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Tag der mündlichen Prüfung:
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Abstract

In this thesis I report precision spectroscopy with ultracold 87Rb2 triplet molecules where
we use lasers to couple the states in different molecular potentials. We study in detail
states of the a 3Σ+

u and (1) 3Σ+
g potentials. These states are of great importance for

transferring weakly bound molecules to the ro-vibrational triplet ground state via states
of the excited potential. As most experiments start from molecules in theirX 1Σ+

g ground
state, the triplet states were hard to access via dipole transitions and remained largely
unexplored. The measurements presented in this thesis are the first detailed study of
diatomic 87Rb2 molecules in these states.

Our experiments start with an ultracold cloud of 87Rb atoms. We then load this
cloud into an optical lattice where we use a magnetic Feshbach resonance at 1007.4 G to
perform a Feshbach association. After we have removed all unbound atoms, we end up
with a pure sample of weakly bound Feshbach molecules inside the optical lattice. The
optical lattice prevents these molecules from colliding with each other which results in
molecular lifetimes on the order of a few hundred milliseconds.

In the first set of experiments, we use a laser coupling the Feshbach state to the
excited (1) 3Σ+

g triplet state to map out its low-lying vibrational (v = 0 ... 15), rotational,
hyperfine, and Zeeman structure. The experimental results are in good agreement with
calculations done by Marius Lysebo and Prof. Leif Veseth.

We then map out in detail the vibrational, rotational, hyperfine, and Zeeman structure
of the a 3Σ+

u triplet ground state using dark state spectroscopy with levels in the (1) 3Σ+
g

potential as an intermediate state. In this scheme we are able to access molecules in
triplet states because our Feshbach state has strong triplet character. Interestingly,
it happens that some deeply bound states which belong to the X 1Σ+

g potential are
close to levels in the a 3Σ+

u potential. In these cases it was possible to directly observe
singlet-triplet mixing at binding energies as deep as a few hundred GHz ×h, where h
is Planck’s constant. Prof. Eberhard Tiemann calculated the energies using a coupled-
channel code. After several iterations between measurements and optimization of the
potentials, it turned out that the hyperfine and effective spin-spin interactions depend
weakly on the vibrational level. With the help of Eberhard Tiemann it also became
possible to reassign some Feshbach resonances measured previously. In general we find
excellent agreement between theory and experiment to within the experimental error of
50 MHz.

A detailed understanding of the two triplet potentials is important as we want to
study the collisional behavior of molecules in the triplet ground state. Depending on the
elastic and inelastic scattering cross sections, it could then become possible to condense
these molecules and create a molecular Bose-Einstein condensate.
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Zusammenfassung

In der vorliegenden Arbeit berichte ich über Präzessionsspektroskopie mit ultrakalten
87Rb2 Triplett-Molekülen, wobei die Zustände in verschiedenen Molekülpotentialen mit
Hilfe von Lasern gekoppelt werden. Dabei studieren wir Zustände in den a 3Σ+

u und
angeregten (1) 3Σ+

g Potentialen. Diese beiden Potentiale sind von großer Bedeutung,
wenn man schwach gebundene Moleküle mit Hilfe von Zuständen im angeregten Potential
in den Rotations- und Vibrations-Grundzustand transferieren will. Da die Experimente
bisher mit Molekülen im X 1Σ+

g Grundzustand beginnen, konnte man Triplettzustände
nur schwer beobachten und sie blieben größtenteils unerforscht. Die hier präsentierten
Ergebnisse sind die erste ausführliche Studie von zweiatomigen 87Rb2 Molekülen in diesen
Zuständen.

Unsere Experimente starten mit einer Wolke aus ultrakalten 87Rb Atomen. Diese
Atome werden in ein optisches Gitter geladen, wo mit Hilfe einer magnetischen Fes-
hbachresonanz bei 1007.4 G Moleküle erzeugt werden. Nachdem alle ungebundenen
Atome entfernt werden, erhalten wir eine reine Probe aus schwach gebundenen Feshbach-
molekülen in einem optischen Gitter. Das Gitter verhindert, dass Moleküle kollidieren,
und wir beobachten Lebensdauern von einigen hundert Millisekunden.

In einer Serie von Experimenten untersuchen wir zunächst die stark gebundenen Vi-
brationsniveaus (v = 0...15) sowie Rotations-, Hyperfein- und Zeemanstruktur, indem
wir den angeregten (1) 3Σ+

g Zustand mit Hilfe eines Lasers an das Feshbachniveau kop-

peln. Die Messungen sind dabei in guter Übereinstimmung mit Rechnungen, die von
Marius Lysebo und Prof. Leif Veseth durchgeführt werden.

Danach studieren wir die Vibrationsniveaus und Rotations-, Hyperfein- und Zee-
manstruktur des a 3Σ+

u Grundzustandes mit Hilfe von Dunkelzuständen. Mit dieser
Technik ist es möglich, Triplettzustände zu untersuchen, da der Feshbachzustand einen
starken Triplettanteil aufweist. Interessanterweise gibt es tief gebundene Zustände im
X 1Σ+

g Potential, die nahe bei Zuständen des a 3Σ+
u Potentials liegen. In diesen Fällen

ist es möglich, Singulett-Triplett Mischungen bei tief gebundenen Molekülen direkt zu
beobachten. Die Bindungsenergien betragen dabei einige hundert GHz ×h, wobei h die
Plancksche Konstante ist. Prof. Eberhard Tiemann kann die Bindungsenergien mit Hilfe
eines “Coupled channel models” berechnen. Nach einigen Iterationen zwischen Messun-
gen und Optimierung der Potentiale stellt sich heraus, dass die Hyperfein- und effektive
Spin-Spin Wechselwirkungen schwach von der Vibrationsquantenzahl abhängen. Dank
Eberhard Tiemann ist es auch möglich, einige kürzlich gemessenen Feshbachresonanzen
neu zuzuordnen. Wir finden eine exzellente Übereinstimmung zwischen Theorie und
Experiment innerhalb des experimentellen Fehlers von 50 MHz.

Ein genaues Verständnis der beiden Triplettpoteniale ist wichtig, da wir in Zukunft
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viii Zusammenfassung

das Verhalten der Triplettmoleküle unter Kollisionen beobachten wollen. Abhängig von
den elastischen und inelastischen Streuquerschnitten kann es dann möglich werden, diese
ultrakalten Moleküle in ein Bose-Einstein Kondensat zu überführen.
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1 Introduction

There has been a quest for cold trapped atoms and molecules since the beginning of
precision spectroscopy in the early stages of the 20th century. One of the most exciting
questions concerned a quantum phase transition, the Bose-Einstein condensation (BEC)
which was expected to occur for Bosons at temperatures below 1µK. Another interesting
field was high precision spectroscopy. In experiments with vapor cells, warm atoms or
molecules move at high speeds which causes broadened and shifted spectral lines. Using
atomic or molecular beams, one is able to enter the mK regime in the direction perpen-
dicular to the beam but then the observation time is limited. The problem of broadened
lines was solved using Doppler free saturation spectroscopy [Demtröder 2008] but the
atoms are neither trapped nor cooled in these experiments. In 1975, T. Hänsch and A.
Schawlow proposed a scheme where neutral atoms are directly cooled using the momen-
tum transfer of laser light [Hänsch 1975]1. The breakthrough in laser cooling came in the
1980s when alkali-atoms were cooled to the Doppler-limit [Chu 1985]. It was a great sur-
prise that the atoms could be cooled below the Doppler-limit [Lett 1988, Dalibard 1989]
(for a review article see [Adams 1997]). Unfortunately, compared to typical temperatures
where the transition to a BEC takes place, the atoms were still too hot. A promising
candidate for further cooling was evaporative cooling [Ketterle 1999a], where the hottest
atoms are thrown away in a controlled way using radio-frequency. Almost twenty years
later, BEC with 87Rb [Anderson 1995], 23Na [Davis 1995] and 7Li [Bradley 1995] atoms
was achieved. Shortly afterwards, several key experiments were carried out showing the
quantum nature of the condensate, for example, the interference between two conden-
sates showing the coherence in the condensate [Andrews 1997]. Henceforward, a rush in
the field began.

But what about cold molecules? The laser-cooling schemes, developed for atoms,
are difficult to implement because molecules get lost quickly as they have more de-
grees of freedom than atoms. First experiments with cold molecules started from a
magneto-optical trap using photoassociation spectroscopy [Lett 1993, Takekoshi 1998,
Weiner 1999]. For recent review articles, see [Hutson 2006, Jones 2006, Carr 2009].
Other techniques use supersonic beams [Bahns 1996] or Helium nanodroplet isolation
[Toennies 1998]. Although not obvious, Helium nanodroplet isolation is also based on
supersonic beams and the translational temperatures in these experiments are high.
Thus, it is difficult to trap or even further cool the pre-cooled molecules. In 2003,
a different association scheme entered the field: bosonic [Herbig 2003] and fermionic

1At the same time D. Wineland and H. Dehmelt suggested a cooling scheme for ions [Wineland 1975].
In the following, I will focus on cold atoms, because ions are not of interest in our experiments.
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10 Introduction

molecules [Regal 2003] were created using a Feshbach resonance. Such a scattering res-
onance appears if a state consisting of two atoms becomes energetically degenerate with
a molecular state. In the regime close to degeneracy, a resonance in the interaction
strength (that is the scattering length) as a function of the magnetic bias field is ob-
served. Creating molecules using a Feshbach resonance became a standard procedure,
and is applicable to a lot of homo- and heteronuclear species (For review articles, see
[Köhler 2006, Chin 2010].). In all these experiments, the Feshbach association starts
from an atomic gas with high phase-space density and results in the most weakly bound
molecules. This means that the molecules have the highest vibrational quantum number
and binding energies are on the order of a few MHz×h, where h is Planck’s constant.
Early experiments revealed that weakly bound bosonic dimers are not stable due to
inelastic collisions [Xu 2003]. In contrast, molecules consisting of two fermionic atoms
are comparatively more long-lived [Petrov 2004], and, as mentioned above, the inter-
action between the atoms can be tuned using the magnetic field. This ”knob” has
made it possible to reach a molecular Bose-Einstein condensate consisting of molecules
which are composed of two fermionic atoms in the limit of vanishing binding energy
[Greiner 2003, Jochim 2003, Zwierlein 2003, Bourdel 2004]. As already mentioned, there
was a problem producing long-lived samples of bosonic molecules. This problem was
solved using three mutually orthogonal laser beams which form an optical lattice. In the
case of Feshbach molecules, an optical lattice allows Feshbach association with almost
unit efficiency in well defined quantum states [Thalhammer 2006]. In this experiment
Thalhammer et al. also demonstrated that the optical lattice leads to long-lived Fesh-
bach molecules. Shortly after, it was also shown that the association leads to a molecular
Mott insulator state where an occupation of exactly one molecule per lattice site is re-
trieved [Volz 2006]. In an interesting experiment, Winkler et al. showed, that a coherent
transfer of these weakly bound molecules to a more deeply bound state is possible with
almost unit efficiency [Winkler 2007a]. This scheme made use of a coherent transfer
scheme [Fewell 1997, Bergmann 1998], and it seemed possible that it could be extended
to arbitrary states, provided one had a molecular lambda system with corresponding
lasers. Thus, if the molecular structure is known, one could use a Raman transition to
transfer the molecules to the ro-vibrational ground state. These ground state molecules
are the starting point for theory proposals. For example, one can lower the lattice po-
tential after the production of ground-state molecules to achieve a BEC of molecules in
the ro-vibrational ground state [Jaksch 2002, Damski 2003].

Another set of interesting experiments concerns heteronuclear molecules
[Ospelkaus 2006] which possess a permanent dipole moment. In this case, the dipole-
dipole interaction is long-range and spatially anisotropic, which is in contrast to the
short-range van der Waals interactions for homonuclear molecules. These molecules were
produced recently [Ni 2008, Ni 2009, Aldegunde 2008], and are proposed to serve as an
interesting tool for quantum simulation of condensed matter spin systems [Pupillo 2008],
or for quantum information processing schemes [DeMille 2002, Andrè 2006, Yelin 2006].

Recently, optical schemes have been developed to selectively produce cold and dense
samples of deeply bound molecules in well defined quantum states [Danzl 2008],

10



1.1 Outline of the thesis 11

[Lang 2008, Ni 2008, Ospelkaus 2010] using a Raman transition. Additionally, other
non-coherent schemes were developed. These schemes involve femtosecond lasers for op-
tical pumping [Viteau 2008], and photoassociation of ultracold LiCs molecules in their
ro-vibrational ground state [Deiglmayr 2008]. All of these (non-) coherent schemes have
opened up new possibilities for cold collision experiments [Ospelkaus 2010, Ni 2010],
ultracold chemistry [Staanum 2006, Krems 2005, Krems 2008], and for testing funda-
mental laws via precision spectroscopy [Doyle 2004, Flambaum 2007, Zelevinsky 2008,
DeMille 2008, Chin 2009]. For such future experiments it is mandatory that the location
and properties of the available molecular quantum states are well known and understood.
The triplet ground state, for example, has been largely unexplored, as the molecules are
normally found in their singlet states. From these states, a dipole transition to triplet
states is optically forbidden due to the common selection rule ∆S = 0 where we denote
the total electronic spin S.

There has been a great progress in the development of different cooling schemes
in the meantime. Here, I want to mention experiments with molecules embedded in
Helium nanodroplet beams (For a review see [Stienkemeier 2006].), and experiments
with molecular beams (See review articles by [Van de Meerakker 2008, Schnell 2009]),
but ultracold, trapped molecules remain challenging [Dulieu 2009]. Recently, it even
became possible to directly laser-cool molecules optically for the first time [Rosa 2004,
Shuman 2010]. This again shows that the field of ultracold molecules is a hot topic at
the moment.

1.1 Outline of the thesis

My thesis is organized as follows: In chapter 2, I give an overview of the hardware of the
experimental setup, including the vacuum chambers, the laser system and the computer
control of the experiment.
Chapter 3 reviews the different steps which we use to produce ultracold 87Rb2 in an
optical lattice. Here, I will explain in detail how we create the molecules from 87Rb
atoms in a Magneto optical trap.

Chapter 4 gives a brief introduction to the theory of homonuclear diatomic molecules.
I will start with the Born-Oppenheimer approximation. The strength of direct spin-
spin, spin-orbit or hyperfine interactions is classified in Hund’s coupling schemes which
I introduce consecutively. At the end of the chapter, I will summarize the symmetries
which are important for the discussion of selection rules.

Chapters 5 and 6 are dedicated to the experimental results: I first present one-
photon spectroscopy, where we use a laser to couple the Feshbach molecules to the first
excited (1) 3Σ+

g state. For a better understanding of the molecular structure, we also
varied the magnetic field to get information on the Zeeman shift of the excited state.
This has been done using ”adiabatic transfers over avoided crossings” as introduced by

11



12 Introduction

[Lang 2008a]. At the end, we compare our measurements with numerical simulations
done by Marius Lysebo and Leif Veseth in Oslo involving effective Hamiltonians to obtain
an understanding of the molecular structure.

Our Raman spectroscopy is discussed in chapter 6. Using dark-state spectroscopy, we
resolve vibrational, rotational, hyperfine and Zeeman structure. We can directly observe
singlet-triplet mixing at binding energies as high as a few hundred GHz. Furthermore,
we studied the dependence of the hyperfine, spin-spin, and rotational interactions on the
vibrational quantum number. With the help of Eberhard Tiemann, who analysed our
results theoretically using a coupled channel model we are able to fully understand the
observed structure.

The thesis ends with a short summary and an outlook towards further exciting ex-
periments with deeply bound triplet molecules.

1.2 Publications

During the work on this PhD thesis we have written the following articles:

• Ultracold Triplet Molecules in the Rovibrational Ground State.
F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. Hecker Denschlag,
Phys. Rev Lett. 101, 133005 (2008).

• Dark state experiments with ultracold, deeply-bound triplet molecules.
F. Lang, C. Strauss, K. Winkler, T. Takekoshi, R. Grimm, and J. Hecker Den-
schlag,
Faraday Discussions 142, 271-282 (2009).

• Hyperfine, rotational, and vibrational structure of the a3Σ+
u state of 87Rb2 .

C. Strauss, T. Takekoshi, F. Lang, K. Winkler, R. Grimm, E. Tiemann, and J.
Hecker Denschlag,
Phys. Rev. A 82, 052514 (2010).

• Hyperfine, rotational and Zeeman structure of the lowest vibrational levels of the
87Rb2 (1) 3Σ+

g state.
T. Takekoshi, C. Strauss, F. Lang, J. Hecker Denschlag, M. Lysebo, and L. Veseth,
Phys. Rev. A 83, 062504 (2011).

12



2 Overview of the experimental setup

This experiment was started in 2001 in Innsbruck at the “Institut für Experimental-
physik” (Austria) and moved to the “Institut für Quantenmaterie” in Ulm (Germany)
in 2009. The main feature is a magnetic transport line [Greiner 2000, Greiner 2001]
which connects the magneto optical trap (MOT) chamber with the glass cell (Fig. 2.1).
The idea behind the magnetic transport is to separate the chamber where we create the
MOT from another chamber (glass cell) with excellent optical access and ultra high vac-
uum. Furthermore, the glass cell has the advantage of negligible magnetic permeability.
Thus eddy currents are not a problem when we switch on currents up to 100A, which
corresponds to magnetic fields up to 1000G.

Experimental table. We need ultra high vacuum in the chambers because our
atoms and molecules are lost from the trap when they collide with gas from the back-
ground vapor. The chambers are located on an optical table and are surrounded by
optical elements to guide the laser beams for trapping and cooling of the atoms or
molecules. The experimental cycle starts by trapping atoms in a magneto optical trap
(MOT) from the background vapor, where we have a vacuum of better than 10−8mbar.
This chamber is connected to an ion getter pump and a 87Rb reservoir (compare Fig. 2.1).
At room temperature we have a 87Rb pressure of ≈ 2× 10−7mbar which is sufficient for
daily operation. The 87Rb reservoir can be separated from the MOT chamber with the
aid of a valve for exchanging the 87Rb source.
We use a sequence of magnetic quadrupole traps to transfer the cold atoms to the glass
cell. During the transfer the atoms are always kept at the minimum of the field which
we create with pairs of coils mounted below and above a tube. This tube has an inner
diameter of 6.2mm and is used as differential pumping stage. It ensures a vacuum of
better than 10−11mbar in the glass cell [Theis 2005]. The glass cell itself is pumped with
a second ion getter pump and a Titanium sublimation pump. A detailed description of
the vacuum system and the magnetic transport line can be found in the diploma thesis
of Klaus Winkler [Winkler 2002] and the doctoral thesis of Matthias Theis [Theis 2005].

Furthermore, it is necessary to control all field currents at a high level of accuracy in
order to transfer and manipulate the atoms magnetically in an efficient way. We have
the possibility to use the power supplies (Delta-Electronica) either in a constant current
mode (CC) or a constant voltage mode (CV). In the CC mode the current is regulated
by an internal control loop which has the disadvantage of increased noise in current by
a factor of ten compared to the CV mode. If we need very precise currents and fast
switching we use the power supplies in CV mode with an external control loop. The
external digital PID-regulator then reaches a precision of 4× 10−5 [Thalhammer 2007].

13



14 Overview of the experimental setup

1.4m

1
.

MOT chamber

Ion getter
pump 1

gate valve

Ion getter
pump 2

Glass cell
Rubidium
reservoir

Differential
pumping tube

Ion gauge

Titanium
sublimation
pump

Ion gauge

Figure 2.1: Vacuum system on the optical table. The Rubidium reservoir, which is at
room temperature, is next to the MOT chamber. We connect this chamber
on the right hand side via a differential pumping stage to the glass cell. The
MOT chamber is pumped with an ion getter pump to get a vacuum of better
than 10−8mbar. The glass cell is normally also pumped with an ion getter
pump and a Titanium sublimation pump. The pressure in the glass cell is
better than 10−11mbar. Adapted from [Winkler 2007].
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Laser table. A further crucial element in the setup is the laser system. The
lasers are located on separate optical tables. We have to stabilize the frequency of the
lasers to manipulate the 87Rb atoms. Therefore, we first lock the “Master laser” to an
atomic 87Rb line at 780.25 nm using modulation transfer spectroscopy [Bjorklund 1983,
Thalhammer 2007]. See [Steck 2003] for data on atomic 87Rb. Afterwards most of the
other lasers are locked to this Master laser. Typical locking schemes which we use are
the beat-lock [Schuenemann 1999] (seed laser for MOT-light, cavity reference laser, and
Kick-laser for purification scheme in the optical lattice), and the Pound-Drever-Hall
(PDH) lock [Drever 1983, Black 2001], which is used to lock a reference cavity. We
create the MOT light with a home built diode laser at 780 nm. Afterwards we amplify
the light with a home built tapered amplifier using an injection lock. Some light from
the Master laser is also used for absorption imaging [Ketterle 1999]. Unfortunately, the
MOT and absorption light also excites some of the atoms to the 5P3/2, f

′ = 2 state
which can decay to the 5S1/2, f = 1 state (See also Fig. 3.8 at page 28.). These atoms
are lost because they cannot be excited anymore with the MOT or absorption light; they
are in a dark state. In order to complete the cycling transition for 87Rb atoms, we use
a repumper laser at 780.23 nm driving the |52S1/2, f = 1⟩ → |52P3/2, f

′ = 2⟩ transition.
We lock this laser separately using frequency-modulation spectroscopy. It also serves as
a reference to estimate the accuracy and long time stability of our wave meter (WS7
Highfinesse). We connect all beams via optical fibers to the experimental table.

We use a Verdi V18 (Coherent) with an output power of 18.5W at 532 nm to pump
two Ti:sapphire lasers. The first of these lasers has an output power of ≈300mW at
830.44 nm and is used for the optical lattice. We use a second Ti:sapphire laser for
spectroscopy and for the transfer of molecules to more deeply bound levels (Chapter 6).
If the Lyot filter and the two Etalons are mounted, it has an output power ranging from
100mW at 1060 nm to 1W at 980 nm. The laser for the lattice is always free-running,
whereas we can lock the spectroscopy laser if necessary using a PDH lock to a cavity.
Another diode laser from Toptica (DL100 Pro) which has a maximum power of 50mW
at 1050 nm (32mW at 985 nm to 24mW at 1066 nm) is also used for spectroscopy or for
the transfer of molecules to more deeply bound levels.

Software to control the experiment. The user interface is written in Labview.
The calculations and the evaluation of the pictures are done with Matlab to speed up
the experimental cycle. A Python server controls all the steps and calls an external
processor (Adwin Gold) and all other devices, for example radio-frequency synthesizers.
The computer hardware and the computer software is well explained in the doctoral
thesis of Gregor Thalhammer [Thalhammer 2007].
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3 Production of Feshbach molecules

The starting point for all experiments is a pure sample of Feshbach molecules, trapped
in an optical lattice. The steps to obtain the pure sample are

• the creation of a magneto-optical trap with subsequent optical molasses

• loading the atoms into the first magnetic trap followed by magnetic transport to
the glass cell

• transfer of the atoms from a magnetic trap to a quadrupole-Ioffe-configuration
(QUIC) trap

• evaporative cooling of the pre-cooled sample of 87Rb atoms down to the critical
temperature

• loading the cloud of ultracold atoms into the optical lattice

• Feshbach association and purification in the lattice.

I will review the basic steps which lead to the pure sample of Feshbach molecules in
the following. This is described in more detail in the theses of Gregor Thalhammer and
Matthias Theis [Thalhammer 2007, Theis 2005].

3.1 Magneto-optical trap and optical molasses

The experimental cycle starts with the magneto-optical trap (MOT), where we load
approximately 3×109 87Rb atoms from the background vapor. The loading takes about
8 s and we reach a final temperature of about 150µK. These numbers stem from fits to
absorption images as explained in [Theis 2005]. The light for trapping originates from a
home-built tapered amplifier with an output power of about 50mW in each beam. This
laser is seeded by a home-built diode laser. It is shifted 20MHz from the atomic D2

|52S1/2, f = 2⟩ → |52P3/2, f
′ = 3⟩ resonance of 87Rb as explained in chapter 2. Here we

use the total atomic angular momentum f = l+ s+ i including the total orbital angular
momentum l, all electronic (s) and nuclear (i) spins1. We use a second home-built diode
laser to complete the cycling transition. In the literature, this laser is referred to as a
repumper [Metcalf/van der Straten 1999]. This repumper laser is locked to the atomic

1In the following, small letters f, l, ... refer to atomic spins whereas capital letters F, L, ... refer to
spins in the 87Rb2 molecule. A level scheme for the atoms can be found in Fig. 3.8 at page 28.
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18 Production of Feshbach molecules

Camera M1

Camera M2

Polarizing beam splitter

Camera C2

Camera C1

Photodiode

Absorption
light 1

Absorption light 2

Beams for lattice
and spectroscopy

MOT
beams

Absorption light 1,
spin polarizer

Figure 3.1: Experimental setup including laser beams. The figure shows the MOT beams
and the imaging setup. We have two cameras (M1 and M2) to get fluores-
cence or absorption images in the MOT. In the glass cell we perform ab-
sorption imaging with the cameras C1 and C2. A camera to get pictures in
the glass cell in the third direction is not shown. The light which we use
for absorption imaging is called ”Absorption light 1 and 2”. Adapted from
[Theis 2005].

|52S1/2, f = 1⟩ → |52P3/2, f
′ = 2⟩ transition. The basic principle of the magneto-optical

trap is Doppler cooling. This process has a lower bound of [Adams 1997]

kBTD =
~ · Γ
2

(3.1)

caused by the lifetime of the excited state and Heisenberg’s uncertainty principle. This
temperature results from the competition between a viscous cooling force and a random
heating force. A careful analysis shows that the heating is due to spontaneous emission.
In Eq. (3.1), TD is the Doppler temperature, which is on the order of 100µK for 87Rb
. 1/Γ is the lifetime of the excited state. The principle of the MOT can be understood
as follows. The photon energy is set in such a way that only atoms which move at
a special velocity towards the beam absorb a photon (red detuned MOT-laser) and
receive a recoil. The effect of cooling appears because the incident laser light is directed
whereas the fluorescence is not. In contrast, the fluorescence of the excited atom has no
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3.1 Magneto-optical trap and optical molasses 19

Figure 3.2: Magnetic transport line. The Figure shows the coils which we use in our
setup. The yellow coil on the left hand side creates the magnetic quadrupole
field for the MOT, the green coil on the left hand side is used to push the
atoms towards the first magnetic trap of the transport line (blue coils). The
transport line consists in total of 2 × 13 coils (blue, red and yellow). The
glass cell together with the three coils which are also used for the QUIC trap
(yellow) are at the end of the transport line on the right hand side. Adapted
from [Winkler 2007].

preferred direction. Taking the average of several absorption-emission cycles gives a net
momentum transfer and causes cooling [Hänsch 1975]. The atoms are also trapped and
always in resonance with the cooling light due to a magnetic offset field. This field shifts
the different mf levels, where we use the projection of f in direction of the magnetic
field. In our experiment we use a combination of magnetic fields and circular polarized
light, which leads to a force directed to the center of the trap. However, the theory
is more complicated as one has to take the hyperfine-structure of the 87Rb atoms into
account [Metcalf/van der Straten 1999, Foot 2005].

