (blue solid line) that have not reacted at all [117] or that have been

released again as a result of collisional dissociation. 2% arise probably from BaRb+

molecules that are stuck in the triplet state (1)3Σ+ after the collisional phase when

all neutral atoms have left for τ ′ > 2 ms, and are photodissociated from there by

the 1064 nm light. The green dashed curve gives the probability for ending up with

a BaRb+ molecule in the electronic ground state. This probability nearly reaches

PBaRb+ = 20%. In principle, this fraction would be about four times as large, if

the substitution reaction BaRb+(X) + Rb → Ba + Rb+
2 , which depletes electronic

ground state BaRb+(X) molecules, were absent [118]. The corresponding reaction

rate is expected to be on the order of the Langevin rate (see Appendix B4.1). We

note that a Rb+
2 molecular ion can also decay in the collision Rb+

2 +Rb→ Rb++Rb2,

if it is not too deeply bound [119]. In our simulations, however, we do not further

pursue this process, and therefore give here the joint probability for finding a Rb+
2 ion

or its Rb+ decay product (magenta line in figure 5.3). The orange curve, in contrast,

gives the probability for Rb+ ions which are produced via photodissociation by the
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1064 nm laser.

5.7 Product ion species

Our discussion so far already indicates that we expect to find a range of ionic products

in our experiments, each with a respective abundance. We test this prediction by

performing mass spectrometry in the Paul trap after the reactions. As described in

more detail in Appendix B2, this is done as follows. When probing for a given ionic

product, we use the mass-filter to remove the ion from the Paul trap if it has the

corresponding mass. Afterwards, we check whether the Paul trap is now empty (see

Appendix B3), knowing that before the mass-filtering a single ion of some species

was present. For the experiments without ODT we observe the following abundances

after an interaction time τ = 10 ms: Ba+: 4± 2%, BaRb+: 29± 5%, Rb+
2 : 22± 5%,

Rb+: 45± 6%. Here, Rb+ ions are probably created via the aforementioned reaction

Rb+
2 + Rb → Rb+ + Rb2 as the direct process BaRb+ + Rb → Rb+ + BaRb is

slow and even energetically closed for most vibrational states in the ground state

(X)1Σ+ (see Appendix B4.1). We expect the detected Ba+ ions to be cold because

there is no photodissociation light present in the given measurement scheme. Our

MC simulations are in good agreement with these abundances. From figure B13 we

can read off the following values for τ > 3 ms: cold Ba+: ∼ 4%, BaRb+: ∼ 26%,

Rb+
2 /Rb+: ∼ 70%, According to our simulations about 8% of the initial Ba+ ions end

up as a BaRb+ ion in the triplet state (1)3Σ+ while there are no molecules remaining

in the singlet state (2)1Σ+ at τ = 10 ms. Therefore, the measured BaRb+ fraction

of 29% mainly consists of (X)1Σ+ electronic ground state molecules.

5.8 Photodissociation of electronic ground state

molecules

Finally, we investigate photodissociation of the (X)1Σ+ state molecules. Once a

BaRb+ molecule has relaxed towards (X)1Σ+ it is stable with respect to 1064 nm

light, however, photons from the cooling lasers for Ba+ at the wavelengths of 650 nm

or 493 nm can still photodissociate it, see blue and red arrows in figure 5.1(b) [120].

Figure 5.4 shows photodissociation as a function of exposure time ∆t for light at

493nm (a) and at 650nm (b), respectively. The filled circles represent the fraction of

experimental runs where we detect a BaRb+ ion. We probe the presence of a BaRb+
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Figure 5.4: Photodissociation of ground state BaRb+ molecules by 493 nm (a) and
650 nm (b) laser light as a function of exposure time ∆t. Filled circles show the
probability of detecting a BaRb+ molecule. Hollow diamonds give the probability of
detecting a Ba+ ion. The solid lines are fits of an exponential decay plus offset.

ion by measuring whether a corresponding mass-filter removes the ion from the Paul

trap, see Appendix B2. The photodissociation laser is switched on τ = 10 ms after

immersing the Ba+ ion into the atom cloud without ODT. The observed decay of

the BaRb+ fraction can be approximately described by an exponential plus offset,

P0 exp(−Γ∆t) + P∞ (see solid lines in figure 5.4). The offset P∞ may stem from

BaRb+ ions in certain vibrational levels of the states (1)3Σ+ or (X)1Σ+ which happen

to have rather small photodissociation cross sections. As mentioned before, we expect

the vibrational distributions in both states to be quite broad. In addition, the PECs

indicate that the photodissociation cross sections for both the states (1)3Σ+ and

(2)1Σ+ by 493 nm and 650 nm light might be extremely small, because of a missing

Condon point at short range for the relevant transitions, see also Appendix B4.3.

From the measured laser intensities of I493 = (180 ± 40) mW cm−2 and I650 =

(260 ± 50) mW cm−2, we can determine effective, average photodissociation cross

sections for the given (X)1Σ+ BaRb+ molecule population distribution over the vi-

brational states, using σ = Γhν/I. We obtain σ493 = (1.2 ± 0.3) × 10−17 cm2 and

σ650 = (1.0± 0.2)× 10−17 cm2.

We now test whether a Ba+ ion has been produced during photodissociation, see
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hollow diamonds in figure 5.4. For the detection of the Ba+ ion the mass-filtering

scheme is used to remove a possibly remaining BaRb+ ion, before long laser cooling

and subsequent fluorescence imaging are carried out. For light at 650 nm we do

not find any Ba+ signal. This can be explained with the help of figure 5.1(b). The

650 nm laser couples the (X)1Σ+ state essentially only to the (3)1Σ+ state which,

however, dissociates into Rb+ + Ba. In contrast, for light at 493 nm the production

of Ba+ ions is expected, and indeed the loss of BaRb+ signal in figure 5.4(a) directly

correlates with an increase of Ba+ signal. Furthermore, we observe that about half of

the produced Ba+ ions end up in the metastable state 5D5/2, since their signal is lost

as soon as we switch off the 614 nm repump laser. Besides serving as a consistency

check, this measurement also demonstrates that single ground state BaRb+ molecules

can be detected with high efficiency via fluorescence imaging.

From the experimentally determined cross sections we can estimate that when

applying fluorescence imaging photodissociation of a (X)1Σ+ state molecule will on

average result in a (hot) Ba+ ion with a probability of about 70%, and in a Rb+ ion

with a probability of about 30%.

5.9 Conclusions and outlook

In conclusion, we have studied the evolution of a BaRb+ molecule in a gas of ultracold

Rb atoms. We find that due to the high predictive power of the theory for the

collisional and radiative processes of the BaRb+ molecule only a comparatively small

amount of experimental input is necessary to qualitatively pin down the evolution

of the molecular ion. In order to experimentally probe the current state of the ion

we have developed novel methods which are based on the coordinated concatenation

of mass spectrometry, controlled photodissociation, timing of atom-ion interaction,

laser cooling, and fluorescence imaging. We find that while the molecular evolution

is dominated by vibrational relaxation for the most weakly-bound levels, radiative

processes become increasingly important for more deeply bound levels. Furthermore,

our work shows how differently the molecules behave depending on their electronic

state. The holistic view of the molecular evolution presented here, opens up many

new perspectives for future experiments, as it lays out how to prepare and manipulate

specific molecular states and how to probe them. In the future, it will be interesting

to extend the work presented here to resolve the vibrational and rotational states of

the BaRb+ ion. This will allow for investigating collisional and radiative processes

and reaction paths so that our understanding can be tested on the quantum level.
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Some of the methods presented here are very general and can be directly adopted for

studies of a broad range of other atomic and molecular species. These can be, e.g. of

interest for research in astrochemistry where reaction chains in the cold interstellar

medium are investigated [121–124].
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Chapter 6

Summary and Outlook

Summary

In this thesis, I have presented results from essentially two experimental projects;

1. In the first project, I minimize excess micromotion due to rf-electrical stray

fields in a linear Paul trap with the help of collisions that occur between a single

trapped ion and ultracold neutral atoms. We minimize unwanted rf-electrical

fields down to the level of about 1 Vm−1. By this minimization, we reduce

the ion kinetic energy by a factor of 0.44. The ion kinetic energy after the

compensation of dc- and rf-electrical stray fields is about 2.2mK×kB when the

ion is located inside the cold atomic gas. This residual kinetic energy might be

partially explained by collision-induced micromotion. The method discussed

here is especially convenient for atom-ion hybrid systems since both species

are readily available. Compensating excess micromotion allows for reaching

low collisional energies between the atom and ion which is of interest e.g., in

the search for shape resonances in atom-ion collisions, see e.g. Ref [86].

2. We have studied the evolution of a BaRb+ molecule in a gas of ultracold Rb

atoms. We have developed novel methods that are based on the coordinated

concatenation of mass spectrometry, controlled photodissociation, the timing

of atom-ion interaction, laser cooling, and fluorescence imaging to experimen-

tally probe the state of the ion. We find that while the molecular evolution

is dominated by vibrational relaxation for the most weakly-bound levels, ra-

diative processes become increasingly important for more deeply bound levels.

Furthermore, our work shows how differently the molecules behave depending

on their electronic state. The holistic view of the molecular evolution presented
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here, opens up many new perspectives for future experiments, as it lays out

how to prepare and manipulate specific molecular states and how to probe

them. Some of the methods presented in this thesis are very general and can

be directly adopted for studies of a broad range of other atomic and molecular

species. These can be, e.g. of interest for research in astrochemistry where

reaction chains in the cold interstellar medium are investigated [121–124].

Outlook

We will be able to learn more about the evolution of the BaRb+ ion in the gas of

ultracold Rb atoms by performing precise spectroscopy on the external and the in-

ternal states of the molecule. And, e.g., by putting a BaRb+ ion into a dilute cloud

of Rb atoms, one can study whether the reactive collision rate of the molecule is

independent of the collision energy as our models predict. Working with a dilute

gas of Rb atoms (i..e, nat ∼ 1011 − 1012 cm−3) suppresses the three-body collisions

and provides a platform for investigating only two-body collisions in the molecular

ion-atom system. The collision energy in our ion trap can be tuned by steps of a

few µK × kB via adding dc-stray electric fields to the Paul trap which essentially

increases the ion micromotion energy.

In the following, I discuss a few of these experiments which can be done in our hybrid

atom-ion experiment.

Study on the reactive collision rate of the BaRb+ ion

We expect the vibrational quenching and the substitution reaction of the BaRb+ ion

inside the ensemble of very cold Rb atoms to take place roughly at the Langevin

rate. This can be experimentally checked in our BaRb+-Rb system by immersing

the BaRb+ ions into another new dilute cloud of Rb atoms. I propose to measure the

reactive rate of the BaRb+ ion as a function of the collision energy and the atomic

density. In the first experiment, the Ba+ ion is inserted inside of very dense Rb atoms

where there is no dipole trap beam. It results in the formation of the BaRb+ ions

which are used as inputs for the second experiment in which the molecular ions can be

inserted into a new and relatively dilute Rb atomic cloud. Here, the interaction time

and the collision energy are experimental parameters that can be adjusted for the

second experiment. By measuring the probability of observing the BaRb+ ion after

different interaction times and collision energies, one can check whether the reactive
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collision rate of the BaRb+ ion is independent of the collision energy, the feature

that we expect from the Langevin rate. Yet another thing which can be studied in

the above experiments is the type of collisions that can happen in the BaRb+-Rb

system. This can be figured out by inserting the molecular ion into the Rb atomic

clouds with various densities in the second experiment. While the two-body collision

results in a linear change in the reaction rate, any non-linear scaling of the reaction

rate by the atomic density can be taken as a signal of few-body collisions between

the cold molecular ion and ultracold Rb atoms which can be a very interesting topic

for further research.

Study on the reactive collision rate of the Rb+
2 ion

The study on the reaction rate of the molecular ion can also be done by Rb+
2 ions

which are produced via the substitution reaction BaRb+(X) + Rb → Ba + Rb+
2

in our experiments. Similar to the BaRb+-Rb system, we can insert the Rb+
2 ion

into a new cloud of Rb atoms with different atomic densities, various interaction

times and, collision energies so one can determine how the reactive rate of Rb+
2

ions depends on the collision energy and the atomic density. Here, the reaction

Rb+
2 + Rb→ Rb+ + Rb2 can take place for the Rb+

2 molecular ion provided that it’s

not too deeply bound.