Afterwards we start the molasses phase where we switch the repumper laser and the
magnetic fields off. At the same time we increase the detuning of the MOT light. After
15ms our atoms have a temperature of about 50µK. This sub-doppler cooling can be un-
derstood when we include the polarizations of the laser beams, which do not play a major
role in Doppler cooling. Unfortunately, the theory in three dimensions is rather compli-
cated and no analytical solutions exist. Therefore, we consider the one-dimensional case
to get a feeling for the physics [Dalibard 1989]. In this case, the lower-temperature bound
of the process in the low-intensity regime is given as [Metcalf/van der Straten 1999]

kBTSD ∝ δ · I
1 +

(
2δ
Γ

)2 , (3.2)

where we use the intensity I in each laser beam, the detuning δ from the atomic res-
onance, and the lifetime 1/Γ of the excited atomic state. In principle Eq. (3.2) shows

19



20 Production of Feshbach molecules

Figure 3.3: Configuration of the coils near the glass cell. The levitation coil creates an
inhomogeneous magnetic field and is used to compensate for the gravitational
force. We use the two quadrupole coils 1 and 2 for the Feshbach field as
well as for the QUIC trap. The Ioffe coil is added to form the QUIC trap.
Unfortunately, the center of the QUIC trap is shifted 8mm with respect to
the center of the quadrupole coils. Therefore, we have to move the cloud
of atoms (red) with the offset coils into the center of the Feshbach field.
Adapted from [Winkler 2007].

that we can lower the temperature by increasing the detuning and lowering the power
of the cooling laser. For details I refer the reader to the excellent article by Dal-
ibard [Dalibard 1989] and the review written by [Adams 1997]. The absolute lower-
temperature bound in this scheme is the recoil limit with

kBTr =
~2k2

M
. (3.3)

Here k is the wave vector of the light field, 2π~ is Planck’s constant, and M is the mass
of the 87Rb atom. This limit arises as the spontaneous emission of light at some point
contributes to the heating process. After the molasses phase we end up with 3 × 109
87Rb atoms at temperatures as low as 50µK.
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3.2 Spin preparation 21

3.2 Spin preparation

For our experiments we want to have atoms in the 52S1/2 |f = 1,mf = −1⟩ state (See
Fig. 3.8 at page 28 for the Zeeman structure.). In the MOT coils the |f = 1,mf = −1⟩,
|f = 2,mf = 1⟩, and |f = 2,mf = 2⟩ states are magnetically trapped. Thus, we
have to pump as many atoms to the target state as possible. This transfer already
starts when we switch off the repumper laser as it leads to a depopulation of the state
|52S1/2, f = 2⟩. Additionally, we switch on a magnetic-field gradient of 14G/cm which
we create with the push-coil (green coil on the left in Fig. 3.2). At the same time
we switch on σ− polarized light for 250µs. This light is resonant with the transition
|52S1/2, f = 1⟩ → |52P3/2, f

′ = 1⟩ and pumps the atoms in the desired mf = −1 level.
Unfortunately, spontaneous decay from the excited level also populates the f = 2 state.
Further σ− polarized light which is resonant with |52S1/2, f = 2⟩ → |52P3/2, f

′ = 2⟩
completes the optical pumping process.

3.3 Magnetic transport

At the end of the molasses phase we again create a magnetic trap with the MOT coils
which serves as starting point for the subsequent magnetic transport. During the trans-
port we lose about 50% of our atoms and the temperature increases to 200µK. For
the magnetic transport we use in total 2 × 13 coils. They are shown in Fig. 3.2. The
design is such that the local minimum of the magnetic field can be moved continuously
over the whole transport line [Greiner 2000, Greiner 2001]. We have a magnetic-field
gradient of 130mG/cm to trap 87Rb atoms in the | f = 1,mf = −1⟩ state. For the
current ramps up to 100A we use four power supplies from Delta electronica combined
with home-built control and switch boxes. The control box only serves as a security
device. The four switch boxes transfer the current from the associated power-supply to
the different coils. This technique reduces the number of power supplies drastically. For
the magnetic transport we use the power supplies in constant-current mode combined
with a compensation of the frequency response as described by Winkler [Winkler 2007].
As already mentioned, the constant-current mode has the disadvantage of an increased
current-noise by a factor of 10 which is not a problem at this point. The atoms are
heated slightly during the 1.5 s which are needed for the transport. At the end of the
transport sequence we have about 5×108 atoms at 200µK in a stiff magnetic quadrupole
trap (Yellow coils above and below the glass cell in Fig. 3.2. See also Fig. 3.3).

3.4 QUIC trap and evaporative cooling

The magnetic transport ends in the glass cell where we create a magnetic quadrupole
trap using a current of ≈40A. This field is not suitable for evaporative cooling because
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22 Production of Feshbach molecules

Figure 3.4: Production of a BEC. The peak height and the color represent the atomic
density. The cloud on the left hand side is purely thermal and has a Gaussian
shape. In the central picture one can see a thermal fraction of atoms with
Gaussian momentum distribution and a small condensed cloud of atoms
which has a Thomas-Fermi momentum profile. The picture on the right
corresponds to a pure BEC of roughly 2×106 atoms at a temperature below
500 nK. Adapted from [Winkler 2007].

the magnetic field is zero in the center of the trap. At zero magnetic field the different
mf levels are degenerate which causes Majorana flips and induces losses [Ketterle 1999a].
Therefore, we create a QUIC trap by ramping up a current through the Ioffe coil so that
the total current through the quadrupole and Ioffe coils stays constant [Esslinger 1998].
The geometry of the QUIC coils can be seen in Fig. 3.2 where the Ioffe coil to the right
hand side is marked yellow (compare also Fig. 3.3). In the QUIC trap we have trapping
frequencies of 16Hz in the radial and 150Hz in the axial direction. The formation
of a cigar-shaped trap increases the density, and elastic scattering rates are enhanced.
Evaporative cooling is more efficient [Foot 2005].

The Ioffe field causes an offset which prevents uncontrolled flips into different hyper-
fine states. During the creation of the QUIC trap, we only lose the hottest particles
which cools the atom cloud. At the onset of the QUIC trap we have 4 × 108 atoms
at temperatures below 500µK. Then we begin an evaporation ramp from 30MHz to
1.4MHz. At the end of this ramp we obtain a pure BEC of 4 × 106 atoms in the
| f = 1,mf = −1⟩ state at temperatures of about 500 nK. The phase transition from a
thermal cloud to a pure BEC is shown in Fig. 3.4. After the evaporation has finished we
finally use the offset coils 1 and 2 to move the atoms back to the center of the magnetic
trap. (For the coil geometry see Fig. 3.3.) This is necessary as we perform the Feshbach
association in the magnetic field created by quadrupole coils 1 and 2. It turns out that
a trapping frequency of 150Hz at the end of the evaporation causes parametric heating
[Thalhammer 2007]. This is due to noise at the third harmonic of the line frequency
which is at 50Hz. We therefore lower the magnetic field during the last seconds of
evaporation. This leads to a reduced trapping frequency of 130Hz in axial direction.
The creation of the BEC is a crucial step when checking for proper operation of the
experiment. The measured particle numbers and temperatures serve as a reference. For
our measurements we use a thermal cloud close to condensation as more particles result
in a better signal to noise ratio.

Remark. We need a spin flip to the state |f = 1,mf = 1⟩ to create Feshbach
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3.5 Ultracold atoms in an optical lattice 23

(b)

mirror

Figure 3.5: Lattice beam alignment. a) Rb atoms (red) in a focused beam. In the lower
picture we show Rb atoms in a retro-reflected beam. Here the light creates
a standing wave which corresponds to a periodic potential for the atoms.
With three mutually orthogonal beams we create a cubic lattice as shown
schematically in part b). Adapted from [Winkler 2007].

molecules. For this spin flip we have additional coils (Not shown in Fig. 3.3.) which are
mounted on a cage surrounding the glass cell. All currents through the quadrupole and
Ioffe coils are designed such that this extra field is needed.

3.5 Ultracold atoms in an optical lattice

As a starting point for our experiments with ultracold molecules we choose an atomic
cloud with a considerable fraction of thermal atoms and stop the evaporation before
a pure condensate forms, which corresponds to radio frequencies of about 1.6MHz.
Stopping the evaporation at a slightly higher temperature ensures a larger number of
atoms and Feshbach molecules. We then shut off all magnetic fields and ramp up a
lattice which we create from a Ti:sapphire laser beam. Normally, we use 100mW of
light in each direction at a vacuum wavelength of 830.44 nm. The potential created by a
focused retro-reflected beam is shown in Fig. 3.5. In this case the beam not only works
as a dipole trap but also generates a standing wave, which induces a periodic potential
for the atoms.

If we want to understand how the periodic structure for the atoms (or molecules)
emerges we consider the simplified case of a lattice in one dimension, which I choose to
be the z-direction. We take a laser beam which has a Gaussian intensity profile

I(r, z) =
2P

πω2(z)
e
−2 r2

ω2(z)

ω(z) = ω0

√
1 + (z/zR)2.

(3.4)

Here P denotes the total power in the beam, ω(z) is the 1/e2 intensity radius. ω0 is the

radius at the focus z = 0 and zR =
πω2

0

λ
is the Rayleigh length. The Rayleigh length is
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24 Production of Feshbach molecules

the distance at which the beam doubles its area compared to z = 0. Inserting Eq. (3.4)
into the formula for a potential created by the dipole force V = −1/2 · ⟨d · E⟩ leads to

V (r, z) = VLe
−2 r2

ω2(z) cos2(kLz)

≈ −VL
(
1− 2r2

ω2
0

)
cos2(kLz)

(3.5)

after some calculation. Here, we have used the lattice depth VL and the wave vector kL =
2π/λ. In our experiment we have P = 100mW in each direction, ω0 = 130µm which
corresponds to a Rayleigh length of 500µm. Thus ω(z) ≈ ω0 and the approximation
in Eq. (3.5) is justified. One advantage of reflected beams is that the lattice potential
is four times deeper compared to that of a non-reflected beam. If we create the lattice
with a laser which is detuned far2 from the atomic resonance the following relation holds
for the lattice depth [Grimm 2000]:

VL
Er

=
2m

~2k2L
· 3πc

2

2ω3
0

· Γ
∆

· I(r, z). (3.6)

Here it is convenient to give VL in units of recoil energies Er = (~kL)2/2m with the mass
m of one atom. The linewidth Γ of the excited state is related to the dipole matrix
element. ∆ is the laser detuning from the center of the D1 and D2 line.

In the harmonic approximation of I(r, z) we obtain trapping frequencies of

ωz =

√
2VLk2L
m

(3.7)

in the axial and

ωr =

√
4VL
mω2

0

(3.8)

in the radial direction, with m the mass of a 87Rb atom. As we have
ωz =

√
k2Lω

2
0/2 · ωr ≫ ωr we can consider the lattice as a chain of micro traps with

a trap frequency of ωz.

In our experiment we use a Ti:sapphire laser at λ = 830.44 nm for the lattice. The
linewidth of the excited state is Γ/2π = 5.9MHz3. The recoil energy is Er = 2×10−36 J.
We ramp up the lattice adiabatically to the maximum available power correspond-
ing to a depth of 37Er. On a temperature scale this corresponds to a trap depth of
VL/kB = 6µK. The beams are retro-reflected with mirrors of reflectivity 0.99. We use
the transmitted light for an intensity lock using acousto optical modulators as described
in the thesis of Thalhammer [Thalhammer 2007]. In the three dimensional lattice the
interference between beams in different directions can lead to decoherence in the atomic

2compared with the excited-state hyperfine splitting.
3Here we take the mean of the D1 and D2 lines as an approximation
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Figure 3.6: 87Rb atoms in an optical lattice. a) An absorption image of a pure BEC of
87Rb atoms after a time of flight of about 15ms. b) Time of flight image for
atoms which are released from an optical lattice. The lattice has a depth of
35Er and is switched off adiabatically during 3ms. The momentum width
2~k of the square corresponds to the first Brioullin zone and is 175µm wide.
The sequence c1) to c4) shows the disappearance of the interference pattern.
As explained in the text, c2) corresponds to a superfluid state, whereas c4)
shows the Mott-insulator state. Picture c3) corresponds to an intermediate
case. Adapted from [Thalhammer 2007].
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26 Production of Feshbach molecules

sample. We choose the polarizations to be mutually orthogonal to avoid these interfer-
ence effects. Furthermore, the frequencies of the different beams are detuned by about
100MHz using an AOM. Any remaining interference terms in the potential thus average
out [Greiner 2003a]. Fig. 3.6 a) shows an absorption image of an expanded ultracold
cloud of 87Rb atoms close to degeneracy. For Fig. 3.6 b) we use the same experimental
cycle as in Fig. 3.6 a) but after the evaporation we adiabatically load the atoms into an
optical lattice. Before we take the picture, the lattice-beams are ramped down. Here,
one can nicely see the first Brillouin zone. Its width in momentum space is 2~k. The
schematic on the right (not true to scale) shows how the lattice is ramped up and down.
In Fig. 3.6 b) it is crucial that the lattice is also ramped down adiabatically. This slow
ramp ensures that the quasi-momentum does not change. We only observe the first Bril-
louin zone, indicating that the slow ramp down results in an occupation of the ground
state of the optical lattice.

For our experiments it is crucial that we have only one molecule (two atoms) per
lattice site. In the following I describe how we determine the occupation numbers for
atoms experimentally. This question concerns the many-body state of the atoms, that is,
whether we obtain a superfuid state or a Mott-insulator. We can answer this question
with a slightly different sequence where the lattice is ramped up slowly (as shown in
Fig. 3.6 b) but then switched off immediately. We show the BEC without an optical
lattice in part c1). In c2) to c4) we increase the lattice depth slowly (200ms) and
vary the final value of the lattice depth. For shallow lattices we observe an interference
pattern which we attribute to a coherent state with long-range phase coherence. c2)
shows the superfluid state. Further increasing the lattice depth, we see a transition from
a superfluid state to a Mott-insulator state in c4) where the phase coherence is lost
completely. Analyzing the combination of the experiments corresponding to Figs. b)
and c4), we conclude that a combination of deep lattices with an adiabatic rampdown
results in a state where each lattice site is occupied with one atom in the ground state
of the lattice.

The theory developed for atoms in optical lattices is valid for Feshbach molecules as
well but one has to take twice the polarizability for molecules. This shows that Feshbach
molecules can be described using their atomic properties. We thus have a trap depth of
approximately 70Er for our molecules.

3.6 Spin flip before Feshbach association

After loading the atoms into the optical lattice, they are in the |f = 1,mf = −1⟩ state.
Unfortunately, it turns out that the |f = 1,mf = −1⟩ state does not show any Feshbach
resonances. As the Feshbach resonance at 1007.4G only appears for the |f = 1,mf = 1⟩
state [Marte 2002, Volz 2003] we have to transfer the molecules to this state. Therefore,
we quickly change the direction of the magnetic bias field. The switching has to be done
fast enough so that the total atomic angular momentum with its projection onto the
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3.6 Spin flip before Feshbach association 27

Figure 3.7: Feshbach resonance in an optical lattice. The horizontal dashed lines rep-
resent the 7 lowest trapped states of 87Rb atoms in the spin state |f =
1,mf = 1⟩ in the harmonic approximation. The trap frequency is set to
ωz = 2π × 39 kHz. A molecular level (diagonal dashed line) crosses the
atomic states at 1007.5G. The coupling between the molecular and atomic
states leads to an avoided crossing and thus connects the ”separated atoms”
state with the molecular Feshbach state. It also shifts the Feshbach resonance
to 1007.4G. Adapted from [Thalhammer 2007].
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Figure 3.8: Hyperfine and magnetic structure of atomic 87Rb. For the purification
scheme we drive a radio-frequency transition in the 5S1/2 state. Afterwards
we excite to the 5P3/2 state to remove unbound atoms from the optical lat-
tice. Adapted from [Winkler 2007].

space fixed axis cannot follow the magnetic field adiabatically. As it is difficult to change
the direction of a current quickly, we ramp up a magnetic field through the offset coils
(For the geometry of the coils see Fig. 3.3.) in 20ms. Afterwards, we switch the field
through the offset coils off. The only remaining field is from the compensation cage4.
Thus the direction of the magnetic field has changed which has the same effect as if the
spin had flipped. The efficiency of this step is higher than 98% if the offset field from the
compensation cage is set correctly. The efficiency can be checked with a Stern-Gerlach
field which separates the different spin components before doing the absorption image.
The efficiency of this step is crucial for the association of Feshbach molecules.

3.7 Ultracold Feshbach molecules in an optical lattice.

After the spin flip we start the Feshbach association. The principle of the Feshbach
association in an optical lattice can be understood from Fig. 3.7. Here, we consider
the magnetic field dependence of the molecular-state energy (bound atoms) and the
energy dependence of the state consisting of ”two separated atoms”. The atoms oscillate
in the optical lattice which forms an harmonic potential. Here, we only consider the
zeroth vibrational level v = 0. This v should not be mixed up with the quantum
number for molecular vibration introduced later. The two bare, that is non interacting,
states show a crossing at a magnetic field B ≈1007.5G. The two states interact via the
dominating exchange interaction and the weak spin-spin5 interaction which lead to an
avoided crossing. Thus, starting with two unbound atoms at B ≈ 1008G, lowering the

4See remark on page 22.
5The Hamiltonians for effective spin-spin and spin-orbit interactions can not be distinguished. For
brevity I omit the spin-orbit interaction although it is always present. For details see chapter 4.
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Figure 3.9: Feshbach molecules in the first brioullin zone after 13ms time of flight. The
horizontal and vertical dashed lines surround the first Brillouin zone. The
bar structure results from repulsively bound pairs as described in Winkler
et al. [Winkler 2006].

magnetic field adiabatically, leads to the formation of a dimer. If we want to prepare a
pure sample of Feshbach molecules we have to get rid of the huge number of atoms in
singly occupied lattice sites. We can remove these unbound atoms with a combination of
a radio frequency pulse and a resonant light pulse. Here we use an antenna to irradiate
the atoms with 2W of microwave radiation at 9.110GHz. This electromagnetic field
couples the S1/2 |f = 1,mf = 1⟩ and |f = 2,mf = 2⟩ hyperfine states (Fig. 3.8). At the
same time, we shine in light which is resonant with the S1/2, |f = 2,mf = 2⟩ to P3/2,
|f = 3,mf = 3⟩ transition at a magnetic field of 0G. At B = 1000G this corresponds
to a detuning of ≈ 1.4GHz. This light then ”blows” away the remaining atoms, so all
unbound atoms leave the lattice. A duration of 2ms for these pulses is enough to get a
pure sample of Feshbach molecules.

Fig. 3.9 shows an absorption picture of the dissociated molecules after the cleaning
procedure. Unlike in Fig. 3.6 we now observe two vertical bars to the right and left-hand
side of the first Brillouin zone. The structure consisting of two bars is typical for our
molecules and indicates that we have created repulsively-bound pairs as described in
[Winkler 2006]. In brief, these pairs show repulsive interaction and dissociate immedi-
ately in free space. However, in the lattice the energy which would be released in the
dissociation corresponds to a forbidden area in the band structure. Thus, the repulsively
bound pairs are stable. The bar which can be seen in Fig. 3.9 is a feature of proper Fes-
hbach association because it does not appear when we have atoms in the optical lattice
(Compare Fig. 3.6 b) ). We use this bar feature to check for proper Feshbach association
when we perform our spectroscopy. For further details on repulsively bound pairs, I refer
the reader to [Winkler 2006, Winkler 2007]
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4 Theory of diatomic molecules

In the following chapter, I will show that some of the steps required to produce ultracold
Feshbach molecules limit the number of accessible molecular states. Furthermore, I
will review the basic concepts needed to understand the measured spectra presented in
chapters 5 and 6. After some notation and definitions I start with the nonrelativistic
Born-Oppenheimer and adiabatic approximation in section 4.2. In section 4.3, the results
of a relativistic treatment are introduced, especially the electron and nuclear spin wave-
functions. In the first two sections, I will concentrate on the electronic term energies
and the fine structure. All of the other interactions are explained in later chapters,
always in the context of the measurements. Afterwards, Hund’s coupling cases without
nuclear spin are discussed (section 4.4). These cases give an intuitive understanding
of the interactions which are present in the molecule using simple vector diagrams.
The hyperfine structure sometimes dominates, but I will treat the Hund’s cases without
nuclear spin as a remainder. Hund’s cases with nuclear spin are rarely found in literature
[Townes/Schawlow 1955, Brown/Carrington 2003]. I will therefore review these cases
in detail in the following section 4.5. The discussion of symmetry quantum numbers
follows in section 4.6. Afterwards, I will apply the symmetries and Hund’s cases to
three important 87Rb2 potentials: X

1Σ+
g , a

3Σ+
u , and (1) 3Σ+

g (section 4.7). The chapter
concludes with the selection rules for bound-bound transitions in diatomic molecules in
section 4.8.

4.1 Some notation: From Operators to exact and good
quantum numbers

In the rest of the chapter we will use molecular wave-functions and molecular Hamilton
operators which all involve angular momenta, for example J . In principle, J can have
the three different meanings

• an operator,

• a label in the basis function,

• and a good quantum number.

I will always indicate operators with bold face, for example the angular momentum
operator J. The basis functions are denoted by kets, in our example |J⟩. If J corresponds
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32 Theory of diatomic molecules

Type of angular momentum Operator
Quantum numbers

Total Projection

Nuclear rotation . . . . . . . . . . . . . . . . . . . . . . R R · · ·
Electronic orbital . . . . . . . . . . . . . . . . . . . . . L L Λ

Total without spins . . . . . . . . . . . . . . . . . . . N = R+ L N Λ

Electronic spin . . . . . . . . . . . . . . . . . . . . . . . S S Σ

Orbital with electron spin. . . . . . . . . . . . . Ja = L+ S Ja Ω

Total with electron spin . . . . . . . . . . . . . . J = R+ L+ S J Ω

Nuclear spin . . . . . . . . . . . . . . . . . . . . . . . . . . I I ΩI

Total with electron and nuclear . . . . . . . F = R+ L+ S+ I F ΩF

Table 4.1: Important angular momenta in Hund’s coupling cases. The projection always
refers to the molecule-fixed (internuclear) axis. Space-fixed projections are
always labelled with subscript z, for example Lz. The molecule-fixed projec-
tion of R is not identified as it is zero. R should not be confused with the
internuclear distance R introduced later.

to the total angular momentum it is also a good quantum number. If it is not the total
angular momentum J is in most cases only a label which does not yield a good quantum
number. The latter just means that the eigenstates of the Hamiltonian are superpositions
of different |J⟩ (See [Lefebvre-Brion/Field 2004], page 71.). It has to be clear from the
context whether J is a good quantum number or just a label in this function. In the
nomenclature I will follow Nikitin [Nikitin 1994], who additionally distinguishes between
exact quantum numbers and good quantum numbers. Exact quantum numbers are
always good quantum numbers, which means that they do not depend on the angular
momentum coupling scheme. Examples for exact quantum numbers are the total energy
E and the total angular momentum. Good quantum numbers depend on the coupling
scheme, that is on the Hund’s case. For example Λ (see Table 4.1) is not an exact
quantum number but in Hund’s case a) it is a good quantum number. On the other
hand it turns out that Λ is a bad quantum number in Hund’s case c). This will be
explained in detail in section 4.4. The difference between good and exact quantum
numbers is going to be important when we anlayse selection rules between different
Hund’s cases.

4.2 Nonrelativistic Born-Oppenheimer and adiabatic
approximation

In this section I follow the reasoning of [Bunker 1968] but I skip some details and some
symbols are changed so that they are consistent with the nomenclature in the book of
Lefebvre-Brion and Field [Lefebvre-Brion/Field 2004].
The configuration of our 87Rb atoms in the electronic ground state is (Kr)5s, where
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4.2 Nonrelativistic Born-Oppenheimer and adiabatic approximation 33

the closed Krypton shell is denoted by (Kr). Its electronic term in the ground state is
therefore 5S1/2. The first excited state corresponds to a fine-structure doublet 5P1/2 +
5P3/2, where the 5P1/2 state has less energy. The ground state of a 87Rb2 molecule
connects to the 5S1/2+5S1/2 two-atom asymptote. This can be seen in Fig. 4.1 for 87Rb2

[Lozeille 2006]. For large nuclear separation, the atomic configuration is retrieved. If the
atoms get close to each other, bound molecular states form. This can be seen from the
minima in the potential curves. It is crucial to have an overview over the wave-functions
and the Hamiltonian with its approximations to understand the symmetries. This is
reviewed briefly in this section for the nonrelativistic case.

The Hamiltonian for a diatomic 87
37Rb2 molecule consists of 2 nuclei and 2×37 electrons

and the corresponding Schrödinger equation is given by

H ·ΨT = E ·ΨT , with

H = Hnrel +Hrel +HLamb, and

Hnrel(R, θ, ϕ, r) = TN(R, θ, ϕ) +Te(r) +V(r, R).

(4.1)

Here we have the nonrelativistic operator Hnrel and the relativistic Hamiltonian Hrel.
The latter part includes, for example, spin-orbit and spin-spin interactions. HLamb

includes interactions with the electromagnetic field and can be neglected. Hnrel involves
the internuclear separation R. The Euler angles θ and ϕ specify the orientation of the
molecule, and r = (r1, · · · , r2×37) is the position vector including all 2×37 electrons.
TN(R, θ, ϕ) (Te(r)) is the operator for the kinetic energy of the nuclei (electrons), and
V(r, R) contains the potentials, including electron-electron, nuclei-nuclei, and electron-
nuclei Coulomb interactions.

In a first step, we only consider the nonrelativistic electronic part, where we assume
that the electrons follow the nuclei adiabatically. Separation of the electronic and nuclear
motion in Eq. (4.1) leads to

He ·Ψe
n(r;R) ≡ (Te(r) +V(r, R)) ·Ψe

n(r, R) = E0
n(R) ·Ψe

n(r;R), (4.2)

where we have used the product ansatz ΨT
n = Ψe

n · Ψrv
n to separate the electronic (Ψe

n)
from the ro-vibronic motion (Ψrv

n ). In this equation, we treat R as a parameter and
not as variable. The index n then labels the different eigenstates with corresponding R
dependent eigenvalues E0

n(R). As in the case of atoms, we can build the total electronic
angular momentum L. However the operator He breaks the rotational symmetry. Thus,
only the molecule fixed Z-component LZ commutes with He because this direction is
an axis of symmetry. Only the projection Λ of L onto the internuclear axis has well
defined values [Kronig 1930] and we obtain wave-functions of the form Ψe

n,Λ(r;R). The
corresponding eigenenergies are denoted by E0

n,Λ(R) and are called potential curves.
The various quantum numbers which we need in this chapter are summarized in Table
4.1.

Remark. The wave-functions Ψe
n,Λ(r;R) and eigenenergies E0

n,Λ(R) are the result of
ab-initio calculations and it is useful to write Ψe

n,Λ(r;R) = ⟨r;R | nΛ⟩. This simplifies
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34 Theory of diatomic molecules

calculations if we work with effective Hamiltonians where matrix elements are given as
⟨n′Λ′ | Heff | nΛ⟩. The potential curves in Fig. 4.1 are the R dependent expectation
values for the various states | nΛ⟩. Here, Σ states have Λ = 0, Π states have Λ = 1,
and so forth. The other labels will be explained later as they are a result of relativistic
effects (spin of the electron).

Next, we consider the full nonrelativistic problem, including molecular vibration and
rotation. We decompose the total molecular wave-function in the form

Ψ(r, R) =
∑
n

Ψe
n,Λ(r;R) ·Ψrv

n (R, θ, ϕ) =
∑
n

Ψe
n,Λ(r;R) ·Ψrot

n (θ, ϕ) ·Ψvib
n (R), (4.3)

where the second equation holds if the rotational and vibrational motions are separa-
ble. A wave-function of the form Ψe

n,Λ(r;R) ·Ψrv
n (R, θ, ϕ) is called a Born-Oppenheimer

product function. Inserting this ansatz into the nonrelativistic Schrödinger equation
HnrelΨT = EΨT leads to an infinite system of coupled differential equations of the form(

E0
n(R)− E

)
·Ψrv

n (R, θ, ϕ) +
∑
n′

C0
nn′ ·Ψrv

n′ (R, θ, ϕ) = 0

C0
nn′ =

∫
...

∫
Ψe

n,Λ(r;R)
∗ ·

[
−TN(R, θ, ϕ)

]
·Ψe

n′,Λ′(r;R) dr.

(4.4)

In the Born-Oppenheimer approximation we assume the nuclei to have infinite
mass. Furthermore we neglect the R dependence of Ψe

n,Λ. This causes all interac-
tions between different electronic states to vanish, that is C0

nn′ = 0 if n ̸= n′ and C0
nn =

−TN(R, θ, ϕ). The remaining equation is the simplest one, but neglects any interac-
tion between electrons and nuclei. As eigenfunctions for the rotational part of TN we
can take the Wigner rotation matrices D

(N)
ΛmN

(π/2, θ, ϕ) ∼ ⟨π/2, θ, ϕ | NMΩ⟩ (See for
example [Edmonds 1960].). Here, the total angular momentum N is the sum of pure
molecular rotation R and total orbital angular momentum L. The angle of π/2 arises
because a diatomic molecule has only two principal axes of rotation. The third angle
then only fixes an overall phase. In the Born-Oppenheimer limit we therefore end up
with (

−TN(R, θ, ϕ) + E0
n,Λ(R)− E

)
·Ψrv

n (R, θ, ϕ) = 0. (4.5)

The Adiabatic approximation is used when one includes the adiabatic interaction
between nuclei and electrons. Again only terms of the form C0

nn are included in the
non relativistic equation (4.4) and lead apart from the −TN(R, θ, ϕ) term to a modified
Born-Oppenheimer potential

Ead
n (R) = E0

n(R) + A0
nn(R). (4.6)

TheA0
nn(R) term arises from theR-dependence of the electronic wave-function Ψe

n,Λ(r;R).
(For details see the excellent article by [Bunker 1968].) The final equation is the same
as in the Born-Oppenheimer approximation except that we replace the effective poten-
tial E0

n(R) by Ead
n (R) according to Eq. (4.6). Adiabatic potentials show sometimes an

avoided crossing like behavior.
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4.3 Treatment with electronic and nuclear spins 35

4.3 Treatment with electronic and nuclear spins

The correct treatment of relativistic effects requires some effort but the steps are sim-
ilar to those in the nonrelativistic case. Relativistic effects include spin-spin, spin-
orbit, and spin-rotation interactions. I will only give the important results. (See
[Kronig 1930, Bunker 1968, Brown/Carrington 2003] for a relativistic treatment of the
fine structure.) Compared to the nonrelativistic Hamiltonian, it is clear that we start
with new eigenfunctions of the form

ΨT
n = Ψe

n · χn · βn ·Ψrot
n ·Ψvib

n = Ψn · βn. (4.7)

Here we introduce the new spin functions χn and βn for electronic and nuclear spins,
respectively. In contrast to the nonrelativistic case, where we only had the quantum
numbers n and Λ, we must now consider the various spins. These functions will depend
on the interactions present in the molecule. This can be understood as follows: The total
electronic spin S has a magnetic moment which can interact with the magnetic field due
to the total electronic orbital angular momentum L (spin-orbit or L · S interaction).
According to the strength of this interaction, it is either included in He or excluded.
The case of weak spin-orbit coupling is referred to as Hund’s case a) and the electronic
eigenfunctions become | nΛSΣ⟩1. The opposite case is called Hund’s case c). We then
have to replace Λ by Ω, the molecule-fixed projection of the total angular momentum
J = N + S. In Hund’s case a) this connects of course to Ω = Λ + Σ. Here, the basis
consists only of | nΩ⟩, the case with the fewest good quantum numbers. (See section
4.5.2 and Table 4.2.)

4.4 Hund’s cases without nuclear spin

At the advent of quantum mechanics, Hund gave an explanation for the term schemes
[Hund 1927] and the observed structure in diatomic molecules [Hund 1927a]. In the lat-
ter paper, he suggested a classification based on a classical picture of angular momenta.
These limiting cases are an idealized interaction scheme. One can find unitary transfor-
mations between the different basis sets, and thus the eigenenergies do not depend on
the basis as expected. A nice summary of these ideas, along with vector diagrams, can
be found in [Hund 1933]. In the following, I will show the ”classical” Hund’s cases as a
reminder (see Fig. 4.2 and Table 4.2).

In Hund’s case a), the total electronic orbital angular momentum L and the total
electronic spin S are coupled separately to the internuclear axis. Thus, Λ and Σ are the
projection quantum numbers. The total angular momentum J is composed of R, L, and
S. Here, the good quantum numbers in the rotating molecule are Λ, Σ, Ω = Λ + Σ, J ,

1These functions build the Hund’s case a) basis. Whether these labels n, Λ, ... are good quantum
numbers or not has to be calculated ab initio.
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Figure 4.1: Potential scheme of the 87Rb2 molecule from [Lozeille 2006] with the two
optimized ground-state potentials from Tiemann (red). The solid (dotted)
red curve corresponds to the optimized singlet (triplet) potential from E.
Tiemann [Strauss 2010] (For details see also chapter 6.). All other potentials
are from Lozeille et al. . Solid curves correspond to Σ states, dashed (dotted)
curves correspond to Π (∆) potentials. The vertical bar corresponds to the
energy of our one-photon laser (see chapter 6).
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Figure 4.2: Hund’s cases without nuclear spin. The pure mechanical rotation of the
molecule is denoted by R except for case e) where I denote it l. An overview
of all of the other quantum numbers can be found in Table 4.1.

and mJ . In most cases S is also a good quantum number. This is explained nicely in
the appendix of [Zare 1973]

In case c), the total electronic orbital angular momentum and the total electronic
spin are strongly coupled. Λ and Σ are now bad quantum numbers. However, the
projection Ω, which equals Λ + Σ in case a), remains good. Strictly speaking, this is
the only good quantum number. Thus, Hund’s case c) is the case with the fewest good
quantum numbers. However the total angular momentum J is the same as in case a)
and the rotational energy ladder goes as J(J + 1). If one needs a Hund’s case c) basis,
an additional quantum numbers α has to be introduced. This quantum numbers then
assures that a unique transformation to the other Hund’s cases exists.

In case b), the strong rotational interaction decouples the spin from the axis but the
total orbital angular momentum is still coupled to the internuclear axis. The rotational
energy ladder is given by N(N + 1) where N = R + L. The good quantum numbers
in this case are Λ, N , S, J , and mJ . Case b) is normally important for Σ-states where
the projection Λ of the total orbital angular momentum onto the internuclear axis is 0,
except when there is a strong spin-spin interaction.
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38 Theory of diatomic molecules

Coupling case Good quantum numbers Hel HSO Hrot Nomenclature

(a) η, Λ, S, Σ, J , (Ω = Λ + Σ) s i w 2S+1ΛΩ,ιe(Λ ̸= 0)

(b) η, Λ, N , S, J s w i 2S+1Λιe(Λ ̸= 0), 2S+1Σσel
ιe (Λ = 0)

(c) η, α, J , Ω i s w Ωιe(Ω ̸= 0), 0σel
ιe (Ω = 0)

(d) η, L, R, N , S, J i w s not established

(e) η, Ja, J w i s not established

Table 4.2: Overview over Hund’s coupling cases without nuclear spin. The second col-
umn gives the good quantum numbers and the third column shows the elec-
tronic, spin-orbit, and rotational interactions with their strength. ”w” means
weak, ”i” intermediate, and ”s” stands for strong. In the last column ιe is the
quantum number corresponding to the inversion of electron coordinates only.
σel = ±1 is the eigenvalue for the reflection with respect to a plane containing
the internuclear axis (For details see section 4.6.2 at 47.). For details on the
symmetry operations see section 4.6.2. All of the other quantum numbers are
defined in Table 4.1. For Hund’s cases d) and e) no common nomenclature
exists. The good quantum numbers given here should not be mixed up with
those of Hougen [Hougen 1970] because he always refers to the non-rotating
molecule. Adapted from [Nikitin 1994].

Hund’s case e) is the analogue to the jj-coupling in atoms and will become important
for our Feshbach molecules. In this case, l also includes the angular momenta of the
electrons which is in contrast to the R vector. However, the difference between the l
and R vectors is negligible due to to the small mass of the electrons (compared to the
nuclei). As the hyperfine structure is dominant for these weakly bound molecules, it will
be considered in detail in the next section.

In Hund’s case d) L is decoupled from the molecular axis, which happens for example
in Rydberg states. As this coupling scheme is not important for the 87Rb2 molecule, we
will not discuss it further.

The cases are summarized in Table 4.2. The quantum numbers given in the second
column hold for the rotating molecule. (Compare Hougen [Hougen 1970] for the nonro-
tating molecule.) If we include the symmetries from section 4.6, Λ, Σ, and Ω are always
positive. η represents quantum numbers which specify the electronic state. It includes
n, and symmetry quantum numbers like σel and w. For a transformation to case c) in
the above scheme it is necessary to introduce a new quantum number α. As already
mentioned, it would otherwise not be possible to transform the state vector for exam-
ple to a Hund’s case a) state vector. Most molecules belong to intermediate coupling
schemes and the quantum numbers in a state vector become bad. This will be discussed
in more detail with the experimental results.
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4.5 Hund’s coupling cases including nuclear spin 39

4.5 Hund’s coupling cases including nuclear spin

Hund’s coupling cases including nuclear spins are more complicated because of addi-
tional interactions. The basic idea behind the nomenclature is similar to that behind
the classical Hund’s cases a) and b). In case a) the electronic spin is coupled to the in-
ternuclear axis with molecule-fixed projection Σ, whereas in case b) it is decoupled. To
avoid confusion with the electronic spin, one adds indices α or β depending on whether
the nuclear spin is coupled or decoupled from the internuclear axis, respectively. I will
discuss these schemes in detail for case aα) and aβ). For all of the other Hund’s cases,
the reasoning is similar. Therefore, I will only consider the situation when the nuclear
spin is coupled to the internuclear axis in all of the other cases.

When looking at the spin functions, one might think that there are a large number
of spins which contribute to the coupling. Luckily, this is not really the case because
most of the spins are absorbed in inner (closed) shells and thus do not contribute. In
fact, it turns out that the molecular electronic configuration of 87Rb2 is given by the two
valence electrons. In principle, we have two spins with corresponding bases | s1ms1⟩ and
| s2ms2⟩. On the other hand, we could also work in a coupled scheme | (s1, s2)SmS⟩. As
it is clear that the physics does not depend on the basis in use, we will always consider
the molecular basis with quantum number S in the following and omit the two constants
s1 and s2. The same holds for the nuclear spin I.

4.5.1 Case a) with basis functions

As the nuclear magnetic moment is much weaker than the electronic moment there are
basically two possibilities in case a). When the nuclear spin I is coupled to the axis we
have case aα) as can be seen in Fig. 4.3. Here we have the most good quantum numbers
including Λ, S, Σ, Ω = Λ + Σ, I, ΩI , and F at zero magnetic field. Furthermore, the
space- and molecule-fixed projections of the total angular momentum MF and ΩF =
Ω + ΩI are good. At zero magnetic field the total angular momentum F is also a good
quantum number.

As Hund’s coupling cases depend on the strength of different interactions, the wave-
functions depend on the choice of a coupling scheme and especially on the order of
coupling. This means that they are not the bare product functions of Eq. 4.7 and for
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Figure 4.3: Hund’s cases a) and c) including nuclear spin. The quantum numbers are
defined in Table 4.1.

example in case aα) the corresponding wave-functions are of the form

Ψe = Ψe
q(r;R)

Ψvib = Ψvib
q, v(R)

Ψrot = Ψrot
F,mF ,ΩF

(ω)

χ = χS,Σ(ω)

β = βF,ΩF
(ω).

Here, we use the abbreviations q = (n, Λ, S, Σ, Ω) and ω = (π/2, θ, ϕ) for an ideal
diatomic molecule which cannot rotate around the internuclear axis. The angle is in
accordance with the phase choice of Lefebvre-Brion/Field [Lefebvre-Brion/Field 2004].
It should be clear that the vibrational wave-function is scalar and thus q just labels these
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4.5 Hund’s coupling cases including nuclear spin 41

functions. If we write χS,Σ we mean implicitly

χS,Σ(ω) =
∑
mS

√
2S + 1

4π
D

(S)
mS ,Σ

(ω),

where we use the rotation matrix D
(S)
mS ,Σ

(ω) for a diatomic molecule. The coupling
scheme above means that we assume the spin-orbit coupling to be weak and thus the
electronic spin S with projection Σ couples first to the axis because of the interaction
between N = R+L and S. Afterwards, the nuclear spin also couples to the internuclear
axis because of the interaction with J = R+ L+ S to form a total angular momentum
F = J+ I with projection ΩF . The molecular rotation is given by

Ψrot
F,mF ,ΩF

(ω) = ⟨ω | FmFΩF ⟩ =
√

2F + 1

4π
D

(F )
mF ,ΩF

(ω)

with corresponding energy eigenvalues ~2F (F +1). The equation involving the rotation
matrices uses standard angular-momentum theory and can be found in the literature,
for example in [Edmonds 1960, Brink/Satchler 1971, Rose 1957] and [Lindner 1984].

Case aβ) is the same except for the decoupling of the nuclear spin which means that
ΩI becomes bad. The wave-functions would look like

Ψe = Ψe
q(r;R)

Ψvib = Ψvib
q, v(R)

Ψrot = Ψrot
F,mF ,ΩF

(ω)

χ = χS,Σ(ω)

β =

{
βJ,mJ , I,mI

I and J uncoupled

β(JI)F,mF
coupled basis.

Here, the coupling scheme up to J is similar to that in case aα). There are the limiting
possibilities of strong (fully coupled) or weak hyperfine coupling (uncoupled). It should
be clear that it is impossible to distinguish the two hyperfine coupling cases when looking
at Fig. 4.3. As in the classical Hund’s, cases one can distinguish between the cases aα)
(rotational energy ladder goes as F (F + 1)) and aβ) (rotational energy ladder goes
as J(J + 1)) by looking at the observed spectra (compare Nikitin et al. for the case
without nuclear spin [Nikitin 1994]). Normally, the electronic and nuclear spin functions
as well as the rotational wave-functions are included in Ψe and we obtain molecular basis
functions of the form

Ψe
q(r;R) · χS,Σ(ω) · βF,ΩF

(ω) ·Ψrot
F,mF ,ΩF

(ω) = ⟨r;R,ω | nΛ SΣ IΩI FmF ⟩ (4.8)

for case aα). If one wants to picture the rotation of the molecule, one has to go to
the decoupled basis because spin wave-functions are hard to picture as they turn the
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wave-function into its negative under a rotation of 2π. The procedure is the same for
Hund’s case aβ) and I will skip the lengthy formulas.

Thus, we arrive at basis vectors | nΛ SΣ IΩI FmF ⟩, | nΛ SΣ (JI)FmF ⟩, and
| nΛ SΣ JmJ ImI⟩ in the different couplings schemes, which we can use for example to
implement effective Hamiltonians [Lefebvre-Brion/Field 2004, Brown/Carrington 2003].
An appropriate choice of basis for a special problem will lead to small off diagonal matrix
elements and speed up the calculations. In other words, if the eigenvectors are close to
one basis one can learn something about the strengths of the different interactions.

4.5.2 Case c) with basis functions

The reasoning is similar for the cases cα) and cβ) but Λ and Σ are not good anymore.
Therefore Λ and Σ are missing in Fig. 4.3). The physical reason for only Ω remaining
good is a strong spin-orbit interaction which couples states with different Λ and Σ. In
a pure Hund’s case c) state the only good quantum number is Ω. If one studies for
example the molecular states which connect to the 2P1/2 +

2 P3/2 asymptote, we find 8
Hund’s case a) states but 16 Hund’s case c) states. (See for example [Wang 1997] and
the review article by [Jones 2006].) This reflects the fact that we have fewer quantum
numbers in case c). But how can we then transform a state given in this basis to
a different representation, say Hund’s case a)? As mentioned previously, we have to
extend the state vector using additional quantum numbers, so that there is a unitary
transformation between the state vectors of cases a) and c). These numbers represent
the different coupling schemes between R, L, S, and I, which lead to one Hund’s case
c) state. A basis vector thus looks like

Ψe = Ψe
n, α,Ω(r;R)

Ψvib = Ψvib
n, α,Ω, v(R)

Ψrot = Ψrot
F,mF ,ΩF

(ω)

χ = χS,Σ

β = βF,ΩF
(ω),

when the electronic wave-functions are evaluated in a Hund’s case c) basis. Here we use
the same notation as for the various a) cases. In a pure Hund’s case cα) molecule, the
only good quantum numbers in the rotating molecule are Ω and ΩI . I omit cβ) as the
ideas are the same as for Hund’s cases aα) and aβ). In our shortened notation our state
vectors are |n, α, Ω, I, ΩI , F, ΩF ⟩, and the case cβ) vectors |n, α, Ω, (JI)F, MF ⟩, and
|n, α, Ω, J, MJ , I, MI⟩.
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4.5 Hund’s coupling cases including nuclear spin 43

4.5.3 Case b) with basis functions

In Hund’s coupling scheme b) we encounter three different situations according to the
coupling order of N , S, and I. When the electronic spin couples to the rotation N the
scheme is called case bβS). In the other two cases the nuclear spin couples first to N or
there is a strong coupling between S and I. Both result in an intermediate vector f as
shown in Fig. 4.4. As the spins are not coupled to the axis, it is not useful to refer to
Hund’s case b) potentials [Lefebvre-Brion/Field 2004]. Therefore, I decided to just give
the electronic wave-functions in the case a) basis. Here the case bα) wave-functions look
like

Ψe = Ψe
q(r;R)

Ψvib = Ψvib
q, v(R)

Ψrot = Ψrot
F,mF ,ΩF

(ω)

χ = χS,mS

β = βI,ΩI
(ω),

where we use the abbreviation q = (n, Λ, S, Σ, Ω). In this case the good quantum
numbers in the rotating molecule include N , Λ, S, I, and ΩI . Thus, the state vec-
tors are |nNΛ S IΩI FΩF ⟩. In the various bβ) cases we obtain |nNΛ S JMJ IMI⟩,
|nNΛ S (JI)FMF ⟩ and |nNΛ (SI)f, FMF ⟩.

4.5.4 Case e) with basis functions

In case e) the total atomic angular momentum including the nuclear spins fa (fb) of
atoms a (b) couple to form f . Afterwards, the pure molecular rotation couples in to
form the total angular momentum F . It is clear that the nuclear spin cannot be coupled
to the axis in this coupling case. Even when one includes the nuclear spin, there is only
one case e). In the coupled basis this can be written as

Ψe · χ · β = Ψq(r;R)

Ψvib = Ψvib
q,v(R)

Ψrot = Ψrot
F,MF ,ΩF

(ω)

where q = (n, fa, fb, f, l, F, MF ). This gives rise to the fully coupled basis
| n (fafb)flFMF ⟩. Again, we can for example choose a partially coupled basis
| n (fafb)fMf lMl⟩ or the uncoupled basis | n faMfa fbMfb lMl⟩. As already men-
tioned our Feshbach molecules exhibit strong case e) structure. This is due to the fact
that these molecules are close to dissociation threshold and can be characterized by their
atomic properties.
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Figure 4.4: Hund’s cases b) and e) with nuclear spin. The pure mechanical rotation of
the molecule is denoted by R except for case e) where it is denoted by l. The
quantum numbers are defined in Table 4.1.
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4.6 Symmetries

After we had a look at the Hamiltonian and the classification of its energy scales, we
focus on the symmetries of diatomic molecules. As a first step, we consider exchange
symmetries in order to find the accessible Feshbach states. In these calculations it turns
out that the quantum numbers of our Feshbach states follow simple sum rules of the
form S+ I = 0, 2, .... In the next step we consider the different restrictions with respect
to symmetry when a molecule forms. This will explain the remaining quantum numbers
in Table 4.2. These results will be applied to the relevant states in the next section.

4.6.1 Exchange symmetries and Feshbach molecules

It is well known that a many-body system consisting of bosons possesses a symmetric
wave-function with respect to the exchange of two particles. For fermions the function
is antisymmetric [Sakurai 1995]. This has consequences not only for our initial Feshbach
state but for all molecular states. In the analysis it is crucial that we are dealing with
Σ-states, that is a state with Λ = 0 because only in this special case is there no influence
of L.

Atomic basis. As it is not a great effort to treat the bosonic case and the fermionic
case at once, I will consider the symmetrization operator

1 + (−1)pP12. (4.9)

Here p = 0 (p = 1) for the bosonic (fermionic) case and P12 is an operator which
exchanges atoms a and b. In the center of mass system the spatial part of this operator
just equals parity, that is all coordinates are replaced with their negatives. When we
apply the operator P12 to the spherical harmonics Ylm = ⟨ϕ, θ | lml⟩ we obtain

P12 | lml⟩ = (−1)l | lml⟩. (4.10)

In the atomic basis this leads to

(−1)pP12 | famfa , fbmfb , lml⟩ = (−1)p+l | fbmfb , famfa , lml⟩. (4.11)

In our experiment we are working with bosonic 87Rb atoms and we have p = 0. Fur-
thermore, we always start the Feshbach association from two identical bosons, that is
fa = fb = 1 and mfa = mfb = 1. From Eqs. (4.10) and (4.11) we can only create
molecules with even rotation l = 0, 2, 4, .... Indeed, in our experiment we produce Fes-
hbach molecules with l = 0 2. The statements above imply that we have to change the
initial state of one atom to produce Feshbach molecules with odd l. This is indeed the

2The closed channel connects to a state with lc = 0. With the definition from [Chin 2009] we use an
s-wave Feshbach Resonance.
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46 Theory of diatomic molecules

case and an example can be found in [Marte 2002]. (For a coupling between states with
different l and ml see [Dürr 2005].)

Coupled basis. In the coupled basis | (fa, fb)f,mf , lml⟩ we first have to calculate

(−1)pP12 | (fa, fb)fmf , lml⟩ =

(−1)pP12

∑
mfa ,mfb

⟨famfa , fbmfb | fmf⟩ | famfa , fbmfb , lml⟩. (4.12)

As before, the parity operator causes a factor (−1)l in the ket involving l. To deal
with the Clebsch-Gordon factor we use the following important identity [Edmonds 1960]
(Eq. 4.13 will also become important when we consider the influence of nuclear statistics.)

⟨famfa , fbmfb | fmf⟩ = (−1)fa+fb−f⟨fbmfb , famfa | fmf⟩. (4.13)

Afterwards, the uncoupling in the (−1)pP12 term is reversed and we end up with

(1 + (−1)pP12) | (fa, fb)fmf , lml⟩ =
| (fa, fb)fmf , lml⟩+ (−1)p+l+(fa+fb−f) | (fb, fa)fmf , lml⟩.

(4.14)

In analogy with the atomic basis we now obtain the rule f + l = 0, 2, 4, ... if we start
with identical Bosons in the states fa = fb = 1.

Partially coupled molecular basis. In analogy, we may consider the molecular
basis of the form | (sa, sb)SmS, (ia, ib)ImI , lml⟩. Using two Clebsch-Gordon factors to
uncouple S and I we find:

(1 + (−1)pP12) | (sa, sb)SmS, (ia, ib)ImI , lml⟩ =
| (sa, sb)SmS, (ia, ib)ImI , lml⟩+

(−1)p+l+(sa+sb−S)+(ia+ib−I) | (sb, sa)SmS, (ib, ia)ImI , lml⟩.
(4.15)

In the case of identical 87Rb atoms with sa,b = 1/2 and ia,b = 3/2 this leads to S+I+ l =
0, 2, 4, ... This can be seen in Table 4.3, where I denote the kets in the atomic (molecular)
basis with a subscript |...⟩a (|...⟩m), respectively. The superscript s (a) labels the (anti-)
symmetrized states. As we deal with s-waves (no orbital angular momentum), the blocks
show that the symmetric states only correspond to molecular states with I + S even.
These calculations imply that our Feshbach molecules do not rotate, that is l = 0. Table
4.3 is useful to transform wave-functions given in the atomic basis to the molecular basis.
If one considers the table as a matrix, one can easily prove that it is unitary as expected.

Fully-coupled molecular basis. Finally, we also consider the case of the fully-
coupled basis | (SI)flFMF ⟩ where f and l couple to form a total angular momentum F.
Compared to the partially coupled molecular basis we need additional Clebsch-Gordon
factors to show that F = f + l = 0, 2, 4, ... for our 87Rb2 Feshbach molecules.