Toward very cold atom-ion collisions

To reach beyond the limits imposed by collisional induced micromotion (e.g. see

Ref [78]) for an atom-ion system, particles should collide when the Paul trap is not

in use. There is at least one solution for this in our hybrid system for very short

interaction times (i.e., a few tens of µs) as I will explain in the following.

Release and recapture method

Experiments show that the Ba+ ion can be recaptured in the Paul trap even after

30 µs of turning off the Paul trap. After this time, the probability of finding the

Ba+ drops quickly. Figure 6.1 shows preliminary data of a release and recapture

experiment in which the Paul trap was completely switched off at τ = 0 and the

ion was released. The trap stays off for a short time scale and then it is switched

on again to recapture the ion. A few ms after running the Paul trap, we image the

ion to check if the ion still can be re-trapped in the Paul trap. As the data show,

there is time τ ∗ so that for all τ < τ ∗, Prcp ≈ 1 where Prcp is the probability of
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Figure 6.1: The probability of recapturing a well compensated Ba+ ion in our linear
Paul trap after a release time τ . During release, the rf electrodes are switched off
and the Ba+ has no micromotion. For τ 6 τ ∗, the Ba+ can be fully recaptured which
make it suitable for micromotion free atom-ion interactions. For τ > τ ∗, Prcp decays
with τ . The curve is an exponential fit to experimental data points.

recapturing the Ba+ ion. In the experiment of figure 6.1, stray dc-electric fields at

the trap center have been compensated to better than 0.02 Vm−1 whereas there is no

compensation for rf-induced micromotion. Thus, one can check whether minimizing

ion micromotion due to the rf-electric fields increases τ ∗ to more than 30µs or not.

For all recapturing times smaller than τ ∗, the Ba+ collides with Rb atoms without

any micromotion providing that the collision rate of the ion is greater than 1/τ ∗.

For dense Rb clouds that we use in our experiments with typical atomic density

of nat = 8 × 1013cm−3, the Langevin rate ΓLng is about 165 ms−1 meaning about 5

Langevin collisions can occur within the interaction time τ ∗.

The way the ion is released or recaptured is very important since the process can

easily heat the ion. As an interesting work for the future, one can find a way to ramp

down the oscillating electric fields of the rf electrodes in the Paul trap such that we

keep the ion heating rate at minimum.
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Chapter 7

Appendices

Reprint with permission

Material from:’Amir Mohammadi, Joschka Wolf, Artjom
Krükow, Markus Deiß, and Johannes Hecker Denschlag,

Minimizing rf-induced excess micromotion of a trapped ion,
Applied Physics B: Lasers and Optics, published 2019,

Springer-Verlag GmbH Germany’

A Some general considerations on compensating

excess micromotion

To compensate excess micromotion, the Paul trap does not have to exhibit perfect

rotational symmetry. The motion of a confined ion is determined by the exposure

to constant and rf-electrical fields1. Concretely, we consider the three electrical

fields ~Ec, ~Ecos, ~Esin, characteristic for a Paul trap. ~Ec(~r) is time-independent, while
~Ecos(~r) ∝ cos(Ωt) and ~Esin(~r) ∝ sin(Ωt) are quadrature components of the rf-field.

The electrical fields ~Ec, ~Ecos, ~Esin can each be Taylor expanded around the trap center

position ~r0. For each expansion the first term is a homogeneous offset field and the

second term is a quadrupole field, followed by higher multipole terms such as the

1We restrict the discussion to the quasi-static regime where dynamical coupling of ~E- and ~B-fields
(e.g. induction) can be neglected.
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octupole field. In the Paul trap it is the quadrupole field which is used for trapping.

For excess micromotion to vanish at ~r0, we need ~Ec(~r0) = ~Ecos(~r0) = ~Esin(~r0) = 0,

which is equivalent to the vanishing of the respective offset field terms of the Taylor

expansions. The remaining quadrupole fields at location ~r in the direct vicinity of

~r0 will generally dominate over the higher multipole fields, as long as ~r− ~r0 is much

smaller than the distance to any of the trap electrodes. The total quadrupole field
~Eqp(~r) (i.e. the sum of the three quadrupole fields) is fully determined by the second

derivatives of the corresponding electrostatic potential φ, i.e. ~Eqp(~r) = H(φ)(~r−~r0).

Here, H(φ) is the Hessian matrix of φ, i.e. Hi,j(φ) = ∂2φ
∂xi∂xj

, where xi, xj ∈ {x, y, z}.
Since H(φ) is symmetric it can be diagonalized. In the corresponding coordinate

system {x′, y′, z′} the electrical quadrupole field can be written as ~Eqp = ax′x̂′ +

by′ŷ′ + cz′ẑ′, similarly as in Eq. (4.1). Here, a, b, c are time-dependent coefficients.

Therefore, the motions of the ion along directions x̂′, ŷ′, ẑ′ are decoupled and can be

described by Mathieu equations. Thus, the main requirements for a Paul trap are

fulfilled.

In order to cancel the offset field components of each of the ~Ec, ~Ecos, ~Esin fields

at location ~r0 we can use three compensation electrodes to which we apply suit-

able dc- and rf-voltages. These electrodes produce electrical fields at ~r0 which are

preferentially (but not necessarily) mutually perpendicular to each other.
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B

”Life and death of a cold BaRb+ molecule inside an ultracold

cloud of Rb atoms”

Amir Mohammadi, Artjom Krükow, Amir Mahdian, Markus Deiß,
Jesús Pérez-Ŕıos, Humberto da Silva Jr., Maurice Raoult, Olivier

Dulieu, and Johannes Hecker Denschlag,

arxiv 2005.09338 (2020)
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B1 Density evolution of atom cloud

Initially, the prepared 87Rb atom cloud consists of about N = 6 × 106 atoms [125]

and has a temperature of T = 750 nK. It is confined in a crossed ODT using laser

light at 1064 nm. One ODT beam has a power of 1.6 W and a beam waist of 230µm

at the location of the atoms. The other one has a power of 2.1 W and a waist of

96 µm. Dipole trap frequencies are (ωx, ωy, ωz) = 2π× (145, 145, 22) Hz for the three

directions of space i ∈ {x, y, z}. Here, the y-axis corresponds to the vertical axis,

which is along the direction of the acceleration of gravity g. The initial widths σi,0 of

the atomic cloud are σi,0 = ω−1
i

√
kBT/mRb, where mRb is the atomic mass of 87Rb.

We obtain σx,0 = σy,0 = 9 µm, and σz,0 = 60 µm.

When switching off the ODT at a time t = 0, the evolution of the density n(t) of

the atomic cloud at the position of the ion can be expressed by

n(t) =
N(2π)−3/2

σx(t)σy(t)σz(t)
exp

(
− g2t4

8σ2
y(t)

)
, (B1)

using the atom cloud widths σi(t) =
√
σ2
i,0 + kBTt2/mRb. In figure 5.2(b) we show

the density evolution of the atom cloud at the location of the ion trap center. We

note that the interaction time τ is given by τ = t−250µs, since the atoms are released

250µs before the ion is immersed into the atom cloud at τ = 0. In figure 5.3 we have

essentially the same density evolution despite the fact that at τ ′ some laser light at

1064nm is switched on. We have checked numerically that due to the low intensity of

1.8 kW cm−2 used for these measurements the effect of the optical trapping potential

is negligible.

B2 Mass filtering

We can selectively remove an ion of a pre-chosen mass from the Paul trap by reso-

nantly heating the ion out of the trap. For this we modulate the voltages on electrodes

which are normally used for the compensation of radial stray electric fields at the

ion trap center, see Ref. [49] and chapter 4. This modulation shifts the trap center

periodically about the axial symmetry axis of the Paul trap. The frequency of the

modulation is set to be the mass-dependent trap frequency of the chosen ion species.

We typically modulate the trap for a duration of 3 s. We have performed test mea-

surements for deterministically prepared Ba+, Rb+, and Rb+
2 ions. In these cases we

observed an efficiency of almost 100% for removing the ion by resonant modulation.

We therefore also expect a similar efficiency for a BaRb+ ion. A modulation with

69



the resonance frequency for a particular ion species does not affect the trapping of

an ion of a different species relevant for the present work.

B3 Detection of the ion

In order to detect a single, trapped ion in the Paul trap we have two methods which

we describe in the following.

B3.1 Fluorescence detection of a single Ba+ ion

In order to detect a Ba+ ion we first separate the ion trap center from the atom

trap center by a distance of 100µm which is much larger than the size of the atomic

cloud in order to suppress unwanted collisions. This is done by applying appropriate

dc voltages on the Paul trap endcap electrodes. Afterwards, the atoms are released

from the ODT by switching it off. After 20 ms, when all atoms have left, we move

the ion back to its former position, since this position corresponds to the centers of

the cooling laser beams for the Ba+ ion. Here, the lasers have beam waists (1/e2

radii) of about 20 µm. The cooling laser beams consist of one beam at a wavelength

of 493 nm for driving the 6S1/2 to 6P1/2 Doppler cooling transition, and one beam

at a wavelength of 650 nm for repumping the Ba+ ion from the metastable 5D3/2

state towards 6P1/2. During a laser-cooling time of 100 ms an electron multiplying

CCD camera takes a first fluorescence image of the Ba+ ion. This method allows

for detection of a cold Ba+ ion with a temperature of T ≈ 100 mK or below, due

to the short duration of the laser cooling. A hotter Ba+ ion, e.g. resulting from

photodissociation with a kinetic energy on the order of 0.2 eV, can be detected by

taking a second image after long laser cooling. For this, the 493 nm laser beam

frequency is red-detuned by 1 GHz and swept back towards resonance within three

seconds. Afterwards, we take another fluorescence image, again for a duration of

100 ms. From the two images we can discriminate a hot ion from a cold one. For

example, if a fluorescing Ba+ ion is found in the second image but not in the first

one, then this Ba+ ion was hot at the time of the first image. Furthermore, we can

detect whether a Ba+ ion is in the metastable state 5D5/2. Such an ion will only

appear in the fluorescence image, if we previously pump it out of the 5D5/2 state,

e.g. with a 614 nm laser via the 6P3/2 level. Therefore, in order to probe for a 5D5/2

ion, we take two sets of fluorescence images. The first set is without the 614 nm

repump laser and the second set is with the 614 nm repump laser. If we only obtain

a fluorescence signal in the second set of the images, then the Ba+ ion was in the
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metastable state 5D5/2.

B3.2 Detection of the ion via atom loss and discrimination of ion species

In our setup only the Ba+ ion can be detected directly via fluorescence imaging. In

order to detect a different ion species such as BaRb+, Rb+, Rb+
2 we use a scheme

where the ion inflicts atom loss in a cold atom cloud [49, 126]. For this, the ion is

kept in the ion trap while a new cloud of neutral atoms is prepared. Then, the ion is

immersed into this new atom cloud. Elastic collisions of the ion with the ultracold

atoms lead to loss of atoms as they are kicked out of the ODT, which is much

shallower than the ion trap. After a given interaction time the remaining number of

atoms is measured via absorption imaging. If this number is significantly lower than

for a reference measurement using a pure atom cloud an ion is present. Typically we

already know from the preparation procedure (and, because all relevant ion species

cannot escape from the deep Paul trap potential), that a single ion must be trapped

in the Paul trap, but we would like to discriminate between the ion species BaRb+,

Rb+, and Rb+
2 . For this, we carry out mass-filtering in the Paul trap (see Appendix

B2), where we remove selectively the ion from the trap if it has a specific, pre-chosen

mass. Subsequently, we test whether the ion has been removed from the Paul trap

with the ion detection scheme based on inflicted atom loss.

B4 Calculation of cross sections

B4.1 Cross sections from QCT calculations

Model

We use QCT calculations [127] to determine cross sections for elastic collisions, vi-

brational relaxation, collisional dissociation and substitution reactions in collisions

of a BaRb+ ion with an ultracold Rb atom.

Since the three-body process occurs at large internuclear distances we assume

that the three-body potential energy surface can be described by pair-wise additive

ground-state potentials according to V (~R1, ~R2, ~R3) = V (~R12) + V (~R13) + V (~R23).

Here, the Rb-Rb interaction is taken from [128], while the Ba+-Rb and Ba-Rb+ in-

teractions are modeled by means of the generalized Lennard-Jones potential V (R) =

−C4[1− (Rm/R)4/2]/R4, where C4 = 160 a.u., R is the internuclear distance, Rm =

9.27 a0, and a0 is the Bohr radius. We note in passing that C4 = αRbe
2/[2(4πε0)2]

is proportional to the static dipolar polarizability αRb = 4πε0 × 4.739(8)× 10−29m3
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of the Rb atom [129]. e is the elementary charge and ε0 is the vacuum permittivity.

The Lennard-Jones type potential describes the long-range interaction correctly and

leads to a manageable computational time. We note that the C4 coefficient for a Ba

atom is 134± 10.8 a.u. [130]. Nevertheless, for saving computational time we simply

use the same coefficient for the Ba atom as for the Rb atom in our model. This

introduces small quantitative errors of about 5% but does not change the qualitative

interpretation.

Using the QCT approach, we study the collisional behavior of BaRb+ molecules

in the states (2)1Σ+, (1)3Σ+ as well as (X)1Σ+. We ignore any spin degrees of

freedom, which means that the results are the same for both (2)1Σ+ and (1)3Σ+

BaRb+ molecules. Furthermore, we only consider collisions where BaRb+ molecules

are initially nonrotating, i.e. j = 0. We have numerically checked that for other low j-

states the results will not be significantly different at the level of our approximations.

In order to determine cross sections and rates for a given electronic and vibrational

state we sum over the corresponding rotational distribution of the final products.

In figure B1, the energetically uppermost vibrational levels as derived from the

Lennard-Jones potential are shown down to binding energies of about 1 K×kB. For

comparison, we also present the results from the PEC calculations for the (2)1Σ+

and (1)3Σ+ electronic states (see Appendix B4.3).

We have carried out QCT calculations for the vibrational levels v = (−1,−2, ...,−16)

and for a collisional energy range of Ec = 1 − 100 mK×kB. This range for Ec cor-

responds to a range of the kinetic energy of the BaRb+ ion of Ec(1 − µ/mRb)−1 =

3.6− 360 mK× kB, when assuming zero kinetic energy for the atoms. Here, µ is the

reduced mass of the Rb-BaRb+ system. For a given set of v and Ec, we determine

a suitable maximum impact parameter bmax beyond which no reactions/inelastic

processes occur anymore. bmax is typically on the order of the Langevin radius

bL = (4C4/Ec)
1/4. We run batches of 104 trajectories, effectively sampling the con-

figuration space including different impact parameters b < bmax and molecular orien-

tations. As a result we obtain a probability distribution for the different collisional

processes. The cross section for a specific collision process κ can be calculated as

σκ = π b2
max Pκ, where Pκ is the probability for a trajectory undergoing this process.

Results

� Vibrational relaxation: Figure B2 shows the cross sections for vibrational re-

laxation for the states (2)1Σ+ and (1)3Σ+ for different collision energies. The

calculations clearly reveal that in general the vibrational relaxation cross sec-
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Figure B1: Vibrational binding energies of a BaRb+ molecule for the electronic states
(1)3Σ+ and (2)1Σ+. The rotation is in the ground state, i.e. j = 0. The brown
data points result from the Lennard-Jones potential which is used for the QCT
calculations. The purple and blue data points are the results from our calculated
(1)3Σ+ and (2)1Σ+ PECs, as described in Appendix B4.3.

tion is well approximated by the Langevin cross section σL(Ec) = π
√

4C4/Ec.

The corresponding Langevin rate ΓL(t) = σLvionn(t) = KLn(t) is independent

of the collision energy. Here, vion =
√

2Ec/µ is the velocity of the BaRb+ ion

and KL = 2π
√

2C4/µ = 2.03× 10−9 cm3s−1 is the Langevin rate constant. We

note that in our calculations vibrational relaxation typically leads to a change

in the vibrational quantum number v by one or two units, i.e. v′ = v−1, v−2.

The average change is 1.4 units, as discussed later in Appendix B5.1. Since

these results are quite independent of the initial vibrational quantum number

(see figure B2), we adopt them for levels which are more deeply-bound than

v = −16. Furthermore, we use them also for vibrational relaxation in the
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Figure B2: Vibrational relaxation cross section as a function of the vibrational quan-
tum number v, for various collision energies Ec. Shown are results of QCT calcu-
lations. The error bars represent 1σ standard deviation obtained by evaluating the
numbers of trajectories leading to the same outcomes. The dashed lines are the
Langevin cross sections.

ground state (X)1Σ+. If the collision energy is large enough, in principle, also

vibrational excitation could occur, but for our settings the calculations show

that this is quite negligible.

� Substitution reaction BaRb+ + Rb→ Rb2 + Ba+: For the weakly-bound levels

of the (2)1Σ+ and (1)3Σ+ electronic states this reaction is in general so rare

that it can be neglected. This can be explained as follows in a simple classical

picture. The Ba+ ion and the Rb atom of the weakly-bound BaRb+ molecule

are generally well separated. The colliding free Rb atom mainly interacts with

the Ba+ ion via the long-range polarization potential while the interaction

between the two Rb atoms is essentially negligible. Hence, the formation of
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the neutral Rb2 molecule is unlikely. For the ground state (X)1Σ+ the reaction

is energetically closed.

� Substitution reaction BaRb++Rb→ BaRb+Rb+: For the weakly-bound levels

of the (2)1Σ+, (1)3Σ+ and (X)1Σ+ electronic states this reaction is rare because

it entails the formation of a neutral molecule, following similar arguments as

for the previously discussed reaction BaRb+ + Rb→ Rb2 + Ba+. In addition,

for the weakly-bound levels of (2)1Σ+ and (1)3Σ+ the reaction would require a

charge transfer between the Rb atom and the Ba+ ion, since for these electronic

states and long binding lengths the positive charge is almost completely located

on the Ba atom within the BaRb+ molecule. For deeply-bound levels in the

ground state (X)1Σ+ with v . 90 the reaction is energetically closed. This

covers about 70% of the produced ground state molecules, as discussed in

Appendix B4.3. For these reasons we ignore this substitution reaction in our

model.

� Substitution reaction BaRb+ + Rb→ Rb+
2 + Ba: For the weakly-bound levels

of the states (2)1Σ+ and (1)3Σ+ this reaction involves a charge exchange and is

therefore negligible. For the weakly-bound levels of the ground state (X)1Σ+,

where the positive charge of the BaRb+ molecule is located on the Rb atom,

the substitution reaction can have a sizable probability. From numerical QCT

calculations for the most weakly-bound levels we can extrapolate roughly the

scaling law σ ≈ a2
0Eb/(mK× kB) for the cross section. Thus, the cross section

increases linearly with the binding energy. We expect this to be approximately

valid up to a binding energy of about 1000 K×kB, where the expression should

smoothly go over to the Langevin cross section.

� Elastic collisions: Due to the restriction b < bmax we do in general not take

into account all elastic collisions. In particular those with very little energy

transfer are omitted since they are irrelevant for sympathetic cooling. To a first

approximation, the elastic cross section for which sizable amounts of kinetic

energy are transferred between the collision partners is the Langevin cross

section. This is valid for all states, i.e. (2)1Σ+, (1)3Σ+, and (X)1Σ+.

� Collisional dissociation: A BaRb+ molecule can dissociate in a collision with

a Rb atom, if the collision energy Ec is large enough. For a weakly-bound

BaRb+ molecule in the state (1)3Σ+ or (2)1Σ+ this would lead to a release of

a Ba+ ion and a Rb atom. In our experiments, however, the typical collision
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energy is too small. Therefore, this process is relevant only for the most weakly-

bound BaRb+ molecules. In our simulation this only concerns the vibrational

level v = −5 in the states (2)1Σ+ and (1)3Σ+. It has a binding energy of

≈ 2 mK× kB. For a collision energy of Ec = 2 mK× kB, which is typical in the

beginning of our experiments, the calculated dissociation cross section is then

4× 10−12 cm2 [127]. This is about a factor of seven smaller than the Langevin

cross section.

B4.2 Spin-flip cross section

If the BaRb+ ion is in the triplet (1)3Σ+ (singlet (2)1Σ+) state it may undergo an

electronic spin-flip towards the singlet (2)1Σ+ (triplet (1)3Σ+) state in a close-range

collision with a Rb atom. Discussions of spin-flip processes for molecules can be

found in the literature, see, e.g., [30, 131,132].

We estimate the spin-flip cross section in the following way. In the collision

between a Rb atom and a BaRb+ molecular ion we only consider the interaction

between the free Rb atom and the Ba+ ion which is loosely bound in the BaRb+

molecule. Spin-flips can occur when the two electron spins of the Ba+ ion and the

free Rb atom are opposite to each other, e.g. ms(Ba+) = 1/2 and ms(Rb) = -1/2,

such that after the collision the spins are ms(Ba+) = −1/2 and ms(Rb) = 1/2. Here,

ms is the magnetic quantum number of the electron spin. Taken by itself, the state

ms(Ba+) = 1/2, ms(Rb) = -1/2 is a 50% / 50% superposition state of spin singlet

and spin triplet. In the following we estimate the spin-flip cross section for such a

superposition state. The actual spin-flip cross section for our experiment should be

a fraction of this, because the statistical factors of the total spin-decomposition need

to be taken into account. This requires an analysis, in how far a spin-flip of the

bound Ba+ ion leads to a flip of the total electron spin in the BaRb+ molecule. Such

an analysis is, however, beyond the scope of the present work.

The spin-exchange cross section for the 50% / 50% superposition state can be esti-

mated using a partial-wave approach [59,133] as

σsf(Ec) =
π

k2

∑
l

(2l + 1) sin2
(
δSl (Ec)− δTl (Ec)

)
, (B2)

where δSl (Ec) and δTl (Ec) are the energy dependent phase-shifts of the partial wave

l for the singlet and triplet atom-ion potential energy curves, respectively. Here, k

is the wave number of the relative momentum in the center-of-mass frame. Next,

we determine an angular momentum lmax such that for l > lmax the phase-shift
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δSl (Ec) ≈ δTl (Ec). This is possible, because for large enough l the particles only

probe the long-range tail of the ion-atom potential and this tail is essentially the same

for singlet and triplet states. Therefore, only trajectories with l ≤ lmax contribute

to the cross section. For l ≤ lmax we estimate the contribution of each partial wave

term in equation (B2) by using the random phase approximation for the phase-shifts,

sin2
(
δSl (Ec)− δTl (Ec)

)
= 1/2 [59]. The partial wave lmax can be estimated [134] using

the critical impact parameter (Langevin radius) via lmax = bLk = (2C4/Ec)
1/4k, as

for impact parameters b > bL the inelastic cross section vanishes in the classical

regime. Carrying out the sum in equation (B2) up to lmax we obtain

σsf(Ec) =
πl2max

2k2
=
π

2

(
2C4

Ec

)1/2

=
σL(Ec)

2
. (B3)

The spin-flip rate is then simply proportional to the Langevin rate ΓL. We stress

again, that equation (B3) is only an estimate. Therefore, for our simulations we allow

for another constant fit parameter γ such that the spin-flip rate for a transition from

the singlet state to the triplet state is given by

Γsf = γ ΓL . (B4)

For determining γ we use experimental data for which the ODT is off. When setting

γ = 1/14 we obtain good agreement with our measurements.

Finally, we note that the spin-flip rate for a transition from a triplet state to a

singlet state is not Γsf but Γsf/3. This is because a spin-flip process between the

bound Ba+ ion and the free Rb atom does not necessarily change a triplet BaRb+

molecule into a singlet one. Collisions with an unpolarized sample of Rb will in

general shuffle around the total spin S of the molecule equally between the four

levels S = 0,mS = 0 and S = 1,mS = −1, 0, 1. Thus, on average only 1 in 3

spin-exchange collisions of a triplet BaRb+ molecule will produce a singlet BaRb+

molecule.