Exchange symmetries and nuclear spin. Applying the Clebsch-Gordon argument
from Eq. (4.13) we obtain the following restrictions on the nuclear spin function β with

46



4.6 Symmetries 47

|f1,mf1; f2,mf2⟩a |a; a⟩a |b;h⟩sa |a; g⟩sa |g; g⟩a |f ;h⟩sa |b;h⟩aa |a; g⟩aa |f ;h⟩aa
|I,mI , S,mS⟩m
|2, 2, 0, 0⟩m

√
3
4

1
2

− 1√
8

−
√
3
4

1
2

0 0 0

|3, 3, 1,−1⟩m 3
4

0
√

3
8

1
4

0 0 0 0

|3, 2, 1, 0⟩m −
√
3
4

1
2

1√
8

√
3
4

1
2

0 0 0

|1, 1, 1, 1⟩m − 1√
40

−
√

3
10

√
3
20

− 3√
40

√
3
10

0 0 0

|3, 1, 1, 1⟩m
√

3
80

− 1√
5

−
√

9
40

√
27
80

1√
5

0 0 0

|2, 2, 1, 0⟩m 0 0 0 0 0 −1
2

1√
2

−1
2

|3, 2, 0, 0⟩m 0 0 0 0 0 −1
2

− 1√
2

−1
2

|2, 1, 1, 1⟩m 0 0 0 0 0 1√
2

0 − 1√
2

Table 4.3: Clebsch-Gordon coefficients. |..⟩a denotes atomic basis whereas |..⟩m denotes
the molecular basis. The states a to h label the different hyperfine states with
increasing energy. The symbols |..⟩s/a denote the symmetrized and antisym-
metrized wave-functions respectively.

respect to exchange of the nuclei (See Eq. (4.13); we replace each fa,b by i, and f by
I.): For antisymmetric wave-functions the prefactor has to be −1 = (−1)2i−I . This
depends on wether the nuclei obey Bose-Einstein or Fermi-Dirac statistic. For fermions,
i is half-integral and thus 2i is odd. Therefore, the total nuclear spin I has to be even
i.e. I = 2i − 1, 2i − 3,... The other case can be derived similarly. This can be seen in
Table 4.4.
Our rubidium atoms have nuclear spin i = 3

2
and antisymmetric functions β correspond

to total nuclear spin I = 0, 2 while symmetric functions β correspond to total nuclear
spin I = 1, 3. We will use this result later on.

4.6.2 Molecular symmetries

Symmetries not only reduce the number of Feshbach states as described in section 4.6.1,
they also reduce the number of states in a Born-Oppenheimer potential. The latter will
be explained in section 4.7. If we find a symmetry operator O which commutes with H,
we can construct eigenfunctions which diagonalize both H and O. We can then label
the eigenfunctions with the corresponding additional quantum numbers. In the case of
a rotation this procedure leads to the orbital angular momentum quantum number and
its projection used in section 4.2.
The following list includes those symmetry operators which we will use frequently later
on.

1. i (parity): The first example is the operation which corresponds to an inversion
of all electron and nuclear coordinates. States are called negative (”P = −”)
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48 Theory of diatomic molecules

Co- Nuclear
Total

function
ΨT

For Bose For Fermi
ordinate spin Statistical Nuclear statistics statistics
function function weight spin I of the of the

Ψ β nuclei nuclei

sym.
sym. (2i+ 1)(i+ 1) 2i, 2i− 2, ... sym. occurs –

antisym. (2i+ 1)i 2i− 1, 2i− 3, ... antisym. – occurs

antisym.
sym. (2i+ 1)(i+ 1) 2i, 2i− 2, ... antisym. – occurs

antisym. (2i+ 1)i 2i− 1, 2i− 3, ... sym. occurs –

Table 4.4: Symmetry with respect to exchange of nuclei. The table shows the sym-
metry of the eigenfunctions including nuclear spin for homonuclear diatomic
molecules. One should keep in mind that 2i can be an odd number if i is half
integral. For the definitions of the wave-functions see Eq. 4.7. Adapted from
[Herzberg 1950].

or positive (”P = +”) depending on whether the wave-function changes sign or
remains unaltered, respectively. The corresponding quantum number P is exact
in the sense defined on page 32.

2. C2(n) (rotation through π): Rotation of all electrons and nuclei about the n-axis
through an angle π. If we take the n-axis perpendicular to the internuclear axis
(For example the y-axis if we take the z-axis as internuclear axis.) this operation
has no influence on the electronic wave-function as only relative positions with
respect to the nuclei enter in the electronic wave-function.

3. σel(x, z) (reflection; As the inversion i it is also called parity. See
[Lefebvre-Brion/Field 2004] page 139): Reflection of electron and nuclear coor-
dinates with respect to a plane, containing the internuclear axis. As we have
i = C2(y) · σel(x, z) only the σel operation determines the state. The states are
then denoted Σ+ or Σ− according to the positive or negative result of the σel
operation, respectively (See also 2. above and [Hougen 1970, Nikitin 1994])

4. ie (electronic inversion): This symmetry operation only leads to good quantum
numbers for homonuclear diatomic molecules. It corresponds to an inversion of
the electronic coordinates. States are called ungerade or gerade depending on
whether the wave-function changes sign (eigenvalue ιe = −1) or does not change
sign (eigenvalue ιe = +1).

5. in (nuclear exchange): Inversion of nuclear coordinates. This symmetry operation
only leads to good quantum numbers for homonuclear molecules. The electronic
states are called symmetric and asymmetric corresponding to the different eigen-
values ιn = +1 and ιn = −1.

All operations are given with respect to molecule fixed coordinates. For details on
the implementation of inversion with Euler angles ϕ and θ in a diatomic molecule see
[Kronig 1930, Hougen 1970]. When looking back at the Born-Oppenheimer product
function in Eq. (4.7) it should be clear that these symmetries only operate on the wave-
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4.7 Symmetries and Hund’s cases in selected 87Rb2 states 49

function Ψ (the label n is not important at the moment and will be suppressed in the
following.), which includes the electron spin (compare Table 4.4). The symmetry of the
total wave-function ΨT is determined as soon as the statistics of the nucleus is known.
An overview of the different exchange symmetries is given in Table 4.4. The so-called
coordinate function Ψ includes everything but nuclear spin. Its symmetry can be inferred
from the electronic term symbols, as I will discuss in the next section for the example
of the ground state and the first excited state. As before, the nuclear spin function is
denoted with β where the degeneracy corresponding to the mI quantum number is given
in the third column.

4.7 Symmetries and Hund’s cases in selected 87Rb2

states

When we discuss the experimental results, only few states are relevant. These states are
discussed in detail below. The argumntation could then be applied to different coupling
schemes or states with different symmetries3.

4.7.1 The electronic ground state connecting to the 5S+5S
asymptote

The diatomic ground state is a 52S1/2 + 52S1/2 state. The total electron spin S can
be either 1 (triplet state) or 0 (singlet state). Let us first consider molecules in the
a 3Σ+

u triplet state. When we employ the operator identity i = σel(x, z) ·C2(y) we can
show that the rotational ground state has parity ”+” and electronic inversion quantum
number ”u”:

i · Ψ+ = (σel(x, z) ·C2(y)) ·Ψ+

= σel(x, z) ·Ψ+ = +Ψ+

ie · Ψu = −Ψu.

(4.16)

Here and in the following discussion variables or symmetry labels are not specified if
they are not used. Furthermore, our rotational ground-state in the a 3Σ+

u potential is
asymmetric (”a”) with respect to nuclear exchange. This can be seen as follows from
the operator identity in = ie · i

in · Ψ+
u = (ie · i) · Ψ+

u = −Ψ+
u . (4.17)

Now we make use of the fact that we are dealing with Σ states which obey a Hund’s
coupling case b) scheme. In this case, the spin function χ is ”symmetric” that means it
does not change sign under the operations σel(x, z) and C2(y). This is a consequence of

3[Herzberg 1950] gives several examples including different electronic states.
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N 0 1 2 3 4 5
a 3Σ+

u P + - + - + -
ιn a s a s a s
I 1,3 0,2 1,3 0,2 1,3 0,2
N 0 1 2 3 4 5

X 1Σ+
g P + - + - + -

ιn s a s a s a
I 0,2 1,3 0,2 1,3 0,2 1,3

Table 4.5: Symmetries of the low-lying rotational and vibrational levels in the electronic
ground-state connecting to the 5S1/2+5S1/2 asymptote. As above P denotes
the parity, ιn is the quantum number for nuclear exchange and I is the total
nuclear spin.

the spin functions’s independence on the orientation of the molecule (See section 4.5).
A rigorous proof is not trivial and can be found in [Kronig 1930]. If we also include the
results of Table 4.4 we end up with the following restrictions for the rotational ground
state4:

Ψ β I ΨT

s antisymm. 0,2 antisymm
a symm. 1,3 antisymm

Here, we have made use of the fact that our nuclei obey Fermi statistics (i = 3/2). Thus,
the total molecular wave-function ΨT has to be antisymmetric with respect to nuclear
exchange.

All together we arrive at Table 4.5 which shows the rotational quantum numbers and
their symmetries for the low-lying rotational levels. From this table it is obvious that
these symmetries are also consistent for states at the dissociation threshold, for example
our Feshbach state. This is important because the Feshbach state is a mixture of singlet
and triplet states.

4.7.2 The first electronic excited (1) 3Σ+
g state

The excited state |e⟩ which we studied in detail using one-photon spectroscopy and
which we employ for our Raman process is located in the (1) 3Σ+

g (52S1/2 + 52P1/2)
potential. In contrast to the previously discussed a 3Σ+

u ground state, we now find a
strong second-order spin-orbit and direct spin-spin interactions. As already mentioned,
these interactions cause a strong coupling of S to the internuclear axis (For a derivation
see section 5.3.1.) and force the states to show strong Hund’s coupling case c) features.

4The symmetry of the rotational wave-function Ψrot is (−1)N . Even in the presence of interaction
where the Born-Oppenheimer product ansatz fails, this statement remains true. See footnote on
page 138 of [Herzberg 1950].
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Figure 4.5: Transition from Hund’s case b) (left) to c) for (1) 3Σ+
g states (adapted from

[Herzberg 1950]). The scheme shows the rotational structure in both cases
and how they connect. In both cases, J corresponds to the total angular
momentum, ± is the parity (See section 4.6.2), and N is the rotation of the
molecule excluding the total electron spin S.

The spin-spin interaction causes a huge splitting between the 1g and 0−g states, where
we use the nomenclature of Table 4.2. Now, we explore the symmetries in the excited
state. As we already know how to proceed in the Hund’s case b) coupling scheme, we
study the transition from case b) to case c). The correlations between the rotational
levels in the two rotational ladders are shown in Fig. 4.5.

The left side of Fig. 4.5 shows the rotational ladder for triplet molecules as discussed
in section 4.5. The rotational energies are proportional to N(N + 1) and the parity
varies as (−1)N because we have a Σ+ state. The latter means that the electronic wave-
function does not change sign under i (Compare section 4.6.2). The state with J = 0 on
the left side shows quantum numbers N = 1 and “-” parity. This state has to correlate
with the rotational ground state in the Hund’s case c) scheme and gives rise to the name
0−g . As explained above, the “g” label denotes the quantum number for the exchange
of electrons. It only exists for homonuclear molecules and is not affected by the order
of coupling. For the 0−g state with J = 1 we find three candidates. However, one of
these states has N = 2 and is ruled out due to its “+” parity (See page 47.). One of
the two remaining states has the “wrong” energy. We conclude that the symmetries
of the rotational ground state fix the rotational ladder in the 0−g case. It is clear that
the remaining states have to connect to the 1g state. Ordering the remaining states
with increasing J we observe that each state exists twice, once with negative and once
with positive parity. These two levels are degenerate if the spin-spin and spin-rotation
interactions are small. For high J , the splitting between the two degenerate states
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J 0 1 2 3 4 5
(1) 3Σ+

g P - + - + - +
0−g ιn a s a s a s

I 1,3 0,2 1,3 0,2 1,3 0,2
J 1 2 3 4 5

(1) 3Σ+
g P + - + - + - + - + -

1g ιn s a s a s a s a s a
I 0,2 1,3 0,2 1,3 0,2 1,3 0,2 1,3 0,2 1,3

Table 4.6: Symmetries of the deeply bound, low-lying rotational levels in the first excited
(1) 3Σ+

g state. P denotes the parity, ιn is the quantum number for nuclear
exchange and I is the total nuclear spin. In contrast to the ground state, the
rotation energy is now proportional to J(J + 1). Furthermore, we have to
treat the 0−g and 1g states separately as they have different parities.

increases because the interaction between total angular momentum J and the total
orbital angular momentum L becomes stronger. In the literature this is known as λ-
type doubling (See for example [Lefebvre-Brion/Field 2004] page 214.).

We are now prepared to set up the table for the 0−g and 1g states separately. From
Fig. 4.5 we know that the rotational ground state has negative parity. As in formula
(4.16) we now obtain

i · Ψ− = (σel(x, z) ·C2(y)) ·Ψ−

= σel(x, z) ·Ψ− = −Ψ−

ie · Ψg = +Ψg.

(4.18)

which leads immediately to an asymmetric (”a”) eigenvalue with respect to nuclear
exchange because

in · Ψ−
g = (ie · i) · Ψ−

g = −Ψ−
g . (4.19)

Thus we get the third column in Table 4.6. As the nuclear spin is only weakly coupled to
the rotation, the parity and therefore the a/s and I quantum numbers change as (−1)J .
Here, the crucial point is that the electronic spin is coupled to the internuclear axis and
contributes to the total angular momentum. As already mentioned, this destroys the N
quantum number [Herzberg 1950]. For the second row I only have to mention that each
J-level is twofold degenerate and that J ≥ Σ = 1. The rest can be calculated as for
the 0−g state. In principle, the rotational ladder does not end with J = 6, although we
do not observe levels with values of J ≥ 4 in our experiment. This will be discussed in
detail in chapter 6.
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4.8 Selection rules for bound-bound transitions

Up to now we have only considered bare molecular states without any light field. The
symmetries then restricted the number of molecular levels. If we illuminate the molecules
with coherent light, we are not able to couple arbitrary molecular states. This is due
to the dipole matrix element connecting the initial and the final states which has to be
nonzero for an optical dipole transition. These selection rules will be the topic of the
present section. To get an overview of the involved quantities in one- and two-photon
spectroscopy, we first consider the general transition rate Wfi of an electric one-photon
process

Wfi ∝ |⟨f | ϵ · µ | i⟩|2 . (4.20)

Here, we use the initial state | i⟩ and and the final state | f⟩ and ϵ is a unit vector
specifying the polarization of the electromagnetic field. The operator µ is the sum of all
electronic dipoles, that is

µ = e
n∑

k=1

rk, (4.21)

where we use the position of the kth electron rk. Thus, ϵ·µ is the electric dipole operator
and it is clear how we can in principle treat the one-photon transition.

In general, there are two types of selection rules which follow from Eq. (4.20). The
first class applies to all transitions no matter which Hund’s coupling case the initial and
final state belong to. The second type depends on the coupling case and one has to treat
each combination separately. The general selection rules for µ are:

1. Symmetry selection rules.

+ ↔ − (parity; σel(x, z) in the laboratory fixed system), (4.22)

g ↔ u (inversion; i in the molecule fixed system), (4.23)

s↔ s, a↔ a (exchange of nuclei; C2 in the laboratory fixed system).
(4.24)

These selection rules hold in any Hund’s case because they involve exact quantum
numbers. In contrast,

Σ± ↔ Σ± (parity; σel(x, z) in the molecule fixed system)

only holds if Σ is a good quantum number, that is in Hund’s case a). These selection
rules are treated in [Herzberg 1950] on page 240 and follow from the independence
of the dipole matrix element under the symmetry operations5. Interestingly, the
selection rule for a/s-states also holds in collisional processes.

5A detailed description can be also found in the books of [Hougen 1970], page 28-30 and
[Lefebvre-Brion/Field 2004], page 139.
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2. Selection rules for vibrational wave-functions. Neglecting the R-dependence of
all Born-Oppenheimer-product functions except Ψvib, one factor of the matrix
elements in Eq. (4.20) is the so-called Franck-Condon factor∣∣⟨Ψvib

f |Ψvib
i ⟩

∣∣2 , (4.25)

where we use the vibrational wave-functions Ψvib
f,i for the initial and final state as

defined in Eq. (4.4).
The last selection rule involves the rotational part of the Born-Oppenheimer-
product function.

3. Angular momentum selection rules. This matrix element will be discussed in detail
in the next section. I will give the results for the reader who is not interested in
the details.

∆Λ = 0, ±1,

∆S = 0,

∆I = 0,

∆mF = 0,±1,

∆F = 0,±1.

(4.26)

∆Λ = 0, ±1 follows from angular momentum conservation and ∆S = 0 holds
because the dipole operator does not involve any spins. The total nuclear spin I
obeys ∆I = 0. Due to the laser polarizations in our experiments only π transitions
are allowed and thus ∆mF = 0. The last selection rule contains the total angular
momentum and reads ∆F = 0,±1. If a quantum number, for example F , becomes
bad, the states are a superposition of different |F ⟩ states and levels with higher F
can be observed. This is crucial for explaining the spectra in the excited state.

Up to now I only discussed one-photon transitions and one could wonder if there
is anything special about two-photon (Raman) transitions. In principle no, we only
have another transition rate. In the simplest case where we neglect the laser noise and
decoherence processes, we just plug the transition moments into a three-level model
as described by Winkler [Winkler 2007a]. If one would like to include the noise and
other decoherence processes appropriately, one has to use Lindblad-type equations for
the corresponding density matrices as described in [Walls/Milburn 1994, Lang 2008].

4.8.1 Derivation of the selection rules including nuclear spin

In this section I will give a derivation of the selection rules listed above [Lysebo 2010]
because the evaluation of the dipole matrix elements is a little more complicated when
the nuclear spin is included. The derivation basically consists of five steps:

(i) Set up dipole matrix element using tensor operators.
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4.8 Selection rules for bound-bound transitions 55

(ii) Transform the dipole operator to the molecule-fixed coordinate system.

(iii) Separate the Franck-Condon factors.

(iv) Choose appropriate basis for the evaluation of the rotational part of the remaining
operator and then transform the initial and final state to this basis. In this step
one has also to separate the rotational wave-function.

(v) Reconnect everything and use the fact that we use π-light.

As we are interested in the dipole matrix element ⟨f |ϵ · µ| i⟩, we have to consider
the dipole operator ϵ · µ. In Cartesian coordinates, ϵ is a unit vector specifying the
polarization of the electromagnetic field and µ is given in Eq. 4.21. Again, | i⟩ and
| f⟩ are the initial and final state, respectively. This calculation (as the rest of the
calculations) is performed most easily using spherical tensor operators [Edmonds 1960,
Rose 1957, Brink/Satchler 1971] and [Lindner 1984].

Step (i) In this calculus the z-component corresponds to the 0th tensor component,

that is T
(1)
0 (ϵ) and the x and y components are given as a linear combination of the

two operators T
(1)
1 (ϵ) and T

(1)
−1 (ϵ). Using the formula for scalar products in the realm of

tensor operators we obtain

dfi = ⟨f | ϵ · µ | i⟩ =
∑
p

(−1)p · ⟨f | T (1)
−p (ϵ) · T (1)

p (µ) | i⟩.

Step (ii) The next step is to transform the space-fixed component of the dipole op-
erator µ into a molecule-fixed system. This step is necessary to cope with the electronic
wave-functions which are given in a molecule-fixed system.

T (1)
p (µ) =

∑
m

D(1)
p, m(ω)

∗ · T (1)
m (µ),

where the index m always denotes molecule-fixed components. If we now use the fact
that T

(1)
−p (ϵ) is a constant scalar and put the two equations together we arrive at

⟨f | ϵ · µ | i⟩ =
∑
p, m

(−1)m · T (1)
−p (ϵ) · ⟨f | D(1)

p, m(ω)
∗ · T (1)

m (µ) | i⟩.

Up to now, the scheme is general and applies to each one-photon transition in a molecule.
Further evaluation depends on the initial and final states, as we now have to decompose
them into a rotational part (upon which the D-matrix acts) and a spin part. This means
that we have to choose a common basis. If the choice was appropriate for the problem,
at least one state is close to a basis vector and we don’t have to evaluate several sums.
In the singlet and triplet ground states, the rotational energy ladder is proportional to
N(N +1) and a Hund’s coupling scheme b) is appropriate. In contrast the excited state
is closer to Hund’s case c). With the decomposition of | i⟩ into electronic, vibrational,
and rotational wave-function we obtain

| i⟩ =| Ψvib
i ⟩ | Ψe

i ·Ψrot
i ⟩.
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56 Theory of diatomic molecules

The same holds for | f⟩. The matrix elements can then be written

dfi = ⟨f | ϵ · µ | i⟩ =
∑
p, m

(−1)m·T (1)
−p (ϵ) · ⟨Ψvib

f | Ψvib
i ⟩·

·⟨Ψe
f ·Ψrot

f | D(1)
p, m(ω)

∗ · T (1)
m (µ) | Ψe

i ·Ψrot
i ⟩.

(4.27)

In this step we used Eq. (4.21) which implies that the matrix elements are independent
of Ψvib. In the following discussion we ignore the Franck-Condon factor ⟨Ψvib

f | Ψvib
i ⟩ as

it is the same within one vibrational level.

Our initial state can be described as a superposition of different molecular states,
(See quantum numbers for the Feshbach state and Table 4.3.) and we represent it as a
superposition of molecular states

| i⟩ =
∑
r

cr | qSmSImI lml⟩r, (4.28)

which includes the electronic wave-function |Ψe
i ⟩ and the rotational wave-function | Ψrot

i ⟩.
The subscript r denotes the fraction of the different states. Our final excited state is
deeply bound and can be written in the form

| f⟩ =
∑
s

c′s | q′S ′Ω′I ′ΩI′F
′M ′ΩF ′⟩s. (4.29)

In the following, we will omit the sum over r and s and evaluate each matrix element
separately. Furthermore, we omit the label q, q′ for extra quantum numbers which
specifies the electronic state and the vibrational quantum number.

Transformation for the final state. With the abbreviation ω = (π/2, θ, ϕ) the

rotation matrix becomes D
(F )
MFΩF

(ω). It acts as an eigenfunction for the absolute value
of the total angular momentum F2, its projection on the space-fixed axis Fz, and its
molecule-fixed projection FZ [Edmonds 1960]. We use a product ansatz for the molecular
wave-function to get

⟨ω | S ′Ω′I ′Ω′
IF

′M ′
FΩ

′
F ⟩ =

√
2F ′ + 1

4π
D

(F ′)
M ′

FΩ′
F
(ω)∗· | S ′Ω′I ′Ω′

I⟩.

Transformation for the initial state. To further develop the expression, we need
to consider the molecular Hund’s case a) states because the electronic wave-functions
are given in the molecule-fixed system. The electronic state | SmS⟩ expanded in terms
of the molecule-fixed spin states | SΣ⟩ is

⟨ω | SMS⟩ =
∑
Σ

D
(S)
MSΣ

(ω)∗ | SΣ⟩,

and for | ImI⟩:

⟨ω | IMI⟩ =
∑
ΩI

D
(I)
MIΩI

(ω)∗ | IΩI⟩.
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Finally, for states which connect to the two-atom asymptote we obtain

⟨ω | lml⟩ =
√

2l + 1

4π
D

(l)
ml0

(ω)∗.

Putting all pieces together we can write:

⟨ω | SMSIMI lml⟩ =
∑
ΣΩI

√
2l + 1

4π
D

(l)
ml0

(ω)∗D
(I)
MIΩI

(ω)∗·

·D(S)
MSΣ

(ω)∗ | SΣIΩI⟩.

The product of two different rotation matrices is given by:

D
(l)
ml0

(ω)∗D
(S)
MSΣ

(ω) =
∑
J

(2J + 1)·

·
(

S l J
MS ml −MJ

)(
S l J
Σ 0 −Ω

)
D

(J)
−MJ−Ω(ω)

∗.

Now, D
(J)
−MJ−Ω(ω)

∗ = (−1)Ω−MJD
(J)
MJΩ

(ω)∗ [Edmonds 1960]. Similar considerations for

the product D
(J)
MJΩ

(ω)∗D
(I)
MIΩI

(ω)∗ lead in total to

⟨ω | SMSIMI lml⟩ =
∑
Σ

∑
ΩI

∑
J,F

√
2l + 1

4π
(2J + 1)(2F + 1)(−1)Ω−MJ (−1)ΩF−MF

(
S l J
MS ml −MJ

)(
S l J
Σ 0 −Ω

)(
I L F
MI mJ −MF

)
(

I J F
ΩI Ω −ΩF

)
D

(F )
MF−Ω(ω)

∗ | SΣIΩI⟩

(4.30)

Final evaluation of dfi. Going back to Eq. (4.27) we can finally average over all
Euler angles to obtain:

dfi =
∑
p, m

(−1)m · T (1)
−p (ϵ) ·

∑
Σ

∑
ΩI

∑
J,F

√
2l + 1

4π
(2J + 1)(2F + 1)(−1)Ω−MJ+ΩF−MF ·(

S l J
MS ml −MJ

)(
S l J
Σ 0 −Ω

)(
I J F
MI mJ −MF

)
·(

I J F
ΩI Ω −ΩF

)∑
m

⟨S ′Ω′I ′Ω′
I | T (1)

m (µ) | SΩIΩI⟩·∫
D

(F )

M ′
F−Ω′(ϕ, θ, 0)

∗D
(F )
MF−Ω(ϕ, θ, 0)D

(1)
p,m(ϕ, θ, 0)

∗ sin θ dϕ dθ.

(4.31)
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The integral gives

8π2(−1)ΩF−MF

(
F ′ 1 F

−Ω′
F m ΩF

)(
F ′ 1 F

−M ′
F p MF

)
(4.32)

and we arrive at

dfi =
∑
p, m

(−1)m · T (1)
−p (ϵ) ·

∑
Σ

∑
ΩI

∑
J,F

8π2

√
2l + 1

4π
(2J + 1)(2F + 1)(−1)Ω−MJ+ΩF−MF

(−1)Ω
′
F−M ′

F

(
S l J
MS ml −MJ

)(
S l J
Σ 0 −Ω

)(
I J F
MI mJ −MF

)
(

I J F
ΩI Ω −ΩF

)∑
m

⟨S ′Ω′I ′Ω′
I | T (1)

m (µ) | SΩIΩI⟩(
F ′ 1 F

−Ω′
F m ΩF

)(
F ′ 1 F

−M ′
F p MF

)
(4.33)

For π light, p = 0 holds and one immediately obtains M ′
F = MF . Since the electric

dipole operator T
(1)
m (µ) is independent of spin, we must have S ′ = S, Ω′ = Ω, I ′ = I,

and Ω′
I = ΩI . However Ω

′
F = Ω′

I +Ω′ so that Ω′
F = ΩF and hence m = 0. Furthermore,

F ′ = F, F ±1. Of course, some other matrix elements can be zero because of symmetry-
rules for the Clebsch-Gordon coefficients.
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5 One-photon spectroscopy of the
(1) 3Σ+

g potential

Progress in the field of ultracold atomic and molecular gases has been strongly linked
to developments in molecular spectroscopy. Photoassociation spectroscopy, for exam-
ple, has been important for the studies of ultracold atomic collisions and production of
ultracold molecules [Weiner 1999, Jones 2006, Köhler 2006, Sage 2005]. In 2008, after
carrying out spectroscopic searches, several groups managed to produce cold and dense
samples of deeply bound molecules in well defined quantum states [Lang 2008, Ni 2008,
Danzl 2008, Viteau 2008, Deiglmayr 2008, Ospelkaus 2010]. For this, a variety of opti-
cal transfer and filtering schemes were developed which involved electronically excited
molecular levels. These levels had to be properly chosen for high efficiency and selectivity
of the production of molecules. Very recent work [Bai 2011] investigated the spin-orbit
coupled A 1Σ+

u and b 3Πu states of Cs2. In other work a detailed analysis of weakly bound
Rb2 levels of the excited 1g state close to the 5S1/2+

5P1/2 dissociation limit is currently
under way [Bergeman 2011] (see also related work in Fig. 13 of [Jones 2006]).

I present our measurements and analysis for deeply bound (v = 0...15) levels of the
(1) 3Σ+

g (5S1/2 + 5P1/2) potential of
87Rb2 [Takekoshi 2011]. The energy of this potential

as a function of the internuclear distance R is shown in Fig. 5.4 at page 67, together with
other nearby potentials. These states are important, as they contribute binding energies
via higher order perturbation theory. This includes second-order spin-orbit coupling
which I explain in section 5.3. The states in the (1) 3Σ+

g potential are relevant for the
production of deeply bound molecules in the a 3Σ+

u state via stimulated Raman adiabatic
passage (STIRAP) [Lang 2008, Winkler 2007a]. The levels of the a 3Σ+

u potential have
been mapped out and identified in detail in a recent publication [Strauss 2010]. (See
also chapter 6.) The (1) 3Σ+

g potential is not easily accessible for spectroscopy in conven-
tional setups since the molecules in ordinary Rb2 gas samples are found in their singlet
ground state X 1Σ+

g . From the ground state the (1) 3Σ+
g potential cannot be reached

with an optical transition due to the selection rule ∆S = 0. In realm of symmetry
this transition corresponds to a change from “g” to “u” symmetry which is forbidden
in a two-photon process as I explained in section 4.8. Only recently, noteworthy ex-
perimental investigations of the Rb2 (1) 3Σ+

g potential were carried out. Lozeille et al.
[Lozeille 2006] performed photoionization spectroscopy with ultracold molecules starting
from a magneto-optical trap to resolve the large 0−g −1g splitting of the vibrational levels.
Mudrich et al. [Mudrich 2010] used pump-probe photoionization spectroscopy of Rb2

formed on helium nanodroplets to measure the vibrational progression of deeply bound
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Figure 5.1: Molecular levels of 87Rb2 in the (1) 3Σ+
g potential. A tunable laser couples

the molecular level |i⟩ and the excited level |e⟩. The laser can be tuned to
almost any deeply bound level of the (1) 3Σ+

g potential. Level positions are

detected through resonantly enhanced loss of Feshbach molecules.

levels. Our work goes well beyond these measurements as we fully resolve the rotational,
hyperfine, and Zeeman structure with an absolute accuracy as high as 60MHz.
The starting point of our spectroscopy is an ultracold ensemble of weakly bound Rb2

Feshbach molecules in a well defined quantum state. A tunable laser with sub-MHz
linewidth drives a one-photon transition to individual levels in the (1) 3Σ+

g potential.
We obtain loss spectra for various magnetic fields ranging from 0G to about 1000G.
The data of one vibrational level is well explained with an effective Hamiltonian which
contains terms for molecular rotation as well as spin-spin, hyperfine and Zeeman inter-
actions.

This chapter is organized as follows: Section 5.1 presents the experimental setup
including the method of ”adiabatic transfer over avoided crossings”. In section 5.2 I
present the setup for the one-photon spectroscopy including the technique we use to go
to lower magnetic fields. Afterwards, I give a short summary of the different terms we
use in the Hamiltonian (Section 5.3). Sections 5.4.1 and 5.4.2 present the results and
explain the level structure including Zeeman shifts in detail.
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5.1 Experimental setup 61

Figure 5.2: Magnetic shifts of molecular levels in the electronic ground state. As we
refer all energies to the (5S1/2 + 5S1/2) asymptote at 0G, the scheme shows
how we calculate the magnetic shifts of the excited levels. The graph shows
a simplified molecular level scheme of 87Rb2 in the a 3Σ+

u potential. For an
improved visibility we only show levels with rotational quantum number l = 0
(s-waves). As energy reference (E = 0) we take the dissociation threshold
of two atoms in their electronic ground states (that is f = 1, mf = 1)
at 0G. The laser light couples the molecular level |i⟩ and the excited level
|e⟩ with frequency νL. It can be tuned to almost any deeply bound level
of the (1) 3Σ+

g potential. The red dots indicate the states where we perform
our measurements. Obviously the transition energy depends on the magnetic
field. For simplicity, the magnetic shift in the excited state is not shown. The
inset displays the region near the Feshbach resonance at 1007.4G (indicated
with an arrow and ”FR”).
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5.1 Experimental setup

Our one-photon spectroscopy at 986.8G works as follows. The Feshbach molecules1 in
state |i⟩ are irradiated by a laser (≈100µW) which corresponds to a Rabi frequency Ω on
the order of 2π×0.1MHz (Fig. 5.1). The light pulses are rectangular and typically last for
50ms. If we hit an |i⟩−|e⟩ resonance, our laser induces losses of Feshbach molecules due
to the short lifetime of the excited state. After the laser light is switched off, we measure
the number of molecules via a reverse Feshbach magnetic field sweep, dissociating the
remaining |i⟩ molecules into atoms which are then detected by absorption imaging.

After we have produced the Feshbach molecules, the magnetic field is normally set to
986.8G where the spectroscopy is carried out. In Fig. 5.2, we show the magnetic structure
of molecules over the whole range of 1000G which we use in the present experiments
to extract the shifts of the excited states. For simplicity, we only display molecular
levels with l = 0. A detailed discussion of higher rotational levels can be found in
[Lang 2008a]. At 986.8G the binding energy of the Feshbach molecules is 22.7MHz×h.
This is depicted via red dots in Fig. 5.2. Their state vectors can be approximated by
Hund’s coupling case e) with atomic quantum numbers

|v, (fa, fb)f, F,MF ⟩.

Here v corresponds to the vibrational quantum number and fa, fb are the total angular
momenta for atoms a and b, respectively. This nomenclature is in accordance with
chapter 4. The sum of both atomic angular momentum operators f = fa + fb couples
with the operator for pure molecular rotation l to form the total angular momentum
F = f + l. At high magnetic fields the total angular momentum F is no longer a good
quantum number but its projectionMF onto a space fixed axis remains good. According
to this basis the prepared Feshbach state |i⟩ will be approximated by the state vector
|v = 40, (fa = 2, fb = 2)f = 2, l = 0, F = 2,MF = 2, ⟩ at low fields. At 986.8G, fa and
fb become bad quantum numbers and the expectation values2 are about 1.5.

For magnetic fields lower than 986.8G we use a molecular level for the Feshbach
molecules which either correlates to |v = 36, (fa = 2, fb = 2)f = 2, N = 0, F = 2,MF =
2 ⟩ or |v = 40, (fa = 1, fb = 1)f = 2, N = 0, F = 2,MF = 2 ⟩ at low magnetic fields. The
state with v = 36 is the diagonal line in Fig. 5.2 going from the point (B = 0, E/h = −3.6
GHz) to the position of the Feshbach resonance at threshold. This level exhibits several
avoided crossings with other molecular levels. When ramping down the magnetic field
to its specified value these avoided crossings have to be crossed. For this we employ
an adiabatic transfer method at the avoided crossings on the basis of radiofrequency
transitions as described in [Lang 2008a]. In order to count the remaining molecules

1The creation of Feshbach molecules is described in detail in chapter 3.
2We define expectation values for the quantum numbers of an operator as

∑
i λi|⟨ei|Ψ⟩|2, where λi are

the eigenvalues of the operator, ei are corresponding normalized basis vectors, and |Ψ⟩ is the state
under consideration.
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after the spectroscopy pulse we retrace the path back to the Feshbach resonance at
1007.4G where the molecules dissociate.

To calculate magnetic shifts and excitation energies we refer all energies to two atoms
in their ground states | f = 1,mf = 1⟩ at 0G. For this, we subtract from the measured
laser excitation energy hνL both the bound state energy of the Feshbach level hνm as
well as the Zeeman energy hνa of the free atoms (see Fig. 5.2), which are both well known
(see [Strauss 2010]).

For the later discussion of our spectra and the lines which we can access, it will be
also important to know the symmetries of our Feshbach state. This was described in
chapter 4 and I will only summarize the results. The Feshbach state has positive total
parity with respect to inversion of both the electronic and nuclear coordinates since the
parity is given by (−1)N , and the molecules are in the rotational ground state of the
a 3Σ+

u potential. Furthermore, one can show that owing to the antisymmetry of the
molecular wave function with respect to nuclear exchange (nuclear spin of 87Rb i = 3

2
),

molecules with even N in the a 3Σ+
u state must have ”+” symmetry and either a total

nuclear spin I = 1 or 3 [Herzberg 1950, Townes/Schawlow 1955]. The Feshbach state
also has contributions from singlet states and the expectation values for the total nuclear
spin and the electron spin are I ≈ 1.7 and S ≈ 0.8, respectively. This is due to the
fact that a superposition of the X 1Σ+

g and a 3Σ+
u states does not have a proper ”g/u”

symmetry anymore. For further details on the a 3Σ+
u ground state see chapter 6 and

[Strauss 2010]. Since here we are interested in transitions to the (1) 3Σ+
g potential, only

the triplet contributions in the Feshbach molecules are relevant.

To further investigate the magnetic moments and to check the level assignment, we
also applied the method of Adiabatic Transfers across Avoided Crossings (ATAC) to
go to lower magnetic fields [Lang 2008a]. This method is necessary to circumvent un-
controlled losses when sweeping over an avoided crossing with the magnetic field and
enables us to obtain experimental data on the Zeeman shift of the excited state. (See
Fig. 5.2 for the magnetic structure.) Therefore, we insert transfers between the Feshbach
association and the laser pulse using radio frequency. I will briefly give the principle
of an ATAC which is applied several times: When the Feshbach molecules are close to
an avoided crossing we switch on a radio frequency field to couple the upper and lower
branches of the avoided crossing. Lowering the magnetic field adiabatically further, we
reach the other branch of the avoided crossing. Switching off the radio frequency field
completes the transfer of the molecules to the lower branch. To detect the molecules we
apply the reverse sequence after the spectroscopy laser is switched off.

5.1.1 Stability of lasers and uncertainties

For spectroscopy we either use a free-running Ti:Sapphire laser or a grating-stabilized
diode laser. Because the unlocked lasers typically drift a few MHz during one experi-
mental cycle, we have the option to lock them to a cavity using the Pound-Drever-Hall
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scheme. This was mainly utilized for a few weak lines which are located close to broad
lines (see Fig. 5.6). A high precision of less than 1MHz and high short term stability
are mandatory. The cavity is in turn locked to an atomic 87Rb line. If we lock the laser
to this cavity it has a short term laser line-width of less than 100 kHz and its beam has
a 1/e2 intensity waist radius of 130µm at the molecular sample. The light is polarized
parallel to the magnetic bias field B (pointing parallel to the gravitational field in the
z-direction) and thus can only induce π transitions. The frequency is read out automati-
cally using a commercial wave meter (WS7 from HighFinesse). It has a nominal accuracy
of 60MHz after calibration. Over several days we have observed drifts of ±200MHz,
for example by repeatedly addressing the same excited state. Over the length of a few
experimental cycles (5minutes) the wave meter is stable to within 10MHz, which rep-
resents a random noise floor. To increase the reliability of the wave meter we calibrate
it every day using the atomic |f = 1⟩ → |f ′ = 2⟩ transition of the repumper laser which
we use for the magneto-optical trap. This laser is locked to an atomic 87Rb line using
frequency modulation spectroscopy. Based on our experience with the wave meter where
we have measured excitation energies of a few lines over an extended period of time we
estimate an experimental accuracy of about 60MHz. This includes peak position uncer-
tainties due to number fluctuation as well as a frequency drift of the laser between the
laser pulse and wavelength measurement.

5.2 Experimental observations

In a first set of experiments, we have mapped out the vibrational ladder of the (1) 3Σ+
g

potential from v = 0 to v = 15 at low resolution (see Fig. 5.3 a)). We used the Ti-sapphire
laser with maximum available power of a few 100mW such that we only observed broad
lines with a typical width of several GHz. The magnetic field was set to 986.8G. The
vibrational ground state of the (1) 3Σ+

g potential has an excitation frequency of 281.1THz
with respect to |i⟩, corresponding to a laser wavelength of 1067nm. We checked for
potentially deeper bound states by searching at even higher wavelengths but nothing
was found. The vibrational splitting between the two lowest levels, v = 0 and v = 1,
is about 1.2THz. The solid line in Fig. 5.3 a) corresponds to a quadratic fit to the data
which leads to the same Morse potential as given by Mudrich el. al. [Mudrich 2010]. Fig.
5.4 shows the same data together with the corresponding Born-Oppenheimer and Morse
potentials. It can be seen nicely that we only measured the bottom of the potential.
The inset shows a zoom into the region where we took data. I show the measured
vibrational levels together with the energies calculated from the Born-Oppenheimer
potential (dotted line). The deviations from the fit are tiny and difficult to see. I
want to mention that the absolute energy with respect to the 5S1/2 + 5S1/2 asymptote
of the Morse potential is only determined experimentally.

In order to resolve the whole rotational, hyperfine, and Zeeman structures, we reduce
the power. We then observe that each vibrational state splits into two parts, which are
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Figure 5.3: Vibrational ladder for the (1) 3Σ+
g potential. a) Excitation frequencies ν of

the 1g states. The continuous line is a second order fit to the data according
to a Morse potential. The Fit gives a = (0.271± 0.004)/a0 and D = (3240±
50) cm−1 b) Vibrational progression of the 0−g −1g splitting which we measure
at high power and low resolution. Here, the offset ν0 is a function of the
vibrational quantum number v′. The lower branch corresponds to the 1g
part and the upper one to 0−g . For each vibrational quantum number we take
the excitation frequency ν of the 1g fit as frequency reference ν0(v

′) = 0. As
the position of each line we take the center of each spectrum at high power.
Note the different energy scale of a) and b).
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47GHz3 apart as we show in Fig. 5.3 b). In this plot we take the center of each 0−g /1g
vibrational line. For the nomenclature we use a Hund’s case c) notation |Ω|g with the
projection Ω of J onto the internuclear axis. For our 3Σ state J is composed of R and
the total electronic spin S. In our case Ω = Λ + Σ = Σ holds, where Λ (Σ) and Ω are
the projections of the electronic angular momentum L (spin S) and the total angular
momentum J = N + S on the internuclear axis, respectively. The large error bars of
several GHz reflect the crudeness of this first measurement where we do not resolve the
substructure of each of the doublet components.

5.2.1 The splitting of the vibrational levels into 0−g and 1g
components

The large splitting of the vibrational levels by 47GHz clearly cannot be explained by
the rotational, hyperfine or Zeeman interactions. The rotational constant Bv should
be around 400MHz×h for the low lying vibrational levels in (1) 3Σ+

g potential. Esti-
mating the hyperfine and Zeeman energies from those for 87Rb atoms we expect such
contributions to be at most a few GHz. It turns out that the splitting stems from a
strong effective spin-spin coupling of the electrons. Besides direct spin-spin interaction
of the electrons second-order spin-orbit coupling also contributes to this coupling. In
fact, second order spin-orbit coupling should be dominant as it is resonantly enhanced
by a (1)1Πg state nearby. (See Fig. 5.4 with the potentials from [Lozeille 2006] and
[Kayama 1967].) Experimentally these two contributions cannot be separated and the
spin-spin interaction takes the form (See section 5.3.1)

Hss = 2λS2
Z . (5.1)

A strong Hss couples the electronic spin to the internuclear axis, making its projection
Σ = 0, 1 a good quantum number. Thus, for our (1) 3Σ+

g state Ω = Σ is also a good
quantum number. The energy eigenvalues of Hss are 2λ · Σ2, which means that the
splitting is simply 2λ. Our data then indicate a 2λ ≈ 47GHz as mentioned above. Such
a large λ leads to the dominant doublet structure where the more deeply bound doublet
component has 1g character and the other one has 0−g character (see Fig. 5.3 b)). From
a different point of view we can interpret all the lines as belonging to their respective
1g / 0−g Hunds case c) potentials which are shifted by ≈ 47GHz with respect to each
other. The two vibrational ladders are parallel indicating that the potentials have the
same shape. The final analysis in sections 5.4.1 and 5.4.2 shows that the rotational
constants are similar which means that the equilibrium internuclear separation Re also
coincides. As a result we can regard these states to a good approximation as belonging
to the (1) 3Σ+

g electronic state.

As we lower the power further we observe a rich substructure which was not entirely
understood in the 1g case. This structure is spread out over 3GHz (12GHz) in the

3Here we include the rotational substructure. If we ignore it, we obtain a slightly lower value of
2λ = 42GHz.
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Figure 5.4: Hund’s case a) potential structure of the first excited (1) 3Σ+
g state of 87Rb2.

The inset shows a zoom into the region where the spectroscopy was carried
out. Calculations from [Lozeille 2006]. For details see text.
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case of 0−g (1g). As an example, we show the overall rotational and hyperfine structure
in Fig. 5.5 for the 1g v = 0 and 13 vibrational states. In this figure, the most deeply
bound line within the hyperfine and rotational structure lies at 0GHz. The y-axis
shows the molecular fraction remaining. Furthermore, one can see that the spectra
for different deeply bound vibrational levels look similar, as expected. We exclude
the possibility that the substructure is accidentally caused by states from other Born-
Oppenheimer potentials. These spectra typically consist of roughly 300 points where
each point corresponds to one production and measurement cycle which takes 28 s. We
observe some ten lines in each spectrum, which vary markedly in linewidth. The width
of each line is determined by the coupling between the levels |i⟩ and |e⟩ and the strength
of the light field, that is, the Rabi frequency Ω.

5.2.2 The spectra of the 0−g and 1g states

The 0−g and 1g states have a rich substructure which we are able to resolve by lowering
the power of the laser to about 0.1mW. Figure 5.5 shows loss spectra for v′ = 0 and
v′ = 13, respectively. It is hard to recognize a pattern among the 12 observed 1g lines,
resulting from an interplay of rotation, hyperfine interaction and Zeeman interaction.
It is one of the main goals of this chapter to understand this spectral pattern and to
identify the individual lines.

The varying linewidth indicates a strong variation of the laser-induced coupling be-
tween the different |e⟩ and |i⟩ levels. In order to make sure that all of these lines belong to
the (1) 3Σ+

g potential and not to some other overlapping potentials ((1) 3Πu or (1) 1Σ+
u )

we have taken spectra for different deeply bound vibrational levels. The v′ = 0 and
v′ = 13 spectra a) and b) in Fig. 5.5, for example, are clearly similar. Compared to the
typical step size of 40 MHz in Fig. 5.5, the natural linewidth of the molecular levels of
12 MHz is relatively small. Thus, it is possible that some weak lines are not always
detected in a single scan, especially when they are located on the shoulder of a strong
line. By testing for consistency, and by checking theoretical predictions we gradually
completed the search for lines. For the 1g spectra we found in total 18 lines which we
present in our discussion in section 5.4.2.

While the 1g spectrum is spread out over 12GHz, the 0−g manifold has a much smaller
spread of 3GHz and fewer lines (Fig. 5.6). We observed 5 lines which are arranged in
a doublet like structure. The doublet splitting is ≈ 2.5GHz between the single line at
0GHz and the other 4 lines. This splitting can be understood in terms of molecular
rotation R,

Hrot = Bv′ ·R2/~2, (5.2)

where Bv′ is the rotational constant and R/~2 is the rotational angular momentum of
the two nuclei in units of ~. In comparison, the contributions of hyperfine and Zeeman
interactions are much weaker here. For the 0−g state, the Zeeman interaction and the
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Figure 5.5: The spectra of two different 1g vibrational manifolds of the (1) 3Σ+
g state

at 986.8G. For each spectrum we subtract a frequency offset of c from the
excitation frequency ν such that the most deeply bound line is situated at
0GHz. a) The v = 13 spectrum with an offset of ν0 = 294624.4GHz. b) The
vibrational ground state where we subtract an offset of ν0 = 281066.2GHz.

hyperfine interaction have diagonal matrix elements proportional to Ω, and hence their
contribution is off-diagonal and rather small (section 5.3). The rotational constant Bv′

is computed from the vibrational wave function ψv′(R) = ⟨R|v′⟩

Bv′ =
~

4πµ

⟨
v′
∣∣∣∣ 1

R2

∣∣∣∣v′⟩ (5.3)

where |v′⟩ is the ket for the vibrational wave function and µ is the reduced mass. From
our Morse potential and recent ab initio calculations [Lozeille 2006] we expect a value
of about Bv′=13 = 400MHz. Due to the weak hyperfine and Zeeman interactions the
angular momentum J (J = S+L+R) is a good quantum number here. The rotational
splitting is then determined by

Erot = Bv′ J(J + 1). (5.4)

Here, we have to use Eq. (5.2) and the definition of J to obtain the nontrivial result
above. (See for example [Wilson 1955, Lefebvre-Brion/Field 2004].) In our spectrum we
observe the line with J = 0 at low excitation energy while the line with J = 2 is shifted
up by 6Bv′ ≈ 2.5GHz. The J = 1 rotational level is not accessible because total parity
(inversion of electron and nucleon coordinates) has to change in the optical transition.
This result is obvious, when looking at section 4.7.

In contrast to the J = 0 line, the J = 2 line has a substructure of four lines which arises
from residual hyperfine, and Zeeman interactions. This substructure will be discussed
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Figure 5.6: High-resolution scan of 0−g (v
′ = 13) lines in the (1) 3Σ+

g potential at a mag-
netic field of 986.8G. Here, scans taken at various laser powers and pulse
lengths are merged into one graph. The dotted line corresponds to a laser
power of 0.1mW and a pulse duration of 200ms while the continuous lines
with indices 1, 2, 3, 4 were measured with a laser power of 0.1mW and
1ms pulse duration. The frequency offset from the excitation frequency ν is
ν0 = 294671.0GHz.

in detail in section 5.4 along with the analysis of our theoretical model which we use
to describe the full substructure within one vibrational manifold. In order to obtain
the spectrum, various scans at different laser power were carried out which were then
merged into a single spectrum. These weak lines were only found after a search which
was motivated in order to check the predictions of our theoretical model.

5.3 Effective Hamiltonian and evaluation of molecular
parameters

In the following we present the diatomic Hamiltonian which we use to explain the ob-
served energy levels within the deeply bound v′ = 13 vibrational manifold of the (1) 3Σ+

g

potential. Line spectra in other low-lying vibrational manifolds are similar (Fig. 5.5)
and are essentially described by the same Hamiltonian with only slightly adjusted pa-
rameters. The Hamiltonian reads

H = Hss +Hrot +Hhf +HZ +Hsr. (5.5)

Hss = 2λS2
Z is the effective spin-spin operator as given in Eq. (5.1) which, as previously

discussed, leads to the large splitting into the 0−g and 1g components. Hrot = Bv′ · R2

is the Hamiltonian for molecular rotation as already discussed in Eq. (5.2). The spin-
spin interaction Hss, hyperfine interaction Hhf, Zeeman interaction HZ, and finally spin-
rotational interaction Hsr are explained in detail in this section. Since it is the goal of
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this chapter to get a first understanding of the experimentally observed spectra, we will
in general simplify the interaction and only take into account terms of leading order
[Veseth 1976, Veseth 1976a]. For the derivation of the effective Hamiltonian and for
analytical expressions of the matrix elements we refer the reader to [Lysebo 2009]4.

5.3.1 Direct spin-spin and second-order spin-orbit interaction

It is well known that the direct spin-spin and second order spin-orbit interaction have
an effective Hamiltonian of the form

HSS +HSO =
2

3
(λSS(R) + λSO(R)) ·

(
3S2

Z − S2
)
, (5.6)

where we use the internuclear axis as the Z-axis and the internuclear separation R
[Lefebvre-Brion/Field 2004, Brown/Carrington 2003]. These Hamiltonians are used in
the work of [Mies 1996] to give analytical approximations for the R-dependence of λ. As
I will explain in chapter 6, we use the expression from Mies et al. including the R depen-
dence in our coupled-channel calculation for the ground state. For the excited state, the
R-dependence of λ does not appear explicitly because we use an effective Hamiltonian
within one vibrational level. Although Eq. (5.6) is used frequently, it is difficult to
find the reason for this functional dependence explained in the literature, especially in
the case of second-order spin-orbit coupling. A first account on the effective spin-spin
Hamiltonian is given by Kramers [Kramers 1929, Kramers 1929a], who used group the-
ory to obtain Eq. (5.6). Here, I will follow the approach of Tinkham [Tinkham 1954],
who treats first- and second-order effects in the fine structure using wave mechanics.

Spin-spin contribution and λSS

We start with the basic microscopic Hamiltonian [Tinkham 1954] of the form

HSS = C ·
∑
j,k

(sj · sj)r2jk − 3(sj · rjk)(sk · rjk)
rjk5

, (5.7)

where rjk = rj − rk and C = g2Sµ
2
B(µ0/4π). Here gS is the electronic g-factor, µB is

the electron Bohr-magneton, and µ0 is the magnetic permeability. Expanding HSS into

4Here, one has to account for the different axes of quantization. In the analysis one then has to take
the anomalous commutation relations for angular momenta which involve the rotation of the nuclei
[Brown 1976, VanVleck 1951]
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Cartesian components and regrouping leads to

HSS = −C ·
∑
j,k

xjkyjk
r5jk

(sjxsky + sjyskx)

+
3yjkzjk
r5jk

(sjyskz + sjzsky) +
3zjkxjk
r5jk

(sjzskx + sjxskz)

+
3

2

x2jk − y2jk
r5jk

(sjxskx − sjysky) +
1

2

3z2jk − r2jk
r5jk

(2sjzskz − sjxskx − sjysky),

(5.8)

where j, k refer to the different electrons and x, y, z stand for the different axis. Now we
integrate Eq. (5.8) over all electronic coordinates to obtain the effective Hamiltonian. In
this step the first three terms vanish because they involve a product of an odd function
like xjk and an even function 1/r5jk. The fourth term vanishes because of the axial sym-
metry of a diatomic molecule, that is the integral over x2jk is the same as for y2jk. Thus,
only the last term remains. This term is proportional to (3S2

Z − S2) [VanVleck 1951].
I refer the reader to [Tinkham 1954] for the actual ab initio estimate of λSS, which is
calculated via the integration mentioned above. A rigorous derivation of the spin-spin
interaction using irreducible tensor operators can be found in [Brown/Carrington 2003],
page 563.