B4.3 Radiative relaxation and photodissociation cross sections

In the following we calculate cross sections for radiative relaxation and photodis-

sociation. For this, we first calculate PECs, wave functions and transition dipole

moments. Table B1 shows electronic states for relevant transitions. In the following

discussion, the spin-orbit interaction will be neglected.
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Table B1: List of the relevant electronic states, Λ, for the BaRb+ molecule that
can be reached from the entrance channel upon absorption of a photon of 1064 nm
wavelength. The entrance channel is spanned by the electronic states (2)1Σ+ and
(1)3Σ+ which correlate in the asymptotic limit to Rb (5s 2S) + Ba+ (6s 2S). Ek,max

is the atom-ion relative kinetic energy released after photodissociation when the
initial molecule is weakly bound. σmax is the largest estimate for the state-to-state
absorption cross section for a BaRb+ molecule with binding energy Eb = 1 K×kB

(see also Appendix B4.3).
Λ Asymptotic limit Ek,max (cm−1) σmax (cm2)

(2)3 Σ+ Rb+ + Ba (6s5d 3D) ≈ 8240 negligible

(1)3 Π negligible

(3)1 Σ+ Rb+ + Ba (6s5d 1D) ≈ 5927 ≈ 10−25

(1)1 Π ≈ 10−27

(3)3 Σ+ Rb+ + Ba (6s6p 3P ) ≈ 4778 ≈ 9× 10−20

(2)3 Π ≈ 4× 10−20

(4)1 Σ+ Rb (5s 2S) + Ba+ (5d 2D) ≈ 4045 ≈ 4× 10−19

(2)1 Π ≈ 2× 10−27

(4)3 Σ+ ≈ 4× 10−21

(3)3 Π ≈ 2× 10−21

Potential energy curves

The PECs displayed in figure 5.1(b), the permanent electric dipole moments (PEDMs),

and the transition electric dipole moments (TEDMs) for the BaRb+ molecule are ob-

tained by the methodology described, e.g., in [135–137]. Briefly, the calculations are

carried out using the Configuration Interaction by Perturbation of a Multiconfig-

uration Wave Function Selected Iteratively (CIPSI) package [138]. The electronic

structure is modeled as an effective system with two valence electrons moving in the

field of the Rb+ and Ba2+ ions represented by effective core potentials (ECP), includ-

ing relativistic scalar effects, taken from Refs. [139,140] for Rb+ and Refs. [141,142]

for Ba2+. The ECPs are complemented with core polarization potentials (CPP) de-

pending on the orbital angular momentum of the valence electron [143, 144], and

parametrized with the Rb+ and Ba2+ static dipole polarizabilities and two sets of

three cut-off radii [145, 146]. Only the remaining two valence electrons are used to

calculate the Hartree-Fock and the excitation determinants, in atom-centered Gaus-

sian basis sets, through the usual self-consistent field (SCF) methodology. The basis
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set used for the Rb atoms is from Refs. [135, 136], and the one for Ba is from

Refs. [146, 147]. A full configuration interaction (FCI) is finally achieved to ob-

tain all relevant PECs, PEDMs, and TEDMs. In Ref. [86] a comparison between

these calculations for several systems, including BaRb+, and the ones available in

the literature is given for the (X)1Σ+ and (2)1Σ+ electronic states.

Since for the states (1)3Σ+ and (2)1Σ+ we need to consider extremely weakly

bound vibrational levels, PECs have to be calculated up to large inter-particle dis-

tances. For this, we analytically extend the existing short-range PECs by matching

them to the atom-ion long-range interaction behavior

lim
R→∞

V (Λ; R) = De −
C4

R4
, (B5)

where De is the dissociation energy of the electronic state Λ. From fits of equation

(B5) to our ab initio PECs at around 25 a0, we obtain a C4 value of about C4 =

171 a.u., which is close to the known value C4 = 160 a.u. for Rb atoms.

We note that the asymptotic energies (R → ∞) for our PECs are in reasonable

agreement with experimental values. There is virtually no error regarding those

asymptotes for which each valence electron is localized on one atomic core [e.g., for

the asymptotes Rb (5s 2S) + Ba+ (6s 2S) and Rb (5s 2S) + Ba+ (5d 2D)]. However,

if both valence electrons are localized on the Ba atom we obtain deviations from

experimental values of −180 cm−1 for the Rb+ + Ba (6s2 1S) asymptote, −120 cm−1

for the Rb+ + Ba (6s6p 3P ) asymptote, and 420 cm−1 for the Rb+ + Ba (6s5d 1D)

asymptote, respectively [146].

Calculation of wave functions

The diatomic eigenvalue problem is solved for each PEC V (Λ; R) by means of the

mapped Fourier grid Hamiltonian (MFGH) method [148], which diagonalizes a dis-

crete variable representation (DVR) matrix of the Hamiltonian. We use a fairly large

internuclear distance range, Rmax ≈ 5000 a0, in order to even accommodate small

binding energies Eb on the order of Eb ≈ 10µK× kB.

The energy-normalized continuum wave functions |Λ′j′; k〉 are computed using

a standard Numerov method [149]. Here, j′ is the rotational quantum number.

Since the kinetic energies at long range for the exit channels correspond to several

thousands of wave numbers the calculations are performed on a fairly dense and large

grid (between 90,000 and 150,000 grid points) so that there are at least 20 points

per wave function oscillation.
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Transition electric dipole moments

The TEDMs DΛ′,Λ (R) between relevant electronic states Λ and Λ′ are shown in

figure B3 as functions of the internuclear distance R. The plots show that Σ–Σ

transitions are generally stronger than Σ–Π transitions. Furthermore, the TEDMs

vanish at large distances. Such a behavior is expected, since the Ba+ +Rb asymptote

cannot be addressed from the Rb+ + Ba asymptote by optically exciting one of the

atoms [see figure 5.1(b)]. Therefore, for weakly bound rovibrational states all outer

turning points can be disregarded, i.e. radiative processes are driven at short range.

Photodissociation

In order to determine the photodissociation cross sections, we calculate the absorp-

tion cross sections σΛ′j′k,Λυj (E ′) for the transitions between rovibrational levels (v, j)

in the electronic state Λ towards the continuum of an electronic state Λ′ [150,151]

σΛ′j′k,Λυj (E ′) =

4π2

3c

E ′

2j + 1
S (j′, j) |〈Λ′; k|DΛ′,Λ (R) |Λυ〉|2 .

(B6)

Here, E ′ = hν − Eb is the final energy obtained for a given optical frequency ν

and binding energy Eb. Furthermore, c is the speed of light, and j′ represents the

rotational quantum number of the final level. We note that the transition moment

〈Λ′; k|DΛ′,Λ (R) |Λυ〉 is essentially independent of j and j′ for the low values of j

relevant here. From QCT calculations we estimate a typical range of rotational

quantum numbers of j < 20 for the BaRb+ ion in our experiments. S (j′, j) denotes

the Hönl-London factor [152]. In principle, transitions can be grouped into the three

branches Q (j′ = j, Σ–Π transitions only), R (j′ = j + 1), and P (j′ = j − 1).

In our experiments we drive each of these transitions, if allowed by selection rules.

Summing over the P, Q, R contributions one obtains a total cross section which is

independent of j. Therefore it is sufficient to present in the following only total cross

sections obtained for j = 0.

Figure B4 shows the predictions for photodissociation cross sections for 1064 nm

light as functions of the binding energy Eb of the initial rovibrational state. Here,

the three dominant transitions are presented. We checked numerically that the cross

sections follow a E0.75
b scaling law within the shown range of Eb [153]. This can

be explained by the increasing localization of the vibrational wave function with
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Figure B3: PEDMs (circles) and TEDMs (solid lines) as functions of the internuclear
distance of the BaRb+ molecule. Initial and final states are given in the plot. For
Σ–Σ transitions the dipole moment along the internuclear axis is shown, whereas for
Σ–Π transitions the dipole moment in transverse direction is shown.

increasing binding energy Eb. Our calculations reveal that the transitions are mostly

determined by the wave functions at the inner turning points of the PECs.

We note that because of an uncertainty in the calculation of the absolute energy

position of the PECs of up to a few hundred cm−1 × (hc) there are corresponding

81



0.001 0.01 0.1 1 10

0.01

(2)
1 Σ
+

(4)
1 Σ
+

 (E   /(K   k  ))
  0.75

      0.23   10   cm 
  -20

b 

 C
ro

ss
 s

ec
tio

n 
(  

   
   

cm
 ) 2

10-2
0

bE (K   k   )

0.1

1

10

100

X

(1)
3 Σ
+

(3)
3 Π

(1)
3 Σ
+

(3)
3 Σ
+

  2
B  

 (E   /(K   k  ))
  0.75

      4.5   10   cm 
  -20

b 
  2

B  

 (E   /(K   k  ))
  0.75

      13.5   10   cm 
  -20

b 
  2

B  

B

Figure B4: Photodissociation cross sections as functions of the binding energy for
an excited state BaRb+ ion exposed to 1064 nm light. Shown are the results for the
most relevant transitions in our experiments. Data points are calculations. Solid
lines represent fits ∝ E0.75

b to the data points (see legend).

uncertainties in the photodissociation cross sections. The possible range of cross sec-

tions is investigated in figureB5. Here, E ′/(hc) is varied between 8800 and 9800cm−1,

i.e. around typical values corresponding to final states addressed via light at 1064nm

and starting from initial states with rather small binding energies (see dashed vertical
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lines). These calculations are carried out for several binding energies.

The cross sections in figure B5 exhibit oscillations. For a fixed binding energy,

the energy interval ∆E ′ for a full oscillation between a minimum and a maximum

is smaller than about 500 cm−1 × (hc) for all three presented transitions. This is

about the uncertainty of the absolute energy positions of the PECs and therefore

the true cross section can actually lie in the range between calculated minimum and

maximum values.

The oscillations of the cross sections in figure B5 are associated with the spatial

oscillations of the initial rovibrational wave functions. For the sake of clarity, this is

illustrated in detail in figure B6. Wherever an anti-node of the initial wave function

coincides with the anti-node of the scattering wave function at the inner turning

point of the excited PEC, the cross section has a local maximum. This is known as

the reflection principle (see, e.g., [154]). The frequency separation of the local cross

section maxima clearly depends on the slope of the PEC and the wavelength of the

initial wave function.

In order to describe the experimentally measured data (see Appendix B5.2), we

use photodissociation cross sections in our MC simulations of the form σe×(Eb/(K×
kB))0.75. Thus, they exhibit the E0.75

b scaling, which our calculations predict. The

pre-factor σe, however, is used as free parameter which is determined via fits to the

data. In Table B2 we compare the obtained values for σe to the theoretically predicted

maximal values. We find that the experimental cross section for the transition (2→
4)1Σ+ (for the transition (1)3Σ+ → (3)3Π) is by a factor of 13.5 (by a factor of 7)

larger than the predicted maximal value. At this point it is not clear how to explain

these discrepancies. In contrast, for the transition (1 → 3)3Σ+ we find consistency

between theory and experiment.

Having discussed in detail the photodissociation by 1064 nm light, we now briefly

comment on the photodissociation by 493 nm and 650 nm light. Calculated PECs for

highly excited electronic states (not shown here) indicate that the photodissociation

of weakly-bound molecules in the (2)1Σ+ and (1)3Σ+ states might be quite strongly

suppressed because Condon points might not exist for the relevant transition. This

agrees with the experiment, from which we do not have any evidence for this pho-

todissociation process either. Concerning photodissociation of ground state (X)1Σ+

molecules via the laser cooling light, for which we do have experimental evidence

(see section 5.8), a theoretical analysis has not been carried out yet.
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Figure B5: Photodissociation cross sections as functions of the final energy E ′ = hν−
Eb. Upper panel: (2)1 Σ+ → (4)1Σ+. Middle panel: (1)3 Σ+ → (3)3Π. Lower panel:
(1)3 Σ+ → (3)3Σ+. The color coding of the lines corresponds to the binding energy
of the initial state as indicated on the right. The right (left) vertical dashed line
marks the energy E ′ when a 1064nm photon excites a molecule with Eb = 0.1K×kB

(Eb = 31.5 K× kB).

Radiative relaxation to the electronic ground state

The excited state (2)1Σ+ can decay radiatively to the ground state (X)1Σ+ by spon-

taneous emission of a photon. The corresponding radiative lifetime of the (2)1Σ+

molecule is shown in figure B7 as a function of the binding energy Eb, as previ-

ously discussed in [86]. The relaxation can in principle lead to dissociation of the

BaRb+ molecule into a Rb+ ion and a Ba atom. However, our calculations of the

Franck-Condon factors show that it will dominantly produce a BaRb+ molecule in

the (X)1Σ+ state. Figure B8 shows the predicted broad distribution of vibrational

levels which are populated. During such a relaxation the kinetic energy of the BaRb+

molecule essentially does not change, because the photon recoil is very small. The ra-

diative relaxation rate is the inverse of the lifetime, i.e. 0.34×(Eb/(mK×kB))0.75 ms−1
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energy of Eb = 10.5 cm−1. Blue and orange dashed lines help to illustrate that a
good wave function overlap at the inner turning point of the excited PEC leads to
a large cross section. (d) The respective TEDM as a function of the internuclear
distance R.

(see figure B7). We use this relaxation rate in our MC simulations. The physics be-

hind the scaling ∝ E0.75
b is that for an increasing binding energy the wave function

becomes more localized at short range where radiative relaxation dominantly occurs.
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Table B2: Cross sections σe for the three transitions that are taken into account in our
MC simulation. The predicted maximal values are given beside the values resulting
from fits to the experimental data in our MC simulation. In the last column the
released ion for each transition is given.

Transition max. σe (theor.) σe (exp.) rel. ion
(10−20 cm2) (10−20 cm2)

(2→ 4)1Σ+ 40 540 Ba+

(1→ 3)3Σ+ 9 7 Rb+

(1)3Σ+ → (3)3Π 0.23 1.61 Ba+

For the sake of completeness, we note that radiative relaxation within a given PEC

(such as (2)1Σ+ or (1)3Σ+) is negligible in our experiments. As already discussed

in [86] these relaxation rates are on the order of seconds.

B5 Monte Carlo Simulations

In this section we describe how we simulate the evolution of a BaRb+ molecule in a

Rb atom cloud by means of MC trajectory calculations. For this, we make use of the

cross sections we have determined in Appendix B4. In order to reduce the complexity

we carry out the calculations in two steps. In a first step we only consider a subset

of collision processes. A main finding of these calculations is that the average kinetic

energy of the BaRb+ ion only slightly increases as it relaxes down to more deeply

bound vibrational states. We use this information in the second step of the MC

calculations, where we now include all inelastic and reactive processes but for which

we ignore elastic collisions and simply assume that the molecular ion has a constant

kinetic energy.

B5.1 Restricted model

Here, we simulate trajectories of a spinless BaRb+ molecule. During each trajectory

the molecule can undergo multiple collisions within the gas of Rb atoms. We consider

elastic collisions, vibrational relaxation collisions, and collisional dissociation.

The simulation starts with the molecular ion in the vibrational state v = −5

below the Ba+ +Rb asymptote. An example of the evolution of the vibrational state

as a function of the collision number for a single trajectory is shown in figureB9. The

calculations reveal that vibrational relaxation typically takes place in steps of one

or two vibrational quanta. The molecular kinetic energy increases after each vibra-

tional relaxation step and decreases due to sympathetic cooling in elastic collisions.
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Precisely, how much energy is released in a vibrational relaxation step or carried

away in an elastic collision depends on the scattering angle of the atom-molecule

collision [155]. In the simulations we choose random values for the scattering angle

in the center-of-mass frame, which are uniformly distributed.

After analyzing 104 calculated trajectories we obtain the following results. Be-

tween two vibrational relaxation processes there is on average approximately one

elastic collision (see figureB10). Although, overall, the kinetic energy of the molecule

increases as it relaxes to more deeply bound states, within the range of interest the
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Figure B8: Calculated population distribution for vibrational levels v of the electronic
ground state (X)1Σ+ of the BaRb+ molecule after radiative relaxation from a weakly-
bound level in the (2)1Σ+ state with j = 1. Here, the same approach is used as
described in [86].

molecular collision energies are typically only a few mK × kB (see figure B11). On

average, the molecular ion requires 17.5 ± 4.2 collisions to relax from v = −5 down

to v = −17 of which 9.0 ± 3.8 collisions are elastic. Figure B12 shows the average

vibrational quantum number v as a function of the number of vibrational relaxation
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Figure B9: Evolution of the vibrational quantum number of a BaRb+ molecule in
collisions with Rb atoms. We only consider the ”relevant” collisions which have
impact parameters b < bmax, as discussed in Appendix B4.1. The y-axis on the
left shows the vibrational quantum number v and the y-axis on the right shows the
collision energy Ec. The data correspond to a single MC trajectory.

collisions. We find that v decreases nearly linearly. On average about 1.4 vibra-

tional quanta are lost per relaxation collision, independent of the initial vibrational

quantum number. Since the vibrational relaxation cross section is well approximated

by the Langevin cross section (see figure B2) the vibrational quantum number will

on average be lowered by one unit at a rate of 1.4 × ΓL. We note that also in a

recent theoretical investigation of vibrational quenching collisions of weakly-bound

Rb+
2 molecular ions with Rb atoms the changes in the vibrational quantum number

are predicted to be small [99].

B5.2 Full model

In the second set of MC trajectory calculations we take into account all the processes

discussed in Appendix B4. Furthermore, we also include the formation of the weakly-

bound BaRb+ molecule with vibrational quantum number v = −5 via three-body

recombination. Adopting simple statistical arguments and considering that the Ba+

ion is initially unpolarized, the probability for the freshly formed molecule to be in
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Figure B10: Average number of elastic collisions of Rb atoms with a BaRb+ ion in
the vibrational state v before a relaxation (excitation) to another vibrational state
occurs. Data points are from MC simulations. The error bars represent 1σ standard
deviations.

state (2)1Σ+ ((1)3Σ+) is 1/4 (3/4), respectively.

Motivated by the results in Appendix B5.1 we generally assume a collision energy

Ec for the BaRb+ molecule of a few mK×kB. For the collisional dissociation regarding

the v = −5 level we assume Ec = 2 mK × kB. Actually, for all other collisional

processes the precise value for the collision energy is not relevant since their rates are

proportional to the Langevin rate, which is independent of Ec. For the ground state

(X)1Σ+, however, the assumption of low collision energy is in general not justified.

This is because a vibrational relaxation from a deeply-bound vibrational level to the

next one releases a large amount of energy. This puts the ion on an orbit through the

Paul trap which is much larger than the size of the atom cloud. As a consequence

the rate for further elastic, inelastic, or reactive collisions is significantly reduced.

For example, when the BaRb+ molecule in state (X)1Σ+ relaxes from v = 55 to

v = 54 the motional energy of the BaRb+ molecule increases by about 16 K× kB. In

order to get cooled back into the atom cloud, the energy has to be lowered to about
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Figure B11: Average collision energy of the BaRb+ ion right after (blue filled squares)
and directly before (red open squares) vibrational relaxation as a function of the
vibrational quantum number. Data points are results from the MC simulation. The
error bars represent 1σ standard deviations. Here, the difference between the curves
describes the effect of cooling due to elastic collisions.

1 K× kB. On average, 44% of the energy is cooled away in a single elastic Langevin

collision. Therefore, five elastic Langevin collisions are needed on average, to cool

the BaRb+ ion back down into the Rb gas. When we take this cooling time to be

130 µs long we find good agreement with the data.

Once a highly energetic Ba+, or a Rb+, or a Rb+
2 ion is produced after photodis-

sociation or a substitution reaction, no further reaction takes place in our simulation.

However, if a cold Ba+ ion is created it can again undergo a three-body recombi-

nation event with the respective rate and a new evolution starts. Time is typically

incremented in steps of ∆t = 1 µs. We typically carry out 2000 trajectories in a MC

simulation for a given experimental procedure.

The results of the MC simulations are presented as lines in Figs. 5.2(a), 5.3, and

B13. In fact, figure B13 is an extension of figure 5.2(a), showing additional evo-

lution traces for various ion states. The measurements and predictions are shown

separately for the case with dipole trap (wODT) and the case without dipole trap

(woODT) in figure B13(a) and (b), respectively. The data points are the same as in

91



number of vib. relaxation collisions

0 2 4 6 8

av
er

ag
e 

of
 v

ib
. q

ua
nt

um
 n

um
be

r

-18

-16

-14

-12

-10

-8

-6

-4

Figure B12: Average vibrational quantum number for a BaRb+ ion as a function
of the number of vibrational relaxation collisions with Rb atoms. The data points
represent the results of MC calculations.

figure 5.2(a). The plots clearly show how initially the populations of the (2)1Σ+ and

(1)3Σ+ states increase due to formation of the BaRb+ ion via three-body recombi-

nation. At some point later these populations peak and decrease due to radiative

relaxation to the ground state (X)1Σ+ and, in the presence of 1064 nm light, due to

photodissociation. The calculations for the creation of either a hot Ba+ or a Rb+ ion

via this photodissociation are given by the curves denoted by hot Ba+ (1064) and

Rb+ (1064), respectively. Radiative relaxation leads at first to a growing population

of the (X)1Σ+ ground state BaRb+ molecule which, in secondary reactions, is con-

verted into a Rb+
2 or a Rb+ ion. Here, we only consider the sum of the Rb+

2 and Rb+

populations, denoted Rb+
2 / Rb+. When the 1064 nm ODT is on, photodissociation

is a dominant process for (2)1Σ+ and (1)3Σ+ molecules. Furthermore, the small

fraction of molecules that relax to the ground state (X)1Σ+ are quickly removed

in the trapped, dense atom cloud due to secondary reactions with Rb atoms. In

contrast, when the ODT is off, almost the whole ion population is first converted

into ground state BaRb+ molecules, apart from a small fraction remaining in the

state (1)3Σ+. A sizable fraction of the ground state molecules do not undergo sec-

92



0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 2 3
0

0.2

0.4

0.6

0.8

1P
io

n

τ   (ms)

cold Ba

hot Ba  (1064)

+

+

cold + hot Ba+ Rb+

Rb+
2BaRb  (2)  ∑1 ++

BaRb  (X)  ∑1 ++

BaRb  (1)  ∑3 ++

(a) w ODT

(1064)

(b) wo ODT
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are populations due to photodissociation with 1064nm light. The population ”Rb+

2

/ Rb+” is due to secondary collisional reactions of BaRb+ (X)1Σ+ molecules with
Rb atoms.

ondary reactions and therefore persist, as the released Rb atom cloud quickly falls

away. In order to describe the experimental signal for ”cold+hot Ba+” we add the

populations for ”cold Ba+” and ”hot Ba+(1064)” as well as 70% of the population of
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BaRb+ molecules in the states (X)1Σ+ and (2)1Σ+. This last contribution is due to

photodissociation of ground state molecules. The scenario is the following. During

the imaging all (2)1Σ+ singlet molecules will relax to the ground state (X)1Σ+. The

cooling lasers will then dissociate these and the previously produced (X)1Σ+ ground

state molecules. This photodissociation generates in 70% (30%) of the cases a hot

Ba+ (Rb+) ion, as discussed in section 5.8.
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C Notes on reactive collisions of the Ba+-Rb sys-

tem

This section is a publication where I am second author. The first author is Artjom

Krükow who has used this work as a main part of his PhD thesis (published by uni-

versity of Ulm, 2016). The publication is inserted here because it is closely related

to my own PhD topic.

Reprinted with permission from

Reactive two-body and three-body
collisions of Ba+ in ultracold Rb

Physical Review A 94, 030701 (R) (2016)
Rapid Communication ©2016 American Physical Society

Artjom Krükow, Amir Mohammadi, Arne Härter and
Johannes Hecker Denschlag

Institut für Quantenmaterie und Center for Integrated Quantum Science and

Technology IQST, Universität Ulm, 89069 Ulm, Germany

We analyze reactive collisions of a single ion in contact with an ultracold gas

of Rb atoms at low three-body collision energies of 2.2(9) mK×kB. Mapping out

the loss rate dependence on the Rb atom density we can discern two-body reactive

collisions from three-body ones and determine both rate coefficients which are k2 =

3.1(6)(6)×10−13cm3s−1 and k3 = 1.04(4)(45)×10−24cm6s−1, respectively (statistical

and systematic errors in parentheses). Thus, the measured ternary recombination

dominates over binary reactions even at moderate atom densities of n ≈ 1012 cm−3.

The results for and Rb are representative for a wide range of cold ion-atom systems

and can serve as guidance for the future development of the field of hybrid atom-ion

research.

95



C1 Introduction

Cold atom-ion physics in hybrid traps is a young, developing field [71,156,157], which

builds on the relatively long-range r−4 polarization potential between an atom and

an ion. In general, this potential promises large cross sections and therefore strong

interactions between particles. As a consequence, a number of interesting research

proposals have been brought forward ranging from sympathetic cooling down to

ultracold temperatures [158], to studying the physics of strongly correlated many-

body systems, e.g., ultracold charge transport [45], novel many-body bound states

[47] and strong-coupling polarons [46], quantum information processing [159], and

quantum simulation [160]. Most of these ideas rely on interactions mediated by elastic

atom-ion collisions, while inelastic collisions and chemical reactions are undesired as

they represent a time limit for the suggested experiments. Therefore it is important

to identify and investigate possible reactions and to eventually gain control over

them. Inelastic processes can be divided up into classes such as two-body or three-

body collisions. In general, binary collisions are dominant at low enough atomic

densities, while ternary collisions will eventually take over with increasing density.