Second-order spin-orbit contribution and λSO

The energy contribution of the second-order spin-orbit interaction is [Marinescu 1995]

H
(2)
SO = −

∑
n

⟨n | AL · S | 0⟩⟨n | AL · S | 0⟩∗

En − E0

, (5.9)

where the En refer to the unperturbed energies that is without fine structure. This is
standard perturbation theory where we denote the excited orbital state by |n⟩, and the
coupling constant for spin-orbit interaction by A. The term containing LZSZ is diagonal
and is not of interest at the moment as we are dealing with Σ states. As the orbital wave
functions do not act on the spin, the matrix elements can be written

∑
g⟨n | ALg | 0⟩Sg,

where g = X, Y . Standard angular momentum theory shows that the only non-zero
matrix elements are ⟨Λ | LX, Y | Λ ± 1⟩ and we have n = 1 [VanVleck 1951]. Thus, we
can simplify the Hamiltonian to

H
(2)
SO = −

∑
n=1

∑
g, g′

⟨n | ALg | 0⟩Sg⟨n | ALg′ | 0⟩∗S∗
g′

En − E0

.

Here, the superscript (2) is a reminder that we are dealing with a second order effect.
A careful analysis of angular momentum operators in space-fixed and molecule-fixed
systems shows that [VanVleck 1951]

⟨Λ | LY | Λ± 1⟩ = ±i⟨Λ | LX | Λ± 1⟩. (5.10)

72



5.3 Effective Hamiltonian and evaluation of molecular parameters 73

Eq. (5.10) implies that all cross terms of the form (g) · (g′) drop out in Eq. (5.9) and
we have

H
(2)
SO =

∑
n=1

|⟨n | ALX | 0⟩|2

En − E0

(
S2
X + S2

Y

)
.

If we now use the fact that we are interested in second order effects, we have to interpret
the last factor in terms of a tensor operator of rank 2. As already mentioned, the Z
component of L corresponds to diagonal elements, which we ignore. Altogether, we need
to find the m = 0 component of a tensor operator of rank two:(

S2
X + S2

Y

)
=

√
6T

(2)
m=0(S,S)

= 2S2
Z − S2

X − S2
Y .

These steps involve standard tensor operator algebra and can for example be found
for the present problem in [Brown/Carrington 2003]. This completes the proof and we
finally obtain

H
(2)
SO =

2

3
λ
(
3S2

Z − S2
)

λ =
∑
n=1

|⟨n | ALX | 0⟩|2

En − E0

.
(5.11)

Theoreticians can use Eq. (5.11) to estimate the strength of this interaction with the
help of the nearby Π states.

5.3.2 The hyperfine interaction

The second crucial part in the Hamiltonian is the hyperfine-structure, as the atomic
hyperfine splitting is about 7GHz ×h. Here, the first theoretical work for diatomic
molecules goes back to the 1950s, when an effective Hamiltonian in a Hund’s coupling
scheme aβ) and bβ) was derived [Frosch 1952]. Afterwards the theory was extended
to Hund’s coupling case c) and includes the work of [Mustelin 1963, Freed 1966] and
[Veseth 1976, Kristiansen 1986]. These articles also extend the theory to interactions
between the gradient of the electric field and the quadrupole field of the nucleus. Exper-
iments have been carried out using for example J2 to observe the quadrupole hyperfine
structure [Hänsch 1971]. Latest results in the field of ultracold molecules were obtained
with KRb [Ospelkaus 2010] and Cs2 [Danzl 2010].

A general ansatz for the hyperfine Hamiltonian in the Hund’s case a) and b) is of the
form [Townes/Schawlow 1955]

Hhf = aΛIZ + (bF − 1

3
c) · I · S+ cIZ · SZ . (5.12)

73



74 One-photon spectroscopy of the (1) 3Σ+
g potential

Here, S (I) is the operator for the total electron (nuclear) spin and Z denotes the
internuclear axis. The first term describes the interaction of the electronic angular
momentum with the nuclear spin. However, since Λ = 0 this term will not contribute.
The second and third terms include the Fermi contact term and the so-called anisotropic
interaction. bF is the Fermi contact parameter while c is called the anisotropic hyperfine
parameter. For Σ states we have c ≪ bF ([Townes/Schawlow 1955], page 196). Marius
Lysebo and Leif Veseth tried to calculate the hyperfine parameters ab initio but were
not able to obtain reliable results. Therefore, they have used these parameters in the fit.

5.3.3 The Zeeman interaction

As we carry out our measurements at magnetic fields of up to 1000G, Zeeman interaction
plays an important role. The main contribution to the Zeeman interaction comes from
the electrons while contributions from the nuclear spins and molecular rotation are
much smaller and are neglected here (as well as other second-order effects treated in
[Veseth 1976a]). In general, the Zeeman interaction is

HZ = µBgSSz ·Bz + µ0 (gIIz + gNNz)Bz, (5.13)

where Bz is the magnetic field pointing in the space-fixed z-direction, µB is the Bohr
magneton, and gS = 2 is the electron g-factor. Since Λ vanishes in the (1) 3Σ+

g state,
the third term due to the orbital angular momentum of the electron is expected to be
small. The same holds for the nuclear part involving Iz. We note that there is no free
parameter in the Zeeman Hamiltonian to adjust the model to the measured data. While
the contribution from the Zeeman interaction will in general be large for the 1g lines, it
will be small for the 0−g lines because here the spin projection on the internuclear axis
is Σ = 0.

5.3.4 The rotational interaction

The simplified energies in Eq. (5.4) are an approximation where we already include the
total electronic spin S. In the code for the numerical calculations which was used by
our theoreticians Marius Lysebo and Leif Veseth, the rotational Hamiltonian is

Hrot = BvR
2 (5.14)

with Bv the rotational constant, and R the orbital angular momentum of the relative
motion of the two nuclei, which is in the case of Σ states R = J−S. This operator is in
general only diagonal in a basis with quantum numbers S, I1, I2, F,MF , but off-diagonal
in Ω, ΩI1 and ΩI2 . As already mentioned, we obtain the value Bv′=13 = 412MHz. We
also included the rotational constant in the fit routine but did not observe any noticeable
change in the value. The centrifugal distortion constant D is significantly smaller than
Bv. In fact, D

Bv
≃ 10−6, which means that this effect may safely be neglected in the

present work.
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5.3.5 The spin-rotational interaction

In principle, we can also include the spin-rotational interaction through the effective
Hamiltonian

Hsr = γv′N · S. (5.15)

whereN = L+R is the operator for molecular rotation including the total orbital angular
momentum and γv′ is the spin-rotation coupling constant. However, γv′ is typically
a small fraction of the rotational constant Bv′ [Lefebvre-Brion/Field 2004] and only
represents an insignificant correction to the energy levels in the present system and is
thus neglected.

5.3.6 Fit procedure and evaluation of molecular parameters

According to the Hamiltonian in Eq. (5.5), there are four adjustable parameters (ne-
glecting γ): the rotational constant Bv′ , the spin-spin splitting parameter λ, the Fermi-
contact parameter bF , and the anisotropic hyperfine parameter c. As discussed in section
5.2.2, the rotational constant Bv′ should be close to 412MHz from ab initio calculations
for the (1) 3Σ+

g potential and as indicated from the 1g spectrum in Fig. 5. The spin-
spin parameter λ is mainly determined by the 47GHz splitting of the 1g and 0−g mani-
folds. This only leaves bF and c as completely free parameters. Marius Lysebo and Leif
Veseth determine the parameters from fits of the model to the experimental data using
a nonlinear Levenberg-Marquardt method [Marquardt 1963, Press et al. 2007]. For the
calculations, the Hamiltonian in Eq. (5.5) is expressed in terms of matrix elements in a
Hund’s case aα) basis,

|Λ, S,Σ, I1, I2,ΩI1 ,ΩI2 , F,ΩF ,MF ⟩, (5.16)

where ΩF = Λ + Σ + ΩI1 + ΩI2 is the projection of the total spin on the internuclear
axis. I1, I2 are the spins of the two nuclei and ΩI1 , ΩI2 are their projections on the
internuclear axis. For the analytical expressions of the matrix elements as a function
of the quantum numbers of Eq. (5.16) I refer the reader to [Lysebo 2009]. After the
evaluation of the Hamiltonian in the basis above, our theoreticians obtain a matrix
which is diagonalized numerically to arrive at the eigenvalues and eigenstates. Included
in this calculation are all hyperfine states in the 3Σ+

g (v
′ = 13) electronic state with total

angular momentum up to F = 10. Experimentally, we only observe states with F < 7.
The best fit results in the following values for the fit parameters: Bv′ = 412MHz and
λ = 47GHz. The parameters bF and c are determined in terms of the combinations
bF + 2

3
c and bF − 1

3
c, which correspond to contributions diagonal and off-diagonal in Σ

and Ω. We find bF + 2
3
c = 832MHz. In contrast, we find that bF − 1

3
c is not precisely

determined in our analysis. For further details see section 5.4.1.
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Figure 5.7: Excitation energy vs. magnetic field (in Gauss) for the 0−g state. The
corresponding numerical values are given in table 5.1 at page 78. Energies
are given with respect to two atoms at 0G as discussed in section 6.1. Here
we subtract an overall offset of ν0 = 294600GHz. Experimental observations
are plotted with corresponding uncertainties. Black lines are used for states
that fulfill the selection rules at B = 0. The dashed line indicates a state that
cannot be excited at B = 0 due to the selection rule for F . The experimental
uncertainties are ±60MHz for measurements at B > 0, and ±200MHz at
B = 0. Table 5.1 gives the quantum numbers at 0G and 1005.8G. J = 1 is
not visible for parity reasons (page 69).

5.4 Discussion of results

As already discussed in section 5.1, we can obtain a rough understanding of the observed
substructure by looking at the rotational and spin-spin Hamiltonian. Now we also want
to include the hyperfine and magnetic interactions. Our initial Feshbach state |i⟩ does
not have well defined quantum numbers S and I (section 5.1). This is in contrast to
the excited (1) 3Σ+

g state where we have S = 1 and MF = 2 (and thus F ≥ 2) for all
states. In the following discussion we will omit the quantum numbers S and MF . For
2λ = 47GHz, the interactions between the Ω = 0 and Ω = 1 substates are small, and
energy levels are robust against small variations in λ.
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5.4.1 0−g spectrum and magnetic shifts

The 0−g spectrum is significantly simpler than the 1g spectrum. Computed energy levels
as a function of the magnetic field strength are shown in Fig. 5.7, along with experimental
data. The x-axis displays the magnetic field strength in Gauss, the y-axis corresponds
(up to an offset of 294600GHz) to the excitation frequency ν with respect to two atoms
at 0G as described in section 5.1. The lines correspond to our numerical simulations,
where the dashed line connects to a state which we cannot observe at 0G due to the
selection rule ∆F = 0,±1. As one can see from Fig. 5.7, the rotational interaction which
leads to the splitting of 6Bv between J = 0 and J = 2 dominates where the rotational
energy is proportional to Bv ·J(J+1). The rotational structure is dominant because the
Zeeman interaction and the hyperfine interaction have diagonal elements proportional
to ΩI ·Ω. Hence, their contribution is off-diagonal and rather small. Because of the weak
hyperfine structure, J remains a good quantum number and the 0−g component can be
well described by the basis vector

|S,Σ, (J, I)F,MF ⟩

where J results from the coupling of the electronic spin and the molecular rotation
(J = N + S). Looking at Table 5.1, we find good agreement between theory and
experiment if we assume that we cannot access states with I = 1. This seems reasonable
because our Feshbach state has an I = 1 fraction of only 4%. It is possible to observe
J = 2 for the following reason: Starting with the Feshbach state which has N = 0 we
have the possibility to observe levels with N = 1 because of the selection rule ∆N ± 1.
This state connects to J = 2 in a Hund’s case c) coupling scheme.

Calculated and observed states together with their calculated quantum numbers J, I
and F are also shown in table 5.1. Now we can understand the overall structure at
1005.8G with the selection rules and the quantum numbers given in Table 5.1. For
J = 0, we can only observe one state with I = 3 because we need a total angular
momentum F ≥ 2 at ≈294671GHz. When we combine J = 2 with I = 1 (I = 3)
we obtain states with F = 2, 3 (F = 2, 3, 4, 5). We should observe in total 6 states
for J = 2. Our code shows that lines which belong to the same F but differ in the
I quantum number are almost degenerate at 0G. Increasing the magnetic field, lines
cross and at 1000G states with I = 1 and 2 are separated by ≈ 300MHz. The states
which cross always have different I quantum numbers, and thus the interaction between
these states has to be small. As can be read of from the expectation values in the table,
for low magnetic fields the levels in the 0−g component are indeed well described by the
quantum numbers |S,Σ, (J, I)F,MF ⟩.

The contribution to the hyperfine interaction for states with Ω = 0 is purely off-
diagonal, allowing us, to determine the value of the effective parameter (bF − 1

3
c). Our

theoreticians observed a weak dependence on this parameter and it turns out that its
value may lie between (200−1000)MHz, hence (bF − 1

3
c) is effectively undetermined from

the available data. Higher experimental accuracy is required, to estimate the effective
parameter (bF − 1

3
c).
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B = 0G B = 1005.8G

⟨J⟩ ⟨I⟩ ⟨F ⟩ νT − c νE − c ⟨I⟩ ⟨F ⟩ νT − c νE − c
(GHz) (GHz) (GHz) (GHz)

0.0 3 3.0 71.44 71.14 3.0 3.0 71.42 71.63
2.0 3 5.0 73.84 n.o. 3.0 4.2 73.83 73.83
2.0 1 3.0 73.84 n.o. 3.0 3.7 73.95 73.92
2.0 1 2.0 73.92 n.o. 1.0 2.9 74.00 n.o.
2.0 3 4.0 73.94 n.o. 3.0 3.3 74.13 74.13
2.0 3 3.0 74.06 73.64 1.0 2.1 74.27 n.o.
2.0 3 2.0 74.17 73.95 3.0 2.8 74.42 74.40

Table 5.1: We list here the calculated and measured excitation frequencies of the levels
shown in Fig. 5.7 (0−g (v

′ = 13)) for the magnetic fields 0G and 1005.8G. The
offset from the excitation frequency ν is ν0 = 294600GHz. The subscripts T

and E denote theoretical and experimental values, respectively. Along with
the energies the expectation values for quantum numbers J , I and F are also
given. All levels have S = 1,Σ = 0 and MF = 2. Apparently, levels with
I = 1 are not observed.

In Fig. 5.7 two of the calculated lines are dashed. They correspond to F = 4, 5
which are not observable at 0G because of the selection rule ∆F = 0,±1. For larger
magnetic fields, the Zeeman interaction mixes states with different F , and the two levels
that correlate with F = 4, 5 at 0 G become observable. As the the magnetic field is
increased, some lines cross. Because I is a good quantum number, crossings between
levels with different I quantum numbers are not avoided.

In general, we see good agreement between experimental and fitted energy levels.
Some discrepancies occur at zero magnetic field where the experimental data is less
accurate.

5.4.2 1g spectrum and magnetic shifts

We now discuss the energy levels as a function of the magnetic field for the 1g-states.
Calculated energy levels together with the experimental data for various magnetic fields
are shown in Fig. 5.8. The y-axis corresponds (up to an offset of 294600GHz) to the
excitation energy with respect to two atoms at 0G as described in setcion 5.1. The
agreement between the observed and computed (theoretical) energies is rather good. The
spin-spin splitting parameter λ is well determined from the observed spectra because it
only shifts the 1g with respect to the 0−g spectrum as described in section 5.3. On the
right hand side of the figure we also give the rotational quantum number J . For the 1g
state each rotational level is twofold degenerate because of the +/− symmetry and we
only have the restriction J ≥ Σ = 1. It turns out that the maximum rotation which
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we can observe is J = 4. The Feshbach state has N = 0 which allows us to observe
levels with N = 1 according to the selection rule ∆N ± 1. The strong second-order
spin-orbit coupling in the excited state causes mixing of different N states according to
∆N = 0, ±2. It turns out that the excited 1g state is a superposition of N = 1, N = 3
and N = 5. These states have a J = 4 component in a Hund’s coupling case c) scheme
as explained in chapter 4.

This strong second-order spin-orbit interaction in the excited state shows up due to
coupling of the electronic spin momenta onto the molecular axis. Thus the vibrational
level v′ = 13 in the (1) 3Σ+

g potential is best described in a Hund’s case c) coupling
scheme with state vectors

|Σ, I, F,MF ⟩.

F results from the coupling between J and I to create a total angular momentum. F
and M have the same meaning as in case e) except for the order of coupling. We also
calculated the expectation values for ΩI = |ΩI1 + ΩI1 |. Except for the first state where
we obtain |ΩI | = 2.7, it is not well defined. In other words, the basis vectors are close
to Hund’s case cβ) [Freed 1966]. At zero magnetic field and low rotation J = 1, 2 the
quantum number F for the total angular momentum is good, and we observe a large
splitting between states which correspond to the same F but different values of I (Here
I = 1 and I = 3.). This is in contrast to the 0−g states where these states were almost
degenerate. Interestingly this splitting decreases with increasing J . For our last state
with J = 4 we find a splitting of ≈ 100MHz.
For increasing magnetic field, F becomes worse. As in the 0−g state, we observe that
only states with the same I interact, which can be seen from various avoided crossings
between such states. The quantum numbers J , I and F for the energy eigenstates at
0G included in Fig. 5.8 are listed in Table 5.2.

For the lowest levels shown in Fig. 5.8, the hyperfine, the Zeeman, and the rotational
interactions have comparable magnitudes. It is hard to recognize any regular pattern
in the range from 24GHz to about 37GHz. Only at zero magnetic field and at low
energies is the hyperfine interaction dominant, and hyperfine states with different J do
not overlap. As an example for the mixing of states with different J , one would expect
that the line with lowest energy in the v′ = 13 manifold has J = 1. Our simulations
show that this is not the case, and we have an expectation value of J = 1.4 .
The rotational energy starts to dominate over hyperfine and Zeeman energies for J ≥ 4.
This can be seen in the small splitting between the lines around 36GHz (which have
J ∼= 4) and the few lines with energies less than 34GHz (which have J ∼= 3, see also
table 5.2). In this regime, J becomes a good quantum number. Indeed, looking at the
quantum numbers in Table 5.2, we see the different hyperfine levels with F = 2, 3, 4
corresponding to J = 1 and I = 3. However, states with J = 1, 2 are strongly mixed
and result in quantum numbers J = 1.4, I = 3.0 and F = 2.2 for the first state. The
other two states which correspond to F = 3, 4 show considerable mixing with states
from J = 2. Using this method, one can show that we would expect 10 states with
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Figure 5.8: Zeeman diagram of the 1g state (v′ = 13). As in Fig. 6. an offset ν0 =
294600GHz is subtracted from the excitation frequency ν. The lines are
calculations. Dashed lines indicate levels with F > 3 that can not be excited
in our experiment at B = 0 due to the selection rule F = 0,±1. Table
5.2 gives the corresponding quantum numbers at 0G and 1005.8G. The
horizontal arrow is explained in the text.

J = 1 and 2 from theory. Furthermore, we have 8 states with J = 3, and 9 states with
J = 4.

We still face some problems in the assignment of lines. Due to the close spacing of the
energy levels at E ≃ 36GHz, it is impossible to establish a one-to-one correspondence
between theoretical and calculated energies within this band. Furthermore, it seems that
the line indicated by the horizontal arrow in Fig. 5.8 cannot be explained theoretically.
In principle, it would be easiest to assign the lines at 0G to reduce the number of
lines because of the additional selection rule ∆F = 0, ±1. Here, the problem is that
fluctuations in the current cause losses when we sweep to 0A. For this reason our signal
to noise ratio is poor for the 0G data and it is even more difficult to obtain spectra with
high resolution on the order of a few MHz at 0G.
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B = 0G

⟨J⟩ ⟨I⟩ ⟨F ⟩ ν − c (GHz)

1.2 3.0 2.0 26.34
1.4 3.0 3.0 27.06
2.7 3.0 4.0 28.36
1.2 1.0 2.0 28.53
2.0 3.0 2.0 29.00
2.0 3.0 3.0 29.68
1.9 1.0 2.0 29.98
2.1 3.0 5.0 30.12
2.3 1.0 3.0 30.13
2.0 3.0 4.0 30.51
3.0 3.0 2.0 31.77
3.0 3.0 3.0 32.02
3.0 1.0 2.0 32.31
2.9 3.0 4.0 32.44
3.0 1.0 3.0 32.45
3.1 3.0 6.0 32.56
3.2 1.0 4.0 32.57
3.0 3.0 5.0 32.64
3.9 3.0 2.0 35.04
3.9 3.0 3.0 35.41
4.0 1.0 3.0 35.54
3.9 3.0 4.0 35.78
4.0 1.0 4.0 35.81
4.0 1.0 5.0 35.99
3.9 3.0 5.0 36.07
4.1 3.0 7.0 36.19
4.0 3.0 6.0 36.22

Table 5.2: Calculated and measured excitation frequencies of the levels shown in Fig.
5.8 (1g(v

′ = 13)) for the magnetic fields 0G. The offset from the excitation
frequency ν is ν0 = 294600GHz. Along with the energies, the expectation
values for quantum numbers J , I and F are also given. All levels have S = 1,
Σ = 0 and MF = 2. Levels with I = 1 are probably not observable.
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6 Precision spectroscopy of the a 3Σ+
u

potential

Until recently, the a 3Σ+
u potential of the Rb2 molecule has remained largely experimen-

tally unexplored. Natural samples of Rb2 are normally found in their X 1Σ+
g state from

which the lowest triplet state is somewhat difficult to reach in an optical Raman process
due to the selection rule ∆S = 0 (Compare Eq. (4.24) and Eq. (4.26).). After we have
analyzed the deeply bound states in the excited (1) 3Σ+

g potential, we are ready to per-
form precision spectroscopy of 87Rb2 molecules in the a 3Σ+

u (5S1/2 + 5S1/2) state, where
we resolve almost all vibrational levels. This will be the topic of the current chapter,
where I show how we map out the rotational, hyperfine, and Zeeman structure within
the vibrational levels with an accuracy as high as 30MHz. In our experiments, we use
dark-state spectroscopy, where a gas of weakly bound Feshbach molecules is irradiated
by two laser beams. Molecular losses, induced by one of the two lasers, are suppressed
when the second laser is tuned into resonance with a bound state (see Fig. 6.1). Fitting a
coupled-channel model to our experimental data, Prof. Eberhard Tiemann constructed
an accurate Born-Oppenheimer a 3Σ+

u potential. This enables us to calculate the wave
functions of triplet bound states as well as their binding energies to 60MHz×h accuracy
(where h is Planck’s constant) over the whole manifold of vibrational and low rotational
(N<5) levels. The theory and data agree to the extent that further refinement of the
theoretical model requires a reduction in the experimental uncertainty.

Molecular spectroscopy with cold atomic gases goes back to the beginnings of laser
cooling [Weiner 1999, Jones 2006, Köhler 2006]. An experiment closely related to ours
is the one by Araujo et al. [deAraujo 2003] where the Na2 triplet ground state was
explored using a magneto-optical trap combined with two-color photoassociation spec-
troscopy. Our spectroscopy also makes use of a two-photon transition, but starts from
cold Feshbach molecules rather than from free atoms. Recent investigations of the a 3Σ+

u

potential of Rb2 include the work of [Lozeille 2006], [Beser 2009] and [Mudrich 2010]. Us-
ing one-color photoassociation of the a 3Σ+

u potential of laser-cooled 85Rb, [Lozeille 2006]
put tight constraints on the position of the repulsive wall of the a 3Σ+

u potential but was
not able to resolve the vibrational structure. The two other groups determined several
ro-vibrational levels using fluorescence spectroscopy [Beser 2009] or pump-probe pho-
toionization spectroscopy of Rb2 formed on helium nanodroplets [Mudrich 2010]. Our
work goes well beyond these measurements as we fully resolve hyperfine, rotational, and
Zeeman structure for almost all vibrational states. Highly precise data of the asymptotic
behavior of the coupled a 3Σ+

u - X
1Σ+

g system is contained in the large set of observed
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z

Figure 6.1: Dark-state spectroscopy scheme for the 87Rb2 a 3Σ+
u potential. Lasers 1

and 2 couple the molecular levels |i⟩ and |v⟩ to the excited level |e⟩ with
Rabi frequencies Ω1,2, respectively. As excited level |e⟩ we use a state in
the vibrational level v′ = 13 which is best described by the state vector
|Σ, I, F,MF ⟩ = |1, 3, 2, 2⟩. The calculations for the excited state showed
that the projection of the nuclear spin onto the internuclear axis is 2.7 which
is close to the “ideal” value of 3. Laser 1 is kept on resonance while laser 2
can be tuned to any level of the a 3Σ+

u potential. Inset: Bound-state level
of Feshbach molecules as a function of magnetic field Bz. The dashed line
gives the position of the Feshbach resonance. The dot marks the Feshbach
molecular state used in the experiments.
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6.1 Experimental setup and dark state spectroscopy 85

Feshbach resonances [Marte 2002, Roberts 2001, Erhard 2003, Papp 2006] and in the
two-photon photoassociation measurements of four weakly bound levels at zero mag-
netic field by [Wynar 2000]. Progress has also been made parallel to this work in the
study of ultracold Cs2 molecules [Danzl 2009, Mark 2009] and ultracold KRb molecules
[Ni 2009, Ospelkaus 2010].

This chapter is organized as follows: Section 6.1 presents an overview of the setup
for spectroscopy and typical dark-state spectroscopy scans. Section 6.2 summarizes the
relevant quantum numbers and the assignment of the observed lines. Section 6.3 is a
short summary of the coupled-channel model and the optimization procedure of the
Born-Oppenheimer potentials. Section 6.4 discusses the progression of the substructure
of the vibrational manifolds. I conclude the chapter with a summary of our experiments
in section 6.5.

6.1 Experimental setup and dark state spectroscopy

The starting point for our experiments is a 50-µm-size pure ensemble of 3× 104 weakly
bound Feshbach molecules which have been produced from an atomic Bose-Einstein
condensate of 87Rb by ramping over a Feshbach resonance at a magnetic field of 1007.4G
(1G = 10−4T) [Volz 2003]. This procedure is described in detail in chapter 3. We know
from previous measurements that the Feshbach molecules are trapped in the lowest
Bloch band of a cubic 3D optical lattice with no more than a single molecule per lattice
site [Thalhammer 2006]. The lattice depth for the Feshbach molecules is 60Er, where
Er = π2~2/2ma2 is the recoil energy, withm the mass of the molecules and a = 415.22 nm
the lattice period. Such deep lattices prevent the molecules from colliding with each
other, which suppresses collisional decay. We observe lifetimes of a few hundred ms.
After producing the Feshbach molecules, the magnetic field is set to 1005.8G where the
spectroscopy is carried out. At this magnetic field, the binding energy of the Feshbach
molecules is 4.4(3)MHz×h (see Fig. 6.1, inset).