This knowledge has been extensively applied in the field of ultracold neutral atoms

by typically working with low enough atomic densities (e.g. smaller than about

1014cm−3 for 87Rb) in order to keep three-body losses negligible [161]. Considering

the low-density limit, theoretical predictions for cold hybrid atom-ion systems have

been focusing on binary inelastic/reactive atom-ion collisions (e.g. [59, 86]) which

were discussed as the limiting factors for proposed atom-ion experiments [43, 158,

162, 163]. Along the same lines, measurements on atom-ion reactions in the low

mK regime were, until recently, unanimously interpreted in terms of pure two-body

decay [93,100,101,104,164,165].

In this Rapid Communication we show, however, that in general the decay anal-

ysis requires the simultaneous consideration of both two- and three-body reactions.

Our measurements reveal that at mK temperatures inelastic three-body collisions of

the ion can dominate over its two-body reactions, even at moderate atomic densities

down to 3×1011cm−3. Indeed, the main focus of this work lies on how to clearly

distinguish two-body from three-body processes and extract the corresponding rate

coefficients. One could in principle argue that in order to study only two-body re-

actions the atomic density simply needs to be lowered sufficiently. This is, however,

not practical in standard set-ups with magnetic or dipole traps because the resulting

reaction rate can be so small that the ion lifetime exceeds the atomic cloud lifetime.

Alternatively, one could consider working with a magneto-optical trap (MOT) which
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allows for both, low densities and long lifetimes due to continuous loading. However,

in a MOT the reaction rate measurements of the ground-state atoms are swamped

beneath a background of reactions of electronically excited atoms occurring at much

higher rates.

For our investigations we use a heteronuclear combination of Ba+ + Rb, where

both two-body and three-body collisions lead to reactions and hence to ion loss in

the experiment. This complements a recent experiment of ours with homonuclear

Rb+ + Rb + Rb [109] for which reactive and inelastic two-body collisions are either

forbidden or irrelevant. Furthermore, we note that in parallel to the work discussed

here, we have studied the energy scaling of atom-ion three-body recombination [166].

We measure the density dependence of the reaction rate Γ = k2n + k3n
2 and

extract the binary and ternary loss rate coefficients k2 and k3. Here, n is the peak

atom density at the cloud center where the ion is located. For the analysis the

evolution of n(t) needs to be included, as the atom cloud is decaying during the time

t due to elastic atom-ion collisions. We experimentally determine n(t) by excluding

experimental runs where the ion has undergone a reaction during the interaction

time t in order to avoid systematic errors introduced by reactive collisions.

C2 Experimental setup

The experiments are performed in a hybrid apparatus that has already been described

in detail elsewhere [48]. We prepare a single in a linear Paul trap and bring it into

contact with an ultracold cloud of spin-polarized (F = 1,mF = −1). The atoms are

prepared at a separate location from which they are transported to the Paul trap and

loaded into a far off-resonant crossed optical dipole trap. During the final preparation

stage for the atoms, the cloud and the ion are separated by about 100 µm along the

Paul trap axis to avoid unwanted atom-ion interactions. By ramping one endcap

voltage of the linear Paul trap to its final value, we shift the ion into the center of

the atom cloud within 10ms and start the atom-ion interaction. We use thermal atom

clouds consisting of typically N ≈ 40−135×103 atoms at temperatures of T ≈ 330nK

with peak densities between n ≈ 6 and 84× 1011 cm−3. The Ba+ ion is confined in a

linear Paul trap which is operated at a frequency of 4.21 MHz with radial and axial

trapping frequencies of (ωr;ωa) = 2π×(59.5; 38.4)kHz. Single 138Ba+ ions are loaded

by isotope selective, resonant two-photon ionization. Using standard laser cooling

techniques these are cooled to Doppler temperatures of ≈ 0.5 mK. Before immersing

the into the atomic bath we switch off the laser cooling, which guarantees that the

ion is in the electronic ground state during the atom-ion interaction. The average
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kinetic energy Ekin of the ion is determined by the interplay of elastic collisions and

the driven micromotion [61, 78, 164, 167, 168]. Ekin is adjusted by tuning the excess

micromotion of the ion and sets the average three-body collision energy Ecol, through

the relation Ecol ≈ 0.55 Ekin [166]. For the experiments discussed in the following

we work either at an energy of Ekin ≈ 4 or of 70 mK×kB.

C3 Measuring and modeling the time dependent ion loss

rate
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Figure C1: Probability p to detect the ion after the interaction time t with a Rb
atom cloud at an average ion kinetic energy of Ekin ≈ 67 mK×kB. One data point
is the average of the binary result over roughly 330 single-ion experiments. A fit
(solid line) taking into account the decay of the atom density during the interaction
reproduces this behavior while a simple exponential fit (dashed line) does not. The
inset shows the corresponding atom density evolution, which is well described by an
exponential decay with an offset (solid line). Note the time-scale change at 0.8 s,
as indicated by the shaded background. All error bars represent the 1σ statistical
uncertainty of the measurements.

We start our investigations by measuring the lifetime of a single in contact with

a thermal cloud of Rb atoms. For this, we immerse the ion (Ekin ≈ 67 mK×kB) into
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the atom cloud (density n ≈ 16× 1011 cm−3) for various periods of time t. After the

interaction, we check if the is still present by switching on the laser cooling for 100ms

and collecting its fluorescence on a EMCCD camera. If no is detected, we conclude

that a reaction must have taken place. If we apply additional laser cooling with a

red detuning of 2 GHz for several seconds, typically 50% of the initially undetected

ions can be recovered. These ions have gained high kinetic energies in a chemical

reaction, which will be discussed later. Figure C1 shows the measured probability p

to detect the ion as a function of the interaction time t (please note the time scale

change after 0.8 s). We model the decay using the rate equation ṗ = −Γ(t) · p, with

the loss rate Γ(t) = k2 · n(t) + k3 · n(t)2, where n(t) is the time-dependent atom

density at the location of the ion. Integrating the equation yields

p(t) = exp(−
∫ t

0

Γ(t′)dt′). (C1)

A constant density n(t) would lead to an exponential decay, p(t) = exp(−Γt), which

does not describe the observed loss very well (Fig. C1, dashed line). As the inset of

Fig. C1 shows, the density decreases during the interaction time. This is because

elastic atom-ion collisions either remove atoms from the shallow atom trap or heat

up the atomic ensemble. If we take into account the decay of n(t), a fit of Eq (C1)

(solid line) describes the data very well.

C4 Accessing the atom density evolution

In other words, for a proper description of the ion loss Γ and to determine the rate

constants k2 and k3, the evolution of the density n(t) has to be accurately determined.

This, however, is somewhat involved and will be discussed in the following.

To determine n(t), we measure the remaining atom number N and temperature

T of the cloud via absorption imaging after 15 ms time of flight. Figure C2(a) shows

histograms of the atom number distributions for various interaction times t. Initially

the distribution is Gaussian. As time goes on, elastic atom-ion collisions shift this

distribution towards lower atom numbers. In addition, a broad tail develops. This

tail can be explained as a consequence of reactive atom-ion collisions that release

substantial amounts of energy which eject the product ion out of the atom cloud

onto a large orbit trajectory in the Paul trap. This is consistent with the recovery

of hot ions when additional far red-detuned laser cooling is applied, as mentioned

in the previous paragraph. Although two-body and three-body reactions at mK

temperatures are predicted to dominantly produce translationally cold molecular
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Figure C2: (a) Histogram of the atom numbers N belonging to the measurement in
Fig. C1. A Gaussian atom number distribution develops a broad tail with increasing
interaction times. Experimental runs where the ion was detected (not detected) after
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BaRb+ ions [110, 169], additional kinetic energy can be released in fast secondary

processes such as photo dissociation or collisional relaxation. Once the ion is on the

large orbit, the atom-ion collision rate is significantly reduced, essentially stopping

the continuous atom loss [109]. From Fig. C2(a) we find that the counts in the tail

almost exclusively correspond to experimental runs where a reaction with occurred

(green color), whereas the counts in the Gaussian dominantly correspond to runs

without reactions (blue color).

For our analysis we only consider system trajectories without reactions, making

sure that the ion has been constantly exposed to the central density n(t). The average

atom number N and temperature T of these post selected trajectories are plotted

in Fig. C2(b). We then calculate the peak atom density (shown in Fig. C1 inset)

n = ( m
2πkB

)3/2 · ωxωyωzN

T 3/2 , with the mass m, using separately measured trap frequencies

(ωx, ωy, ωz) of the atom dipole trap. From these sampling points we extract the

time-dependent density n(t).
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C5 Extracting the binary and ternary reaction rate con-

stants

We are now ready to quantitatively analyze the reaction rate and to extract binary

and ternary reaction rate constants. In order to obtain a high accuracy (and as a

check for consistency) we perform lifetime measurements at 10 different initial peak

densities [Fig. C3(a)]. Atom clouds with different densities are prepared by varying

the trap frequencies and the atom number but keeping the atom temperature T at a

constant value of T ≈ 330nK. This temperature was chosen in order to be sufficiently

above the critical temperature Tc for Bose-Einstein condensation and to have negli-

gible losses due to evaporative cooling. The trap depths are between 5 to 10 µK×kB

resulting in trap frequencies of (ωx, ωy, ωz) ≈ 2π×(16 to 27; 97 to 151; 107 to 161)Hz.

The mean ion kinetic energy is 4.0 (1.6) mK ×kB, as determined in [166]. The den-

sities between n ≈ 6 and 22 × 1011 cm−3 are prepared with N ≈ 40 × 103 atoms,

while densities between n ≈ 24 and 84× 1011 cm−3 are prepared with N ≈ 135× 103

atoms.

In a first simple analysis we do not include the density evolution and fit expo-

nential decays (dashed lines) to each data set in Fig. C3(a). The resulting loss rates

Γ are then plotted as a function of their respective initial atom densities n(t = 0)

in Fig. C3(b). By fitting Γ = k2 · n + k3 · n2 (blue dashed line) we obtain a quasi

pure quadratic density dependence, where k3 = 1.03(2)(45)× 10−24cm6s−1 and k2 is

consistent with zero. For comparison, if we try to describe the data only by two-body

reactions, Γ ∝ n, no agreement is found (red dashed line).

Now, we perform a more rigorous analysis, where we account for the density decay

during the interaction time, which can be as much as 20 % for the experimental

runs in Fig. C3. This will enable us to also extract a reliable k2 rate constant

from the data. With the previously described method we determine n(t) for each

lifetime curve. We then fit Eq. (C1) to all of the 10 measured decays in Fig.

C3(a) (solid lines) simultaneously, with only two free fit parameters, the binary and

ternary rate coefficients k2 and k3, which amount to k2 = 3.1(6)(6) × 10−13cm3s−1

and k3 = 1.04(4)(45)×10−24cm6s−1. The first parentheses denotes the 1σ statistical

uncertainty of the fitted values. The second one gives the 1 σ systematic error

due to the atom density uncertainty of 20 %, which translates linearly into k2 and

quadratically to k3.

Notably, both approaches yield the same k3 within their uncertainties, but only

the latter provides a non zero k2, which emphasizes the necessity to include the atom

cloud decay. We plot Γ = k2 · n + k3 · n2, using the extracted k2 and k3 coefficients
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in Fig. C3(b) (green curve). Even at low densities n < 1012cm−3 the green curve

deviates only slightly from the pure three-body loss (blue dashed line), highlighting

the small contribution of binary reactions to the total ion loss.
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Figure C3: (color online) (a) Logarithmic plot of p as a function of the interaction
time t for 10 different initial atom peak densities. Each data point corresponds to
an average of roughly 100 single ion experiments. The dashed curves are simple
exponential fits, while the solid curves originate from a simultaneous fit of Eq. C1
to the full data set with two free parameters, the two-body rate coefficient k2 and
the three-body rate coefficient k3 (see text for details). (b) Double-logarithmic plot
of the Ba+ loss rates Γ extracted from an exponential fit to each individual data
set in (a) over the respective initial peak densities (solid circles). A fit of the form
Γ = k2 ·n+ k3 ·n2 to the loss rates yields a pure quadratic density dependence (blue
dashed curve). For comparison, this function was also plotted using k2 and k3 from
(a) (green curve). A pure linear dependence (Γ ∝ n) does not describe the data (red
dashed curve).
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C6 Comparison to previous results

We now compare the obtained rate coefficients to the results of other groups in

the field. Our extracted two-body charge-transfer rate coefficient k2 for the + Rb

system is compatible with a MOT measurement from Ref. [110] where an upper

bound of k2 < 5 × 10−13 cm3s−1 is given for ground state charge-transfer. An ab-

initio calculation within [110] predicts k2 ≈ 1× 10−14 cm3s−1 which is a factor of 30

smaller compared to our present k2. A possible explanation for this large discrepancy

is an additional two-body loss channel that might appear in our experiment. Indeed,

calculated Ba+ + Rb molecular potential energy curves (see, e.g., Ref. [110]) indicate

that the 1064 nm dipole laser can near-resonantly photo-excite a colliding atom-ion

pair to a repulsive molecular potential energy curve. For the potential curves that

correlate with ionized Rb+ and electronically excited neutral Ba, this process is

experimentally indistinguishable from charge transfer.

We note that the three-body rate coefficient k3, determined in this work for +

Rb + Rb is of similar magnitude as the one for + Rb + Rb [109], which is only

by a factor of 3 smaller. This can be understood as a consequence of the same

long-range atom-ion interaction potential of both systems, as it only depends on

the polarizability of the Rb atom. Indeed, a theoretical classical trajectory study

predicted very similar three-body cross sections for and [169]. Furthermore, since

in cold reactive ternary collisions typically large, weakly bound molecules should be

formed [166], the short-range details of the molecular interaction potential do not

contribute. This suggests a universal behavior of cold atom-atom-ion three-body

recombination, leading to similar reaction-rate coefficients for a variety of hybrid

atom-ion systems.

C7 Conclusion

In conclusion, we have studied reactive collisions of a cold, single ion in contact

with an ultracold cloud of Rb atoms. Mapping out the loss dependence on the Rb

atom density enabled us to extract both the binary (k2) and ternary (k3) reaction-

rate coefficients at mK×kB ion energies. The Ba+ + Rb + Rb three-body rate

coefficient k3 is comparatively large, about four orders of magnitude larger than the

one for ultracold neutral Rb + Rb + Rb collisions [170]. Moreover, it dominates

over the two-body loss down to comparatively low densities of k2/k3 ≈ 3×1011cm−3.

If working with degenerate quantum gases such as Bose-Einstein condensates with

typical densities around 1014 cm−3, three-body recombination will occur on the sub-

104



ms time scale, limiting the time for atom-ion experiments. As shown in parallel work

of ours [166], this time scale gets even shorter when lowering the collision energy Ecol,

as k3 scales as k3 ∝ E
−3/4
col . In view of the number of proposed experiments where

reactive collisions are unwanted, we expect a future demand for schemes to suppress

three-body reactions besides the existing ones for two-body reactions [43].

We thank Olivier Dulieu, Jesús Pérez-Ŕıos, and Chris H. Greene for fruitful

discussions. This work was supported by the German Research Foundation DFG

within the SFB/TRR21. A.K. acknowledges support from the Carl Zeiss Foundation.
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D Notes on Ba+-Rb-Rb three-body Recombina-
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We study three-body recombination of + Rb + Rb in the mK regime where a

single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms.

We measure the energy dependence of the three-body rate coefficient k3 and compare

the results to the theoretical prediction, k3 ∝ E
−3/4
col where Ecol is the collision energy.

We find agreement if we assume that the nonthermal ion energy distribution is de-

termined by at least two different micromotion induced energy scales. Furthermore,

using classical trajectory calculations we predict how the median binding energy of

the formed molecules scales with the collision energy. Our studies give new insights

into the kinetics of an ion immersed in an ultracold atom cloud and yield important

prospects for atom-ion experiments targeting the s-wave regime.

D1 Introduction

When three atoms collide, a diatomic molecule can form in a three-body recom-

bination (TBR) process. In cold neutral atomic gases, TBR was investigated for

spin-polarized hydrogen as well as alkalis (see e.g. [170–172]). In the context of

Bose-Einstein condensation, TBR plays a crucial role as a main loss mechanism.

By now, the scaling of TBR as a function of collision energy and scattering lengths

in neutral ultracold gases has been investigated in detail [173]. When consider-

ing TBR in atom-ion systems, one can expect three-body interactions to be more

pronounced due to the underlying longer-range r−4 polarization potential. Energy

scaling of TBR in charged gases was studied at temperatures down to a few K, es-

pecially for hydrogen and helium due to their relevance in plasmas and astrophysics

(e.g. [174, 175]). Depending on the studied temperature range a variety of power

laws was found but not a common threshold law. The recent development of novel

hybrid traps for both laser cooled atoms and ions has opened the possibility to in-

vestigate cold atom-ion interactions and chemical reactions in the mK regime and

below. First experiments in such setups studied elastic and reactive two-body col-

lisions (e.g. [39, 40, 93, 100, 101, 163, 176, 177]). In accordance with the well-known

Langevin theory, the corresponding reactive rates were measured to be independent

of the collision energy [93, 164]. Very recently we predicted a theoretical threshold

law on the scaling properties for cold atom-atom-ion three-body collisions [169]. Un-

derstanding the scaling of reaction rates with quantities such as the collision energy

is crucial for fundamentally understanding TBR and for the prospects of the exper-

imental realization of ultracold s-wave atom-ion collisions. Furthermore, as we will

show here, studying TBR allows for insights into the kinetics of an ion immersed in

a cloud of atoms. Experimentally, TBR in the mK regime was recently observed for
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Rb+ + Rb + Rb [109] and + Rb + Rb [178]. In the experiments TBR was already

dominating over two-body reactions even for moderate atomic densities of 1012 cm−3.

This Letter reports on the combined theoretical and experimental investigation

of the energy scaling of three-body atom-atom-ion collisions in the mK regime. We

measure the TBR rate coefficient k3 of in an ultracold Rb cloud as a function of the

mean collision energy of the ion, Ecol, which we control via the excess micromotion

(eMM) of the Paul trap. k3 is formally distinguished from k3 which is the TBR rate

coefficient for a precise collision energy Ecol in the center-of-mass frame. By averaging

k3 over the ion energy distribution k3 is obtained. We calculate k3 using classical

trajectory calculations (CTC) [169, 179] and derive its energy scaling, k3 ∝ E
−3/4
col .

Agreement is found between theory and experiment if we assume that the energy

distribution of the ion depends on multiple energy scales due to various sources of

excess micromotion. Besides the prediction of k3, the CTC calculations also provide

the binding energy distribution of the formed molecules and the scaling properties

of these distributions when the collision energy is varied.

D2 Experimental Setup

The experiments are performed in a hybrid apparatus that has already been described

in detail elsewhere [48]. After loading a single 138Ba+ ion by isotope selective, reso-

nant two-photon ionization it is stored in a linear Paul trap driven at a frequency of

4.21MHz with radial and axial trapping frequencies of (ωr;ωa) = 2π×(59.5; 38.4)kHz,

respectively. There, it is laser cooled to Doppler temperatures of ≈ 0.5 mK. In order

to perform our experiments in the electronic ground state, we switch off the cooling

and repumper light, before immersing the ion into the ultracold atomic cloud.

Once in the cloud, there is a complicated interplay of elastic two-body atom-ion

collisions and the driven micromotion of the Paul trap. This interplay leads to a non-

Maxwell-Boltzmann distribution of the ion’s kinetic energy Ekin [78,164,167,168] with

an equilibration time on the ms time scale 2. The average kinetic energy Ekin of the

ion in the atom cloud is then determined by the available energy sources for the ion,

such as the eMM energy [164]. In our experiment we can adjust Ekin by controlling

one part of the eMM energy, EfMM, which is set via static electric fields. Concretely,

we can write Ekin = cdyn(EfMM + Emin), where the offset energy Emin contains all

other energy contributions, e.g. phase micromotion (φMM) [61] or residual collisional

effects [78, 168]. The proportionality factor cdyn ≈ 5.0, which depends on the atom-

2The equilibration time can be estimated from the Langevin collision rate which at our given
density is about 4 ms−1.
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ion mass ratio and the trap parameters, is extracted from a MC calculation similar

to [82]. We can tune EfMM accurately between 5µK× and 100mK×. Emin, on

the other hand, is not known precisely. From independent measurements and MC

calculations based on the scaling of elastic atom-ion collisions, we estimate Emin to

be in the range between 200 and 800 µK×.

The cloud consists of N ≈ 1.2×105 87Rb atoms at a temperature of Tat ≈ 700nK

with a peak density of n ≈ 19 × 1011 cm−3. It is cigar shaped with a radial and

axial size of roughly 10 µm and 50 µm, respectively. The atoms are spin polarized

(F = 1,mF = −1) and confined in a far off-resonant crossed optical dipole trap at

a wavelength of 1064 nm with a trap depth of ≈ 10 µK×. We shift the ion into the

cloud over a distance of 120 µm within 2 ms by changing the endcap voltage of the

linear ion trap. After an interaction time of τ = 300 ms, during which the Ba+ ion is

typically lost with a probability of up to 65 %, we separate the two traps again and

detect whether the Ba+ ion is still present. For this, we shine a laser cooling beam

focused to a waist of 20 µm through the Paul trap center and collect the possible

fluorescence on a EMCCD camera for 100 ms. If no is detected, we conclude that a

reaction must have taken place during τ 3.

D3 Energy dependent reactions

Repeating the single ion experiment roughly 170 times we extract the probability p

that is still present. For the given experimental settings the ion loss is well described

by an exponential decay of the form p = exp(−Γτ). This can be seen in the inset of

Fig. D1, where we plot p as a function of interaction time τ measured at EfMM ≈
8 µK. Figure D1 plots the loss rate Γ as a function of EfMM. A Ba+ ion in our

experiment is lost either by a two-body charge transfer or by a three-body event

[178]. The corresponding loss rate Γ of the ion is Γ = −nk2 − n2k3. The charge

transfer rate coefficient k2 has been previously measured for + Rb, k2 = 3.1(6)(6)×
10−13cm3/s (statistical and systematic errors in parentheses) [178] (see also [101,

110]), and contributes less than 1 s−1 to the loss rate Γ for the given atomic density.

Also, it has been verified that k2 is energy independent [93, 100, 164], consistent

with Langevin theory. By subtracting this constant k2 loss from Γ and dividing by

the (constant) density n2 we obtain k3 (see Figs. 1 and 3b). Clearly, k3 is energy

3We note that our detection scheme cannot detect a reaction if the final product (e.g. after a
secondary process) is again a cold Ba+ ion. From parallel experiments where we investigate the
reaction products, however, we have no evidence for such a reaction outcome. In fact, our present
work shows good agreement between theory and experiment if we assume that a reaction channel
producing cold Ba+ ions is negligible.
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Figure D1: Double-logarithmic plot of the measured loss rate Γ for as a function
of the tuned eMM energy EfMM. Red circles are the experimental data; the curve
represents a fit of Eq. (1) (see text for details). The corresponding values of k3 are
indicated on the right-hand side. The inset is the Logarithmic plot of the decay curve
of the ion. p is the probability to recover after interacting with Rb. The straight line
is an exponential fit to the data. The sketch shows the ion orbit in the atom cloud.
With increasing ion energy its orbit becomes comparable to the atom cloud size.

dependent. As we discuss later, we expect a scaling of k3 with a power law, k3 ∝ Eα
col.

Neglecting the atom motion due to ultracold temperatures we can express Ecol in

terms of the ion kinetic energy Ekin, Ecol = (1 − mBa

mBa+2mRb
)Ekin. We attempt to

describe the scaling of the measured k3 with a power law k3 ∝ E
α

kin by fitting the

expression

k3 = k3,min [(EfMM + Emin)/Emin]α (D1)

to the data. Here, Emin and α are free parameters. The constant k3,min = 1.04(4)(45)×
10−24cm6/s is k3 at EfMM = 0 and was determined in a parallel study [178]. For the

fit we discard data points above EfMM > 20 mK×, as for such energies, the ion is

not localized well enough in the center of the cloud. It probes areas of the atomic

cloud at lower densities, hence decreasing the observed loss rate (see sketch in Fig.

1). The fit yields α = −0.46(9) and Emin = 410(180) µK× (green dashed line in

Fig. D1), with the errors denoting a 1σ statistical uncertainty of the fitted values.

Interestingly, in our previous study of TBR of + Rb + Rb [109] we observed a similar

scaling exponent of α = −0.43.
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D4 Theoretical approach

We now turn to investigate the scaling of TBR theoretically with a CTC formalism.