Our dark state spectroscopy works as follows: The Feshbach molecules in state |i⟩ are
irradiated by simultaneous rectangular pulses from lasers 1 and 2. The pulses typically
last 10µs with Rabi frequencies Ω1 and Ω2, respectively (Fig. 6.1). We keep laser 1
resonant with the |i⟩ − |e⟩ transition and at a power I1 of about 0.1mW (Ω1 = 2π×
0.3MHz) such that in the absence of laser 2 about half of the molecules are lost by
spontaneous emission from |e⟩. Laser 2, with its power I2 (up to a few hundred mW), is
scanned. As long as laser 2 does not hit an |e⟩ − |v⟩ resonance, laser 1 will continue to
induce losses. When an |e⟩−|v⟩ resonance occurs, the initial state |i⟩ is projected onto a
dark state |Ψdark⟩ = (Ω2|i⟩−Ω1|v⟩)/

√
Ω2

1 + Ω2
2. Molecules in this dark state are shielded

from excitation to the short-lived level |e⟩ [Lang 2009a]. This leads to a suppression of
molecular losses. After the lasers are switched off, we measure the number of molecules
via a reverse magnetic field sweep through the Feshbach resonance, dissociating the
remaining molecules in |i⟩ into atoms which are detected by absorption imaging. These
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Figure 6.2: (a) Binding energies EB(v) for the state a 3Σ+
u , where v is the vibrational

quantum number. The line is the result of a coupled-channel model cal-
culation after optimization of the Born-Oppenheimer potential. Five levels
were not measured. (b) Residues that is the difference between experimental
data and theory. Large error bars belong to early measurements without
simultaneous wave meter readings of both lasers.

measurements are destructive, and for each point in a scan, a fresh sample of Feshbach
molecules has to be prepared.

As described in chapter 5, the level |e⟩ has an excitation energy of about 295 THz×h
with respect to |i⟩ and a natural width Γ = 2π× 8MHz. Laser 1, a grating-stabilized
diode laser, is Pound-Drever-Hall locked to a cavity, which is in turn locked to an atomic
87Rb-line. Laser 2, a Ti:sapphire laser, is free-running and typically drifts over a fre-
quency range of a few MHz within seconds. Both lasers have a short-term laser linewidth
of tens of kHz. The beams have a 1/e2 intensity waist radius of 130µm at the molecular
sample, through which they propagate nearly collinearly. They are polarized parallel to
the magnetic bias field Bz (pointing in the vertical direction), and thus can only induce π
transitions. The frequencies of both lasers are automatically read out using a commercial
wave meter (WS7 from HighFinesse). The binding energy EB of |v⟩ minus the binding
energy of our initial Feshbach state (4.4MHz×h) corresponds to the frequency difference
of the two lasers. The wave meter has a nominal accuracy of 60MHz after calibration.
Over the course of days we have observed drifts of ±200MHz, for example by repeatedly
addressing the same spectroscopic line. Over the length of a few experimental cycles
(5min), the wave meter is stable to within 10MHz, which represents a random noise
floor. Assuming a sufficiently smooth behavior of the wave meter, drifts typically affect
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6.1 Experimental setup and dark state spectroscopy 87

the frequency measurements of laser 1 and laser 2 in a similar way, especially since the
laser frequencies only differ by 3%. These common mode drifts cancel out in the binding
energy to first approximation. Indeed, based on our experience with the wave meter
where we have measured binding energies of a few sharp lines over an extended period
of time and via various intermediate levels, we estimate the accuracy to reach 30MHz.
This includes peak position uncertainties due to variations in the number of molecules
produced, as well as a frequency drift of laser 2 during the time between the laser pulse
and wavelength measurement.

Fig. 6.2 a) shows the measured binding energies of the triplet potential as a function
of the vibrational quantum number v at a magnetic field of 1005.8G. There are 41
vibrational states with binding energies ranging from 5MHz×h to about 7038GHz×h.
The vibrational splitting between the two lowest vibrational levels, v = 0 and v =
1, is about 393GHz. Each vibrational state has hyperfine, rotational, and Zeeman
substructure. This structure is spread out over a range of about 20GHz as shown in
Fig. 6.3 for the states v = 0 and 6. These spectra typically consist of roughly 1000 points
corresponding to an average step size of 20 MHz. Each point represents one production
and measurement cycle which takes 28 s.

In each spectrum of Fig. 6.3 we observe some 10 lines which vary markedly in linewidth.
The width of each line is determined by the coupling between the levels |e⟩ and |v⟩, that
is the Rabi frequency Ω2. This width of the dark resonance scales as Ω2 if laser 2 is
fixed on resonance and laser 1 is scanned as explained in [Shore 1990]. Interestingly,
for our measuring scheme this width scales as Ω2

2 [Lang 2009a] and not as Ω2, as one
might expect. We have taken advantage of this enhanced broadening when searching
for lines and vibrational manifolds, which otherwise can be like looking for a needle in a
haystack. For example, for v = 0 and an intensity I2 of a few hundred mW we reached
linewidths of several GHz. The substructure of the desired vibrational level then ap-
pears essentially as a single broad line with a width of about 20GHz. Once this level
was found, the power was reduced in order to resolve its substructure.

In general, we expect spectra of different vibrational levels to be very similar. Up to
v = 35 this is indeed the case. For v ≥ 35 the vibrational manifolds start to overlap,
as the splitting between them becomes smaller than 20 GHz. Spectra a) (v = 6) and
b) (v = 0) of Fig. 6.3 are clearly similar. Some visible differences are artifacts, e.g. it
seems that in spectrum b) two narrow lines are missing at EB/h ≈ 7021GHz. This can
be explained by the fact that the lines were narrower (width ≤ 10MHz) than the local
step size of that scan and thus escaped observation.
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Figure 6.3: Scans of two vibrational levels within the a 3Σ+
u potential: a) v = 6, b) v = 0.

Plotted is the remaining molecular fraction as a function of the binding
energy EB, which basically corresponds to the laser difference frequency.
The scans were recorded using an excited state |e⟩ with 1g character. The
labels s and d indicate rotational states N = 0 and 2, respectively. The
numbers after the labels s or d indicate the position in the spectrum.

6.2 Quantum numbers and assignment

6.2.1 Quantum numbers

For a deeper understanding of the structure of the spectrum and its assignment we now
discuss the relevant quantum numbers and selection rules.

For the weakly bound levels like the Feshbach state or the vibrational levels close to
the atomic asymptote, Hund’s coupling case e) with atomic quantum numbers is most
appropriate. Here none of the angular momenta couple to the molecular axis. Using the
nomenclature of chapter 4, the state vector is described by

|(fa, fb)f, l, F,MF ⟩ ,

where fa, fb are the total angular momenta for atoms a and b, f is the sum of both
atomic angular momenta, l is the mechanical rotation of the atomic pair, F is the total
angular momentum of the pair, and MF is its projection onto a space-fixed axis. At
low magnetic fields the prepared Feshbach state |i⟩ can be approximated by the state
vector |fa = 2, fb = 2, f = 2, l = 0, F = 2,MF = 2⟩. At the magnetic field used in the
experiment (1005.8G), F is no longer a good quantum number because of only weak
coupling between l and f . A more appropriate state vector is

|(fa, fb)f,mf , l,ml,MF ⟩.
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6.2 Quantum numbers and assignment 89

M is a good quantum number, while for example, fa and fb have expectation values of
about 1.79 instead of quantum numbers fa = fb = 2 for 0G.

Due to the strong hyperfine coupling of Rb and the large exchange energy, deeply
bound levels of the triplet state can be described by Hund’s coupling case bβ) at low
magnetic fields [Townes/Schawlow 1955], namely:

|N, (I, S)f, F,MF ⟩ ,

where I and S are the total nuclear and electronic spin quantum numbers, N is the
molecular rotation including electron orbital angular momentum, and F and MF have
exactly the same meaning as in Hund’s case e). The index β indicates that the nuclear
spin I is not coupled to the molecular axis. Since both atoms are in the 5S configuration
of Rb, the molecular electronic orbital angular momentum is zero. This means that
N = l and that f is the same as in Hund’s case e). Here we get

|N,mN , (I, S)f,mf ,MF ⟩ ,

as an appropriate state vector for higher magnetic fields, where MF = mN + mf . As
discussed in section 4.7, one can show that owing to the antisymmetry of the molecular
wave function with respect to nuclear exchange (nuclear spin of 87Rb i = 3

2
), molecules

with even (odd) N in the a 3Σ+
u state must have a total nuclear spin I = 1 or 3 (I = 0 or

2) [Townes/Schawlow 1955, Herzberg 1950]. For the X 1Σ+
g ground state this relation is

reversed because it has g symmetry in contrast to the u symmetry of the triplet state.
For large magnetic fields, f loses its meaning as S and I start to decouple.

Expectation values for the total nuclear spin and the electron spin for our Feshbach
level are I = 1.56 and S = 0.76, respectively. Thus, we have significant electronic
singlet-triplet mixing and consequently also mixing of the basis vectors with different I.
In contrast, the excited intermediate state |e⟩ has well defined quantum numbers S and
I. Thus, |e⟩ largely determines which quantum numbers the deeply bound a 3Σ+

u levels
will have in the Raman transition.

The intermediate level |e⟩ is located in the v′ = 13 manifold of the (1) 3Σ+
g (5S1/2 +

5P1/2) potential. Due to significant effective spin-spin interaction, the vibrational man-
ifold is split into two components, 1g and 0−g , separated by 47GHz. As intermediate
level |e⟩ we either choose a level with 1g character or with 0−g character. Its rotational
energy must be low because the Feshbach level has the lowest rotational quantum num-
ber N = 0. As rotation is low in |e⟩, decoupling of S and I from the molecular axis by
rotation is not yet important. We can then approximate the state |e⟩ by quantum num-
bers for Hund’s case aα) where the index α indicates that the nuclear spin I is coupled
to the molecular axis,

|SΣ, IΩI , F,MF ⟩ .

The projections of the electronic and nuclear spin onto the molecular axis appear as
quantum numbers Σ and ΩI , respectively.
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The |e⟩ level with 1g character is energetically the lowest within the 1g(v = 13)
manifold. It has the quantum numbers S = 1, |Σ| = 1, I = 3, |ΩI | ≈ 3, F ≈ 2 and
M = 2 for low magnetic fields Bz. Its excitation energy is 294.6264(2) THz×h with
respect to |i⟩ at a field of 1005.8G.

The |e⟩ level with 0−g character has an excitation energy of 294.6736(2)THz. It can
be characterized by the quantum numbers S = 1, Σ = 0, I = 3, M = 2 and F = 3 at
Bz = 0. Because of its low hyperfine coupling the better choice of basis vector here is

|SΣ, (JI)F,MF ⟩ ,

where J results from the coupling of the electronic spin and the molecular rotation
(J = N + S). For our 0−g |e⟩ level J is approximately zero. Our 1g |e⟩ state is a
superposition of N = 1 and 3.

As stated before, due to the laser polarization along the magnetic field only π transi-
tions are allowed, which results in the selection rule ∆MF = 0. Further, in a one-photon
transition, parity has to change. The Feshbach state |i⟩ has a total parity “plus” because
it is a Σ+ state and (−1)N = 1 for N = 0. Thus, we can only address |e⟩ levels with
”minus” parity and |v⟩ levels with ”plus” parity. This means that the |v⟩ level must have
an even rotational quantum number N = 0, 2, 4, .... For the |e⟩ level, only quantum
numbers N = 1, 3, ... or superpositions of these are available. As the (1) 3Σ+

g state is
well described in a Hund’s case a) basis, N is in general not a good quantum number for
the |e⟩ level. The selection rule ∆N = ±1 for N determines the range of reachable levels
for |v⟩ according to the superposition in |e⟩. The selection rules ∆I = 0 and ∆S = 0 are
important for the transition |e⟩ to |v⟩. For the transition |i⟩ to |e⟩ they are, however,
nearly irrelevant since I and S are not good quantum numbers for |i⟩.

6.2.2 Assignment of spectral lines

Figure 6.4 shows measured and calculated (based on the coupled-channel model - see
section 6.3) lines of the v = 6 spectrum, where the excited state |e⟩ with 0−g character
was selected. The lines form three groups with the quantum numbers f = 4, 3, and 2,
according to the hyperfine coupling of S = 1 and I = 3. This is a clear indication that
the hyperfine energy is still dominant compared to the Zeeman energy.

Each group consists of one line with N = 0 corresponding to a non-rotating molecule,
and several lines with N = 2 which are shifted to a lower binding energy by about 2
GHz×h due to rotation. The fact that we do not observe lines with N > 2 can be
explained as follows. The excited state |e⟩ has ”minus” total parity. Since J = 0 and
S = 1, N must be equal to one and is also a good quantum number for this lowest level
in the 0−g manifold. Thus when using the state with 0−g character only final states |v⟩
with N = 0, 2 can be addressed in the a 3Σ+

u state due to the selection rule ∆N = ±1.
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Figure 6.4: Scan of the hyperfine, rotational, and Zeeman structure in the a 3Σ+
u (v = 6)

manifold using an excited level |e⟩ with 0−g character. The x-axis shows
the binding energy EB. The quantum number f is shown below each of
the three groups of lines. Thick black lines above the spectrum indicate
states with N = 0; grey lines correspond to states with N = 2. The upper
row of numbers indicates the expectation values of the magnetic quantum
number mf at 1005.8 G. mf must be positive because of the restriction
mf +mN = mF = 2 and −2 < mN < 2 for states with N = 2.
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The overall structure of each vibrational level can be understood with a relatively
simple effective Hamiltonian [Dunn 1972]:

H =
A

2
S · I+BvN

2 + µB gS Sz Bz

with the atomic hyperfine structure constant A = 3.42 GHz×4π2/h [Bize 1999], the
total electronic and nuclear spin operator S and I, respectively, and the operator for
molecular rotation, N. Bv is the rotational constant of the desired vibrational level v.
The last term describes the Zeeman effect of the electronic spin when exposed to an
external magnetic field Bz in the z-direction. The nuclear Zeeman term is neglected.
The Zeeman effect can be evaluated for the case of strong hyperfine coupling such that
f (with f = S+ I) is still a good quantum number. Let us now consider a simple vector
model, where the magnetic spin moment µ moves in the magnetic field, which is caused
by the electron spin and the nuclear spin. The moment µ then precesses around the
space-fixed direction of f . Formally, we get the expectation value of the magnetic spin
moment via1

⟨µ⟩f =
µ · f
|f |2

. (6.1)

Using standard angular momentum techniques one can derive a Landé factor

gf =
gS
2

(
1 +

S(S + 1)− I(I + 1)

f(f + 1)

)
.

This Landé factor then leads to an effective Hamiltonian

H =
A

2
S · I+BvN

2 + µB gf mf Bz (6.2)

For each f , the N = 2 group is shifted to lower binding energy by 6Bv compared to
N = 0, corresponding to about 2 GHz for the v = 6 manifold (see Fig. 6.4). Each
N = 2 group is split by the Zeeman energy according to the mf quantum number of
each line. Only those lines which have quantum numbers where MF = 2 = mf +mN

can be observed. The level f = 3 has a small gf factor (1/6 for I = 3), which gives
rise to a small Zeeman splitting. Additionally, one sees that the splitting between f = 4
and f = 2, which would be about 12 GHz for the pure hyperfine part, is enlarged by a
Zeeman contribution because of the different signs of gf for f = 4 and f = 2. In Fig.
6.4, the expectation values for mf resulting from the coupled channel model are given
in the upper row and show that these lead to good quantum numbers for f = 4 and
f = 2 but are less good for f = 3, where the hyperfine and electronic Zeeman energies
are small. The mixing of states with different mf for f = 3 is not included in the simple
model of Eq. 6.2. It could be included with an effective Hamiltonian of the form γN ·S
(spin-rotation interaction).

1This result is exact. If one uses tensor operators it corresponds to the reduced matrix element of S
in the coupled scheme |(SI)fmf ⟩.
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As discussed before, for the intermediate state with 0−g character we only observed
N = 0 and N = 2 levels in the a 3Σ+

u potential. This restriction does not necessarily
apply when using the intermediate level |e⟩ with 1g character. The corresponding spec-
trum in Figure 6.3 a) shows the same v = 6 manifold as in Figure 6.4, only |e⟩ has 1g
instead of 0−g character. It has additional lines (at ∼4838GHz and at ∼4832GHz) which
match the predicted positions of N = 4 levels.

As mentioned in Section 6.2.1, the level |e⟩ with 1g character would be described by
a superposition of N = 1 and N = 3 states in a Hund’s case b) basis. We thus expect
to see transitions to levels with N = 0, 2, 4 of the a 3Σ+

u state according to the selection
rule ∆N = ±1. In order to avoid confusion, we note that the N = 0 and N = 2 lines
between 4825 GHz and 4830 GHz which are clearly visible in Figure 6.4 are weak or are
not even observed in Figure 6.3. For the same reasons as discussed at the end of section
6.1, the experimental step size of about 10 MHz might have been too large compared to
the narrow linewidths for these transitions to be seen.

It was not always necessary to carry out a complete scan as in Figure 6.4 in order to
assign quantum numbers to observed lines in arbitrary vibrational levels. Often it was
sufficient to measure a few characteristic lines and splittings and to compare them to
the calculated spectrum. These data were then used to optimize the coupled channel
model along with its a 3Σ+

u and X 1Σ+
g Born-Oppenheimer potentials.

6.3 Coupled-channel model and optimization of the
a 3Σ+

u potential

In this section, I present the coupled-channel code [Krauss 1990, Dulieu 1995, Tiesinga 1998]
which Prof. Eberhard Tiemann used for his theoretical investigations. The code can
calculate all bound states of the X 1Σ+

g and a 3Σ+
u states, which correlate with the atomic

asymptote 52S1/2+52S1/2. The program has helped us with the search for lines as well as
with their identification. Using our data, we are able to optimize the Born-Oppenheimer
potential of the a 3Σ+

u state as well as to improve the potential of the X 1Σ+
g ground state

given in [Seto 2000]. In the following, we briefly describe the model and explain how the
X 1Σ+

g and a 3Σ+
u Born-Oppenheimer potentials are optimized. To cover the full range of

experimental data by a single theoretical model, a coupled-channel analysis is highly ad-
equate. It includes the calculation of the molecular bound states as well as the scattering
resonances. It takes into account the X 1Σ+

g and a 3Σ+
u potential functions, the hyperfine

coupling, the Zeeman interaction, rotation and the effective spin-spin interaction. Such
a theoretical approach is described in several articles (for example [Pashov 2007]).

For the present analysis, we include our measurements covering 135 lines of the a 3Σ+
u

state as well as data from other work. For the X 1Σ+
g ground state, we added data

from Fourier transform spectroscopy by Seto et al. [Seto 2000] with more than 12000
lines. We also include measurements of Feshbach resonances for the three isotopologues
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85Rb2,
87Rb2, and

85Rb87Rb [Marte 2002, Roberts 2001, Erhard 2003, Papp 2006], the
four asymptotic levels from [Wynar 2000], and measurements from Fourier transform
spectroscopy for the a 3Σ+

u state reported by Beser et al. [Beser 2009].

The full Hamiltonian (cf. [Mies 2000, Laue 2002, Pashov 2007]) for a pair of atoms
A and B can be written in the form

H = Tn + UX(R)PX + Ua(R)(1− PX)

+ aa(R)sa · ia + ab(R)sb · ib
+ [(gsasza − giaiza) + (gsbszb − gibizb)]µBBz

+
2

3
λ(R)(3S2

Z − S2). (6.3)

In the present case of the homonuclear molecule 87Rb2 the parameters with index a
are equal to those of index b. The first term in the first line is the kinetic energy
Tn using the atomic masses from recent tables by G. Audi et al. [Audi 2003]. The
next two terms describe the potential energies UX and Ua for the motion of the atoms,
where PX and 1 − PX are projection operators on to the uncoupled states X and a,
respectively. R is to the internuclear separation of the two atoms. The second line shows
the hyperfine interaction between the atomic electron spins sa,b and the atomic nuclear
spins ia,b. The main contribution to the functions aa,b(R) is the Fermi contact term.
The R dependence of the hyperfine parameters accounts for several effects: It takes
into account the electronic distortions of one atom by the other, that is the binding,
and an effective coupling of the electron spin of one atom with the nuclear spin of
the other atom. We start with R-independent atomic coupling constants taken from
a compilation by Arimondo et al. [Arimondo 1977]. These constants are later refined
by a simple Ansatz for the R dependence which we discuss in Eq. (6.9). We neglect
the nuclear quadrupole moment in the hyperfine interaction, which might come into
play for deeply bound levels. The third line in Eq. (6.3) gives the Zeeman energy from
the coupling of the electron spin and the nuclear spin with an external homogeneous
magnetic field Bz in the z direction. The electronic and nuclear g factors for the atomic
ground state of the Rb isotopes are taken from the report in [Arimondo 1977]. This
term couples states with different f quantum numbers. The last line contains the spin-
spin interaction which couples different N states of basis b). It is formed by the total
molecular spin S and its projection on the molecule fixed axis Z. The parameter λ is
a function of R, one part of which has a 1/R3 dependence as a result of the magnetic
dipole-dipole interaction. In addition, λ contains contributions from second-order spin-
orbit interactions [Tinkham 1954, Mies 1996]. The final analysis showed that such a
contribution is significant within the achieved experimental accuracy. For example, this
was important for the precise location of Feshbach resonances involving l = 1 and l = 2
levels.

The functional form of the two X 1Σ+
g and a 3Σ+

u Born-Oppenheimer potentials is split
into three regions of the internuclear separation axis R: the short-range repulsive wall
(R < RSR), the asymptotic long-range region (R > RLR), and the intermediate deeply
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bound region in-between. The analytic form of the potentials in the intermediate range,
UIR, is described by a finite power expansion of a nonlinear function ξ which depends
on the internuclear separation R,

UIR(R) =
n∑

i=0

ai ξ
i(R), (6.4)

ξ(R) =
R−Rm

R + bRm

. (6.5)

Here the ai are fitting parameters (see Table 6.2). We choose b and Rm such that only
a few parameters ai are needed for describing the steep slope on the short internuclear
separation side and the much smaller slope on the large R side. Rm is chosen close to
the value of the equilibrium separation. The potential is extrapolated for R < RSR by
the short-range part USR with

USR(R) = u1 + u2/R
Ns . (6.6)

We adjust the parameters u1 and u2 to get a continuous transition at RSR. The final fit
uses Ns ≈ 4.5 for both the X 1Σ+

g and a 3Σ+
u states.

For large internuclear distances (R > RLR), we adopted the standard long-range form
of molecular potentials

ULR(R) = −C6/R
6 − C8/R

8 − C10/R
10 ± Eexch, (6.7)

where the exchange contribution given by [Smirnov 1965]

Eexch = AexR
γ exp(−βR) (6.8)

is negative for the singlet and positive for the triplet potential. By adjusting the pa-
rameter a0 in Eq. (6.4) we can assure a continuous transition from ULR to UIR. As
mentioned, the data on hand include the three different isotopologues, 85Rb2,

87Rb2,
and 85Rb87Rb. Using a model developed earlier for LiK [Tiemann 2009] we checked in
the final calculations that the data are not sufficiently precise to extract deviations from
the Born-Oppenheimer approximation. Thus we derive the potentials without any mass
scaling correction. These potentials are shown in Fig. 6.5 (solid curves) together with
an earlier calculation from Lozeille [Lozeille 2006]. The dissociation energy of the singlet
potential changed by 200 cm−1, the dissociation energy of the triplet potential changed
by 10 cm−1. Our experiments are not sensitive to the actual shape of the repulsive
wall, because we only measured bound states. The inset shows a zoom into the triplet
potential.

Having discussed the complete physical model, we are now ready to calculate all of
the relevant bound-state energies and scattering properties to compare them with the
experimental data. We decided to evaluate the Hamiltonian in Hund’s basis e) as f
is still a relatively good quantum number. This is due to the fact that the hyperfine
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Figure 6.5: Optimized potentials for the singlet and triplet state. The dotted curves cor-
respond to a calculation by [Lozeille 2006]. The solid red curves correspond
to the intermediate and long-range part of the singlet and triplet potentials,
whereas solid blue curves indicate the short-range part with the repulsive
wall. It should be mentioned that our experiments are not sensitive to the
actual shape of the repulsive wall, because we only measured bound states
[Tiemann 2011]. The inset shows a zoom into the triplet potential.
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interaction is larger than the Zeeman interaction in our experiment. As the total electron
spin is not a good quantum number in Hund’s case e), the choice of this basis leads to
significant non-diagonal matrix elements from the Born-Oppenheimer potentials, which
are given for a pure singlet or triplet state.

We evaluate the free parameters of the model with a self-consistent iteration loop
and alternate between: (i) coupled channel calculations of the full Hamiltonian and (ii)
solving the Schrödinger equation separately for the states X 1Σ+

g and a 3Σ+
u using only

the first line of Eq. (6.3) and applying the Numerov procedure. The coupled-channel
calculations in step (i) are used to determine the hyperfine and Zeeman structure. From
this, we construct hyperfine free spectroscopic data. This data is the input for the Born-
Oppenheimer potential fits in step (ii). We incorporate the fitting routine for the plain
Born-Oppenheimer potentials in step (ii). The optimization of the singlet and triplet
potentials is done simultaneously as both potentials have a common asymptote. These
asymptotic potentials are given in Eq. (6.7) with equal dispersion coefficients.

Normally, the iteration loop between the potential function fit and the coupled-
channel calculation for producing hyperfine-structure-free data converges in a few steps,
but we observed some systematic deviations between measurements and calculations.
Specifically, the hyperfine splitting showed variations of a few percent within the vibra-
tional ladder. Even though our experimental accuracy is not better than 30MHz, such
small variations are observable since the hyperfine splitting in 87Rb2 of 12GHz is so
large.