A classical treatment of the collision dynamics is appropriate, since the experiments

described here in general involve much higher energies than the threshold energy of

∼ 50nK× for entering the s-wave regime of Ba+-Rb. We have adapted a recently de-

veloped method for the calculation of three-body recombination cross sections based

on classical trajectories [169,179] for the study of atom-atom-ion recombination. The

method employed relies on mapping the three-body problem into a six-dimensional

configuration space, described in hyperspherical coordinates, after separating out the

center-of-mass motion [179]. Since the kinetic energy of the ion is typically several

orders of magnitude higher than the temperature of the ultracold neutral atoms we

fix one of the hyperangles associated to the ratio of the atom-ion versus the atom-

atom initial momentum, guaranteeing that in the center-of-mass coordinate system

95 % of the collision energy Ecol is along the direction of the ion. In the classical

trajectory calculations only Rb-Rb collisions in triplet states are considered and spin

flip transitions are neglected. For the Rb-Rb pair interaction we employ the a3Σ+
u

potential of Strauss et al. [128]. On the other hand, the Ba+-Rb interaction potential

is taken to be −C4(1− (rm/r)
4/2)/r4, where C4 = 160 a.u. denotes the experimental

long-range value of the interaction and rm represents the position of the minimum

of the potential, taken from Ref. [158].

The TBR rate for Ba+ + Rb + Rb has been computed by running 105 trajectories

per collision energy. We checked that during the simulation the total energy and

angular momentum are conserved up to the fifth decimal place. Details about the

numerical method employed to solve Hamilton’s equations of motion, in conjunction

with the sampling of the initial conditions, can be found in [179]. Figure D2a shows a

three-body trajectory that results in a recombination event with a collision energy of

100 µK×. This particular trajectory leads to large size (∼ 800 a0), very weakly-bound

molecular ion. Counting the fraction of trajectories that lead to molecule formation

we can extract the TBR rate coefficient k3 for Ba+ + Rb + Rb. Figure D2b plots k3

as a function of collision energy Ecol. We compare these CTC calculations (diamonds)

with an analytically derived scaling law [169] where k3 ∝ E
−3/4
col (dashed line in Fig.

D2b and find very good agreement.
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log plot of k3 obtained with CTC for Ba+ + Rb + Rb as a function of the collision
energy Ecol (circles). The straight line shows the analytically predicted power law

dependence k3 ∝ E
−3/4
col .

D5 Comparing experiment to theory

Strikingly, the theory prediction of α = −0.75 does not seem to agree well with

the experimentally observed value of α = −0.46(9) from the fit of Eq. (D1) to

our data. We explain this discrepancy as follows. In contrast to the theoretical

approach where k3 is determined for a precisely defined collision energy Ecol, in the

experiments we observe k3, an average over a distribution P (Ecol, {ES
i }) of collision

energies, calculated as

k3({ES
i }) =

∫
k3(Ecol) P (Ecol, {ES

i }) dEcol. (D2)
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Here, {ES
i } is a list of the relevant energy scales that determine the distribution,

such as the experimentally tuned EfMM or EφMM. We extract these distributions

with a MC calculation based on [82]. If only a single scale ES
1 is present, the energy

distributions can be expressed as functions of the ratio Ecol/E
S
1 ,

P (Ecol, E
S
1 )dEcol = P̃ (Ecol/E

S
1 )dEcol/E

S
1 . (D3)

Figure D3a shows three calculated distributions each with its own scale ES
1 . The

distributions P (Ecol, EfMM) for EfMM = 1 mK (green) and 20 mK (red) have the

exact same shape, a consequence of Eq. (D3). The third distribution P (Ecol, EφMM =

1 mK) (blue), generated with a phase micromotion has a somewhat different shape.

Using Eq. (D2) one can show which distributions which satisfy Eq. (D3) translate

the power law k3 ∝ E
−3/4
col into k3 ∝ (ES

1 )−3/4. In our experiment, however, where

at least two energy scales, EfMM and Emin occur, this translation of the scaling

breaks down and Eq. (D1) cannot be used in the data analysis anymore. Instead,

we calculate k3 with Eq. (D2) to directly compare theory and experiment. The

choice and magnitude of Emin is the only free model parameter. Here, we assume

that Emin is entirely determined by phase micromotion, Emin = EφMM. The phase

micromotion is chosen to be shared equally between both pairs of opposing radio

frequency (rf) driven electrodes [61]. Figure D3b shows the experimental k3 (full

circles), together with the calculation (blue solid line) with EφMM = 790 µK4. The

shape of the theory curve describes the experimental data quite well, apart from

an overall factor of about 1.1 (see blue and red solid lines). In general, the overall

magnitude and energy dependence of k3 is reproduced by the presented ab initio

CTC treatment down to the mK Regime, which is remarkable as Emin is the only

free parameter.

D6 Binding energy distribution

We now turn to briefly discuss the molecular products after TBR. In a previous

study of TBR for He, it was suggested that the binding energy of the products is

correlated with the collision energy [179]. We find again the same behavior for TBR

of an ion with two atoms. Figure D4a shows two logarithmically binned histograms

of molecular binding energies after TBR. The maximum of each histogram can be

considered the typical binding energy and is shown in Fig. D4b as a function of the

4Such a phase micromotion can be caused by a relative length difference of ∆l/l ≈ 10−3 between
the cables supplying opposing rf electrodes, which is well within the tolerances of our setup.

113



10-3 10-1 101 103

10-8

10-5

10-2

Ecol � mK x kB

P
HE

co
l
,E

1S
L

a

æ
æ æ

æ
æ

æ
æ

æ
æ

æ

æ

10-2 10-1 100 101
0.1

1.0

0.2
0.3

0.5

EfMM � mK ´ kB

k 3
�

10
-

24
cm

6 s-
1

b

Figure D3: (a) Calculated ion energy distributions P (Ecol, E
S
1 ) each with a single

energy scale ES
1 . An energy of ES

1 = EfMM = 1 mK (20 mK) was used for the green
(red) distribution. Choosing ES

1 = EφMM = 1 mK produces the blue distribution,
which has a different shape compared to both previous distributions. (b) Comparison
of the experimental (full circles) k3 data as a function of EfMM with the full calculation
(blue line). The red line is the same calculation but multiplied by 1.1.

collision energy Ecol. A fit to a power-law dependence gives Ebinding ∼ E0.88±0.02
col for

the energy range investigated here. Thus our calculations suggest that the formation

of deeply bound molecules after TBR should be highly improbable at low collision

energies.

The present CTC results also suggest that BaRb+ should be the dominant prod-

uct state of the three-body recombination in the collision energy range considered

here. Indeed, we have observed the formation of BaRb+ ions in our experiment.

However, collisional or light induced secondary processes lead to short lifetimes. A

detailed study of the initial TBR products and involved secondary reactions is cur-

rently in progress and needs to be discussed elsewhere.
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D7 Conclusion

In conclusion, we have investigated the energy scaling of three-body recombination

in an atom-ion system down to mK energies. Single ions in contact with ultracold

Rb atoms have been used to measure the TBR rate coefficient k3. Utilizing classical

trajectory calculations, we numerically accessed the TBR rate coefficient k3 for the

+ Rb + Rb system for various collision energies. We find a power law scaling

of the form k3(Ecol) ∝ Eα
col with an exponent α = −3/4. Our experimental and

theoretical studies indicate that the presence of several energy scales gives rise to

energy distributions of the immersed ion that impede a direct application of scaling

laws to the measured data. The obtained energy scaling provides an important

insight for prospects of atom-ion experiments in the ultracold regime, as the already

strong TBR rate observed here will increase by another three orders of magnitude
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once the s-wave regime at 50 nK is reached.
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systems of atoms and ions,” Journal of Physics: Conference Series, vol. 264,

p. 012019, jan 2011.

[33] A. Härter and J. H. Denschlag, “Cold atom ion experiments in hybrid traps,”

Contemporary Physics, vol. 55, no. 1, pp. 33–45, 2014.

[34] M. Tomza, K. Jachymski, R. Gerritsma, A. Negretti, T. Calarco, Z. Idziaszek,

and P. S. Julienne, “Cold hybrid ion-atom systems,” Rev. Mod. Phys., vol. 91,

p. 035001, Jul 2019.

[35] F. H. Hall, M. Aymar, M. Raoult, O. Dulieu, and S. Willitsch, “Light-assisted

cold chemical reactions of barium ions with rubidium atoms,” Molecular

Physics, vol. 111, no. 12-13, pp. 1683–1690, 2013.

[36] F. H. Hall, P. Eberle, G. Hegi, M. Raoult, M. Aymar, O. Dulieu, and

S. Willitsch, “Ion-neutral chemistry at ultralow energies: dynamics of reac-

tive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom

hybrid trap,” Molecular Physics, vol. 111, no. 14-15, pp. 2020–2032, 2013.

[37] W. G. Rellergert, S. T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S. J.

Schowalter, and E. R. Hudson, “Measurement of a large chemical reaction rate

between ultracold closed-shell 40Ca atoms and open-shell 174Yb+ ions held in

a hybrid atom-ion trap,” Phys. Rev. Lett., vol. 107, p. 243201, Dec 2011.

[38] N. Akerman, Y. Glickman, S. Kotler, A. Keselman, and R. Ozeri, “Quantum

control of 88Sr+ in a miniature linear paul trap,” Applied Physics B, vol. 107,

no. 4, pp. 1167–1174, 2012.

[39] S. Haze, S. Hata, M. Fujinaga, and T. Mukaiyama, “Observation of elastic

collisions between lithium atoms and calcium ions,” Phys. Rev. A, vol. 87,

p. 052715, May 2013.

[40] K. Ravi, S. Lee, A. Sharma, G. Werth, and S. A. Rangwala, “Cooling and

stabilization by collisions in a mixed ion-atom system,” Nat Commun, vol. 3,

p. 1126, Oct 2012.

120
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W. W. Smith, “Measurement of the low-energy Na+−Na total collision rate in

an ion-neutral hybrid trap,” Phys. Rev. A, vol. 91, p. 012709, Jan 2015.

[104] S. Haze, R. Saito, M. Fujinaga, and T. Mukaiyama, “Charge-exchange colli-

sions between ultracold fermionic lithium atoms and calcium ions,” Phys. Rev.

A, vol. 91, p. 032709, Mar 2015.

[105] J. Joger, H. Fürst, N. Ewald, T. Feldker, M. Tomza, and R. Gerritsma, “Ob-

servation of collisions between cold Li atoms and Yb+ ions,” Phys. Rev. A,

vol. 96, p. 030703, Sep 2017.

126



[106] T. Sikorsky, Z. Meir, R. Ben-shlomi, N. Akerman, and R. Ozeri, “Spin-

controlled atom-ion chemistry,” Nature Communications, vol. 9, p. 920, Mar

2018.

[107] H. Fürst, T. Feldker, N. V. Ewald, J. Joger, M. Tomza, and R. Gerritsma,

“Dynamics of a single ion-spin impurity in a spin-polarized atomic bath,” Phys.

Rev. A, vol. 98, p. 012713, Jul 2018.

[108] D. Hauser, S. Lee, F. Carelli, S. Spieler, O. Lakhmanskaya, E. S. Endres,

S. S. Kumar, F. Gianturco, and R. Wester, “Rotational state-changing cold

collisions of hydroxyl ions with helium,” Nature Physics, vol. 11, pp. 467–470,

Jun 2015.

[109] A. Härter, A. Krükow, A. Brunner, W. Schnitzler, S. Schmid, and J. H. Den-

schlag, “Single ion as a three-body reaction center in an ultracold atomic gas,”

Phys. Rev. Lett., vol. 109, p. 123201, Sep 2012.

[110] F. H. Hall, M. Aymar, M. Raoult, O. Dulieu, and S. Willitsch, “Light-assisted

cold chemical reactions of barium ions with rubidium atoms,” Molecular

Physics, vol. 111, no. 12-13, pp. 1683–1690, 2013.

[111] S. T. Sullivan, W. G. Rellergert, S. Kotochigova, K. Chen, S. J. Schowalter, and

E. R. Hudson, “Trapping molecular ions formed via photo-associative ioniza-

tion of ultracold atoms,” Phys. Chem. Chem. Phys., vol. 13, pp. 18859–18863,

2011.

[112] F. H. J. Hall and S. Willitsch, “Millikelvin reactive collisions between sympa-

thetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid

trap,” Phys. Rev. Lett., vol. 109, p. 233202, Dec 2012.
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