In order to theoretically account for the hyperfine variations we extended the model.
We changed the fixed atomic hyperfine parameters to a function of R. We chose a
function which switches at a distance R0 from the atomic value of the hyperfine constant
to another value for a deeply bound dimer,

aa/b = aRb

(
1 +

cf
e(R−R0)/∆R + 1

)
. (6.9)

Here aRb is the atomic hyperfine constant, cf the fractional change of the constant and
R0 and ∆R describe the switching distance and its width, respectively. We also tried
several other simple switching functions, which produced about equal fit quality. The
function in Eq. (6.9) is easily applicable to other isotopes by introducing the proper
atomic hyperfine constant, because the scaling parameter cf will be independent of the
isotope. We chose R0 = 11.0 a0 and ∆R = 0.5 a0 (where a0 = 0.5292 × 10−10m is
the Bohr radius), such that switching takes place approximately at the minimum of
the a 3Σ+

u potential. From our fits, we obtained an amplitude cf = −0.0778, which
corresponds to a variation of the hyperfine coupling across the potential depth of up to
8%. Using ⟨R | qv⟩ = Ψvib

q, v(R), we can see that the influence of this hyperfine variation
within an individual vibrational manifold will be smaller because of the averaging of
Eq. (6.9) over the vibrational wave function⟨

q′v′
∣∣∣∣aa/b − aRb

aRb

∣∣∣∣qv⟩ =

∫ (
Ψvib

q′, v′(R)
)∗ cf
e(R−R0)/∆R + 1

Ψvib
q, v(R) dR < cf . (6.10)
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As mentioned before, the spin-spin interaction also needs optimization in order to explain
systematic shifts of Feshbach resonances in s-wave and p-wave scattering channels, as
measured in [Marte 2002]. The spin-spin interaction couples different partial waves
l subject to the selection rule l = 0,±2 such that resonances in a s-wave scattering
channel involve bound states with l = 0 and l = 2. In higher order, this also involves
states with l = 4 etc. The spin-spin interaction splits the resonances according to |ml|,
the projection quantum number of rotation on the space fixed axis. We use a simple
functional form for λ(R) in Eq. (6.3)

λ(R) = −3

4
α2

(
1

R3
+ aSO exp (−b(R−RSO))

)
, (6.11)

that consists of two terms. The first term represents the magnetic dipole-dipole inter-
action and the second term is the second-order spin-orbit contribution. If Eq. (6.11)
is given in atomic units, α is the fine structure constant. Since the few data at hand
cannot be highly sensitive to the actual function, we adopted values for b and RSO from
a theoretical approach by Mies et al. for Rb2 [Mies 1996] (b= 0.7196 a−1

0 and RSO= 7.5
a0). We fitted the parameter aSO, which yielded aSO= -0.0416 a−3

0 . With these param-
eters, the second part in Eq. (6.11) contributes significantly to the effective spin-spin
interaction in the internuclear separation interval R < 20a0. This affects bound levels of
the triplet state that determine the Feshbach resonances. After optimization, we achieve
an accuracy of 0.1G. This correction to the constant λ does not influence the description
of the other bound states within their uncertainty.

Finally, we found that we could improve the fit by adding to the long-range formula
Eq. (6.7) a term of the form −C26/R

26 with an amplitude C26, which contributes about
a thousandth of the total long range energy at the connection point RLR. The exponent
of 26 was chosen so that the term is negligible outside a small region around the long
range connection point R = RLR.

The final parameter sets of the potentials are shown in Tables 6.1 and 6.2 for the sin-
glet and triplet states, respectively. The derived potentials and the corrections defined
previously agree very closely with all observations to within their experimental uncer-
tainties, and the normalized standard deviation, that is standard deviation divided by
experimental uncertainty, is close to one. In fact, depending on which of our experimen-
tal data sets (hyperfine-free spectra, binding energies from dark-state spectroscopy, or
Feshbach resonances) we compare to the model calculations, the normalized standard
deviations vary only slightly, ranging from 1.01 to 1.3. The normalized standard devia-
tion from the joint calculation over the huge body of ro-vibrational energies (12459 data
points from the states X 1Σ+

g and a 3Σ+
u ) is about 1.01, which is quite satisfactory.

As another result of our analysis, we were able to eliminate an ambiguity in the
rotational assignment of the Fourier transform spectroscopy data reported by Beser et
al. for the a 3Σ+

u state [Beser 2009]. The authors stated in the rotational assignment
an ambiguity by ∆N = ±1. We determined that the shift of the rotational quantum
number must be ∆N = +1. Afterwards we used the data from [Beser 2009] with that
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assignment for further fits. The results in Tables 6.1 and 6.2 include these data and will
give better predictions of rotational levels with higher rotational quantum numbers.

6.4 Progression of vibrational levels and their
substructure

In the following, we discuss interesting insights which we have gained from our analysis
of the coupled system. In particular, we investigate the progression of several quantities
in the vibrational ladder and the mixing of singlet and triplet states. We concentrate on
the details of the a 3Σ+

u state because it was studied in full resolution of hyperfine and
Zeeman energy over the whole vibrational ladder. Such a body of data does not exist
for any other alkali-metal dimer.

6.4.1 Vibrational ladder and rotational progression

We return to the vibrational states shown in Fig. 6.2, which allows us to compare in detail
the results of the optimized coupled-channel model with our experimental findings for
all vibrational states.

Vibrational quantum number

∆
E

  
 /
 h

 (
G

H
z
)

B

Figure 6.6: Energy splitting ∆EB between the “s1” level (N = 0) and the “d1” level
(N = 2) of the a 3Σ+

u state for a given vibrational quantum number v. Large
error bars correspond to early measurements without simultaneous wave me-
ter readings (see text). The continuous line is a calculation based on the
coupled-channel model.

The binding energies given in Fig. 6.2 (a) belong to the most deeply bound level in
each vibrational manifold, that is, the state with quantum numbers N = 0, f = 2 (at
0G) and MF = 2. We will refer to this level as “s1”. The “s1” level of v = 0 in the
a 3Σ+

u potential is also the lowest bound state in that potential and has an observed
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R < RSR = 3.126 Å

Ns 4.53389

u∗
1 -0.638904880×104 cm−1

u∗
2 0.112005361×107 cm−1ÅNs

RSR ≤ R ≤ RLR = 11.000 Å

b −0.13

Rm 4.209912760 Å

a0 -3993.592873 cm−1

a1 0.000000000000000000 cm−1

a2 0.282069372972346137×105 cm−1

a3 0.560425000209256905×104 cm−1

a4 -0.423962138510562945×105 cm−1

a5 -0.598558066508841584×105 cm−1

a6 -0.162613532034769596×105 cm−1

a7 -0.405142102246254944×105 cm−1

a8 0.195237415352729586×106 cm−1

a9 0.413823663033582852×106 cm−1

a10 -0.425543284828921501×107 cm−1

a11 0.546674790157210198×106 cm−1

a12 0.663194778861331940×108 cm−1

a13 -0.558341849704095051×108 cm−1

a14 -0.573987344918535471×109 cm−1

a15 0.102010964189156187×1010 cm−1

a16 0.300040150506311035×1010 cm−1

a17 -0.893187252759830856×1010 cm−1

a18 -0.736002541483347511×1010 cm−1

a19 0.423130460980355225×1011 cm−1

a20 -0.786351477693491840×1010 cm−1

a21 -0.102470557344862152×1012 cm−1

a22 0.895155811349267578×1011 cm−1

a23 0.830355322355692902×1011 cm−1

a24 -0.150102297761234375×1012 cm−1

a25 0.586778574293387070×1011 cm−1

R > RLR

C6 0.2270032×108 cm−1Å6

C8 0.7782886×109 cm−1Å8

C10 0.2868869×1011 cm−1Å10

C∗∗
26 0.2819810×1026 cm−1Å26

Aex 0.1317786×105 cm−1Å−γ

γ 5.317689

β 2.093816 Å−1

Derived constants:

equilibrium distance: RX
e = 4.20991(5) Å

electronic term energy: TX
e = -3993.5928(30) cm−1

Table 6.1: Parameters of the analytic representation of the X 1Σ+
g state potential. The

energy reference is the dissociation asymptote and the term energy TX
e is the

depth of the potential. Parameters with ∗ are set for continuous extrapolation
of the potential. See text for those with ∗∗.
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R < RSR = 5.07 Å

Ns 4.5338950

u∗
1 -0.619088543×103 cm−1

u∗
2 0.956231677×106 cm−1ÅNs

RSR ≤ R ≤ RLR = 11.00 Å

b −0.33

Rm 6.0933451 Å

a0 -241.503352 cm−1

a1 -0.672503402304666542 cm−1

a2 0.195494577140503543×104 cm−1

a3 -0.141544168453406223×104 cm−1

a4 -0.221166468149940465×104 cm−1

a5 0.165443726445793004×104 cm−1

a6 -0.596412188910614259×104 cm−1

a7 0.654481694231538040×104 cm−1

a8 0.261413416681972012×105 cm−1

a9 -0.349701859112702878×105 cm−1

a10 -0.328185277155018630×105 cm−1

a11 0.790208849885562522×105 cm−1

a12 -0.398783520249289213×105 cm−1

R > RLR

C6 0.2270032×108 cm−1Å6

C8 0.7782886×109 cm−1Å8

C10 0.2868869×1011 cm−1Å10

C∗∗
26 0.2819810×1026 cm−1Å26

Aex 0.1317786×105 cm−1Å−γ

γ 5.317689

β 2.093816 Å−1

Derived constants:

equilibrium distance: Ra
e= 6.0940(10) Å

electronic term energy: Ta
e = -241.5034(30) cm−1

Table 6.2: Parameters of the analytic representation of the a 3Σ+
u state potential. The

energy reference is the dissociation asymptote and the term energy T a
e is the

depth of the potential. Parameters with ∗ are set for continuous extrapolation
of the potential. See text for those with ∗∗.
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binding energy of (7038.067 ± 0.050)GHz×h at 1005.8G with respect to the lowest
atomic asymptote fa ≈ 1,ma = 1 and fb ≈ 1,mb = 1.

Fig. 6.2 (b) shows the residues between our experimental “s1” data and the optimized
model. In general, the model agrees very well with the measurements to within the
error bars. The data points with larger error bars belong to early measurements without
simultaneous wave meter reading of both lasers, which leads to a significant increase in
the experimental uncertainty (see section 6.1).

We now investigate the progression of the rotational splitting in the vibrational ladder.
For this, we consider the “s1” level (N = 0) and its nearest neighbor in our spectra
with (N = 2) which we call “d1” (see Figs. 6.3 and 6.4). The “s1” and “d1” levels
both have f = 2 and mf = 2. Thus, the splitting between them represents to a high
degree rotational energy. The splitting decreases with increasing v, due to the fact that
the mean distance between the Rb2 nuclei (and hence the effective moment of inertia)
increases as v increases. We have directly observed this behavior in our experiments
(see Fig. 6.6). There is very good agreement between the experimental data and the
calculation (continuous line) using the optimized potential of the a 3Σ+

u state.

Besides the “s1” level (N = 0, f = 2) and the “d1” level (N = 2, f = 2) we also
observe states with N = 4 and f = 2 for several low lying vibrational levels. The two
lines in Fig. 3 (a) at 4839 GHz and the two lines in Fig. 3 (b) at 7032 GHz belong
to N = 4. Observation of these levels improved the precision when fixing the position
of the a 3Σ+

u potential minimum in terms of the internuclear distance, or the effective
rotational constant Bv. This turned out to be important for the reassignment of the
observations by Beser et al. [Beser 2009], as discussed at the end of section 6.3.

6.4.2 Hyperfine splitting and singlet-triplet mixing

It is instructive to investigate the progression of the multiplet structure of the vibrational
levels. Figure 6.7 (a) shows calculated levels for MF = 2 stacked on top of each other
for increasing v of the a 3Σ+

u potential. We concentrate on the triplet states (S = 1)
with rotation N = 0, 2 and we restrict ourselves further to triplet levels with I = 3.
Additionally, we show singlet levels (S = 0) with I = 2 that are located in the vicinity
of the triplet levels. Thus, the typical stick spectrum of each vibrational manifold in the
a 3Σ+

u state looks like the one in Fig. 6.4. There are three groups of lines with f = 4, 3, 2,
respectively. The vibrational quantum number v runs from 0 to 34, where the multiplets
do not yet overlap for different vibrational levels.

In order to properly stack the data, we have chosen the level with N = 0, f ≈ 3 to
be the energy reference (∆EB = 0) for each vibrational level. We call this level “s2”
(see also Figs. 3 and 4). This level is quite insensitive to mixing with singlet levels,
which makes it a good reference because there is no singlet level with f = 3 and even
parity for direct coupling. It is clear from Fig. 6.7 (a), that the multiplet structure
of different vibrational manifolds is similar, at least from v = 0 to about v = 30, as
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Figure 6.7: a) Progression of the substructure of the vibrational manifold at B = 1005.8
G. Shown are calculated a 3Σ+

u levels with quantum numbers I ≈ 3,MF = 2,
N = 0, 2, and v = 0... 34. Thick black lines correspond to N = 0, gray ones
to N = 2. The “s2” level serves as energy reference (∆EB = 0) in each
vibrational substructure. In addition to the triplet levels, nearby singlet lev-
els of the X 1Σ+

g potential are also shown (thick black crosses, N = 0; gray
crosses, N = 2).
b) Symbols as in part a). To discuss the singlet-triplet mixing from a theo-
retical point of view, we now also include lines with I ≈ 1 but only N = 0 for
clarity. On the bottom, the approximate quantum numbers (I, f) are given.
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expected from the simple model Hamiltonian in Eq. (6.2). The structure changes in a
smooth and monotonic way with v. For each of the quantum numbers f = 4, 3, 2 the
splitting between N = 0 and N = 2 decreases with increasing v as discussed in section
6.4.1.

Appreciable mixing of a singlet and a triplet levels can occur when two levels with
f = 2 are located close enough, in our case within a few GHz, corresponding to the
strength of the hyperfine interaction. One effect of the mixing is a shift of the level
positions due to level repulsion, clearly seen in Fig. 6.7. For v = 24, for example, the
triplet lines of f = 2 are pushed to the left by about 0.4GHz by the close singlet levels
on the right-hand side. For v < 20 we also observe narrow coincidences between triplet
and singlet levels, for example for v = 15. Here almost no perturbation appears in the
graph, in contrast to the case v = 24. We attribute this to a significantly lower overlap
of the vibrational wave functions of the singlet and triplet levels for the case v = 15
compared to that of v = 24. For vibrational quantum numbers v > 30, mixing is very
strong and happens for every vibrational level. Because the long-range behavior of the
a 3Σ+

u and X 1Σ+
g states is similar, the overlap of the wave functions will become large

for high v. The vibrational spacing will become similar to the hyperfine splitting, and
the state vectors here are best described by Hund’s coupling case e), that is, quantum
numbers of atom pairs.

Singlet-triplet mixing occurs not only for triplet molecules with I = 3 but also for
I = 1. Figure 6.7 b) shows (N = 0) triplet levels with I = 3 and I = 1 for v = 25 to
34. The repulsion of the I = 1 levels from the singlet levels is clearly visible. The figure
shows an avoided-crossing-like behavior for the levels on the right as a function of v,
indicating strong mixing between I = 3 and I = 2. This means that the u/g symmetry
is broken for these levels. Further, our calculations show that only levels with the same
f and N quantum numbers mix considerably. The singlet lines shown here have f = 2
and N = 0. Apparently, despite the relatively strong magnetic fields of about 1000G f
is still quite a good quantum number. Indeed, f appears as quantum number in both
state vectors for Hund’s cases b) and e) and loses its meaning only for much higher
magnetic fields. N is good due to the small effective spin-spin interaction.

The shift in position due to mixing can be traced more clearly with a simple differ-
ence method discussed in the following. Fig. 6.8 shows the “discrete second derivative”
δ2EB(v) of the function for the binding energies EB(v), that is δ

2EB(v) = EB(v + 1)−
2EB(v)+EB(v− 1). In other words, it is the difference between the neighboring energy
splittings. The curve calculated from “s1” binding energies exhibits sudden jumps for
particular vibrational levels. These are due to singlet-triplet mixing and the v positions
are consistent with Fig. 6.7. In contrast, the δ2EB(v) curve for the “s2” state is smooth,
and thus does not indicate mixing with the singlet lines, which justifies its choice as
energy reference in Fig. 6.7.

We have confirmed these singlet-triplet mixings experimentally. Fig. 6.9 shows scans
of parts of the vibrational levels v = 28, 31, 33, where the intermediate level |e⟩ with 1g
character was used (see also Fig. 6.3). The “s2” level is chosen to be the energy reference
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Figure 6.8: “Discrete second derivative” of EB(v) in the a 3Σ+
u potential, that is

δ2EB(v) = EB(v + 1) − 2EB(v) + EB(v − 1). The solid curve connects
the points from the calculated “s1” levels, while the diamonds correspond to
the calculated “s2”-state.

at ∆EB = 0 as before. For v = 28, we observe a structure similar to that of Figs. 6.3
and 6.4. Thus, we take the v = 28 spectrum as reference for the pure ”triplet” case.
In fact, from our calculations we see that the next singlet level is located about 30GHz
away. This detuning gives rise to only a very small mixing which slightly lowers the
triplet character of the “s1”-level to 0.99. The singlet level obtains a triplet character
of 0.02. However, due to the selection rule ∆S = 0, the transition to the intermediate
state |e⟩ with its very pure triplet character would be simply too weak to detect.

This situation changes drastically for v = 31 and 33. Two additional lines are visible
in the spectrum from singlet states with MF = 2, N = 0 and 2. Here the singlet-triplet
mixing is close to 40% which makes the singlet lines easily detectable. Additionally,
for v = 31, the “s1” and ”d1” components are shifted to lower values than expected
from the reference spectrum v = 28 due to repulsion by the singlet component on the
high energy side. In the case of v = 33 the singlet component pushes “s1” and ”d1”
in the opposite direction. Our calculations show that even the energy reference “s2”
starts to show mixing, indicated by its reduced triplet character of 0.98. In parallel to
the singlet-triplet mixing, the quantum number I loses its meaning as well; for example,
the “s1” level of v = 33 has an expectation value for I of 2.75 instead of 3, due to a
significant contribution of I = 2 from the singlet state. Comparing the stick-spectrum
line positions with observed lines in Fig. 6.9, we note an excellent agreement between
experiment and theory. We measured the singlet levels at the positions predicted from
first calculations. This emphasizes the predictive power of the model.

The fact that we observe singlet-triplet mixing for relatively deeply bound levels with
binding energies of a few hundred GHz×h is already quite interesting. In addition, it
provides valuable information for fixing the energy position of the triplet levels with
respect to the singlets with high precision. This is especially important for the large
body of data of the singlet system (see section 6.3), which was obtained independent of
the triplet state [Seto 2000].
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Figure 6.9: Observation of strongly perturbed singlet levels. We compare sections of line
spectra for the vibrational levels v = 28, 31 and 33. As in Fig. 6.7 the “s2”-
level is chosen as energy reference ∆EB = 0. The lines (and crosses) above
the experimentally observed spectrum are obtained from coupled-channel
calculations. Black lines (crosses) represent N = 0 levels, while thin grey
lines (crosses) correspond to N = 2 levels for S = 1 (S = 0 respectively).
The lines that originate from the singlet states are labeled with “ 1Σ ”.

6.4.3 Franck-Condon overlap (1) 3Σ+
g (v

′ = 13) → a 3Σ+
u (v)

When scanning over all vibrational levels, the transition matrix elements for the tran-
sition from |e⟩ to |v⟩ are not constant but oscillate as a function of v. This oscillation
is mainly due to variations in the Franck-Condon overlap between the |e⟩, v′ = 13 vi-
brational wave function and the vibrational wave functions |v⟩ of the a 3Σ+

u potential.
Figure 6.10 shows the normalized transition matrix element, c2 = Ω2(v)/(2π

√
I2), where

Ω2 is the Rabi frequency and I2 is the intensity of laser 2. Ω2 is determined from the
measured width of the dark resonance using a three level model. Here, the Rabi fre-
quency Ω2 is the only free parameter, and we fit the line shape to the dark resonance
[Winkler 2007a]. For these measurements, we used the excited level 1g as |e⟩ and the
“s1” levels as |v⟩ of the a 3Σ+

u state. The transition matrix element c2 varies from about

0.2 to 33MHz/
√
Wcm−2. In terms of a dipole moment, ⟨er⟩ = Ω2(v)/

√
I2 × ~

√
ϵ0c/2,

this corresponds to 0.05 to 8.0×10−30Cm.

In comparison, the amplitude for the transition between |i⟩ and |e⟩ is Ω1/
√
I1 =

0.4MHz/
√
Wcm−2. We determine Ω1 from resonant excitation, measuring how quickly

|i⟩ molecules are lost for a given laser intensity I1. The data in Fig. 6.10 can be used to
fix the position of the (1) 3Σ+

g potential relative to the a 3Σ+
u potential by applying the

Franck-Condon approximation.
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Figure 6.10: Normalized transition matrix element Ω2/(2π
√
I2) between the excited level

|e⟩ (v′ = 13, 1g character) in the (1) 3Σ+
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vibrational quantum number v in the lowest triplet potential a 3Σ+
u .

6.5 Final analysis and reassignment of Feshbach
resonances

The final result to be discussed in this section has developed from an interplay between
experimental results and an optimized theory, which led in turn to a better understanding
of the spectra or led to new predictions like the singlet-triplet mixture for deeply bound
levels. By mainly optimizing the triplet Born-Oppenheimer potential, we obtain a model
that can quite accurately predict all vibrational levels in the a 3Σ+

u and X 1Σ+
g potentials

for different ranges of rotational quantum numbers. After reassigning recent data from
Fourier transform spectroscopy [Beser 2009], Eberhard Tiemann extends the range of
applicability to rotational states as high as N = 70 for the a 3Σ+

u potential. Because of
this reassignment, molecular parameters like the equilibrium internuclear separation Re

or the dissociation energy De have changed significantly compared to values reported
in [Beser 2009] (Reported values from Beser et al.: Re = 6.0690 Å and De = 241.4529
cm−1). The new values are given in Table 6.2. For rotational levels withN ≤ 4 the model
calculations for triplet levels of any vibrational level should have a precision similar to
that of our measurements, that is, about 30MHz. For higher N , this precision will
increasingly degrade due to reduced accuracy of the data from [Beser 2009] of about
300 MHz for N = 70. Compared to [Seto 2000], the potential function of the X 1Σ+

g

ground state is significantly improved in the region close to the atomic asymptote by
including data on the mixed singlet-triplet levels of this study and data on Feshbach
resonances from various other sources. The derived potential function can predict the
deeply bound levels with an accuracy (about 50 MHz) comparable to that of the Fourier
transform spectroscopy in [Seto 2000]. The asymptotic levels are accurate to a few MHz
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isotope asinglet atriplet alowest Rb + Rb
(f,mf ) + (f,mf )

87/87 90.35 99.04 100.36 (1, 1) + (1, 1)
85/85 2720 −386.9 −460.1 (2, 2) + (2, 2)
87/85 11.37 201.0 229.4 (1, 1) + (2, 2)

Table 6.3: Scattering lengths (in units of Bohr radius, a0 = 0.5292 × 10−10m). The
scattering length of the energetically lowest hyperfine state is alowest.

or better as their position is determined by the precisely measured location of Feshbach
resonances. During the optimization process it became clear that we face systematic
deviations in the description of the hyperfine structure. Using a hyperfine structure
which is weakly dependent on the vibrational level, Eberhard Tiemann was able to
resolve the problem. Furthermore, he realized that the modified hyperfine structure also
influences the predictions of Feshbach resonances if one would like to reach accuracies
on the order of 0.1 G.

Eberhard Tiemann improved the description of the large set of 87Rb Feshbach res-
onances with our final model as compared to Ref. [Marte 2002], where the original
calculation was based only on a few selected resonances and a derived asymptotic form
of the two potentials. In [Marte 2002], deviations as high as 2G appeared and, for exam-
ple, the resonances of asymptote (fa = 1,mfa = 0)+(fb = 1,mfb = 1) were all calculated
systematically too high. In the present model, these discrepancies disappear. The aver-
age deviation over all 46 resonances, given in [Marte 2002, Roberts 2001, Erhard 2003,
Papp 2006], is about 0.15G. In fact, using our optimized model, we were able to reassign
three resonances reported by [Marte 2002]: 306.94G to 2(0,1), 1137.97G to 3(-1,1), and
729.43G to 2(0,-1), where we use the abbreviated notation l(mfa ,mfb). If one removes
the R-dependence of the hyperfine coupling as given in Eq. (6.9), deviations of the order
of 0.5G appear. These vary according to the different f levels which correlate to the Fes-
hbach resonances. To improve the overall fit, one might be forced to include many-body
effects in the collision process for detecting the resonances. The overall improvement
of the long-range behavior also allows the whole set of scattering lengths for the three
isotopologues to be calculated. Table 6.3 gives a selection of these calculations. The
error of these data will be in the last digit shown. These values are consistent with
earlier publications but more precise and, in general, internally consistent between the
isotopologues.
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In this thesis, I present precision spectroscopy of ultracold 87Rb2. We perform one-
photon spectroscopy of the first excited (1) 3Σ+

g state and Raman spectroscopy of the
a 3Σ+

u ground state.
Driving bound-bound transitions between the Feshbach level and the first excited (1) 3Σ+

g

state, we were able to resolve the low-lying vibrational (v < 15) and rotational structure.
The accuracy of the position of the measured lines is about 60MHz but the relative
position of the lines with respect to each other is often much better and reaches a few
tens of MHz. The dominating feature of the observed spectra is the splitting of the
vibrational levels into 0−g and 1g components which can be understood as an effect of
strong second order spin-orbit coupling of the electrons. Furthermore, we investigate
the hyperfine and Zeeman structure. In brief, the structure for the 0−g line is mainly
determined by the vanishing spin component Ω = 0, which leads to a very small hyperfine
and Zeeman structure and a good quantum number J . In contrast, for the 1g line
hyperfine and Zeeman interactions are large for small rotations but are then averaged
out at larger rotations, where the rotational splitting again determines the spectrum
according to J(J + 1). The measurement of the Zeeman shifts for the excited state was
technically challenging. In order to extract the magnetic shifts of the excited (1) 3Σ+

g

state, we employed a technique where we kept track of the Feshbach molecule’s quantum
state. This technique enabled us to measure spectra at 0G which fit the theory quite
well. We compare our measurements with calculations from our collaborators Marius
Lysebo and Leif Veseth in Oslo who use an effective Hamiltonian to calculate the level
structure. That means that all numerical simulations are independent of the internuclear
separation.

Despite the overall understanding of the level structure, we still observe systematic
deviations between experiment and theory on the order of a few 100 MHz which should
vanish in a more refined model. From our data we find that one of the two parameters
for hyperfine interaction (the anisotropic part) could not be determined. If we want to
measure the anisotropic hyperfine parameter in the future, the experimental data of the
0−g line will have to be measured with higher precision. It would be interesting to see
whether the determined fit parameters for λ (effective spin-spin interaction) and for the
hyperfine contact interaction can be deduced from ab-initio calculations and the known
atomic properties. Besides gaining a better insight into the level structure of the so
far relatively unexplored (1) 3Σ+

g potential, the present work is helpful for future cold
molecule experiments where the molecules need to be prepared in various well defined
quantum states. We may then choose appropriate states in the (1) 3Σ+

g potential as
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intermediate states in an optical transfer scheme which starts from Feshbach molecules
to maximize efficiency.

The a 3Σ+
u ground state is explored using high resolution dark-state spectroscopy. Fi-

nally, we obtain a Hamiltonian which we use to calculate all vibrational, rotational, and
hyperfine levels in the a 3Σ+

u and X 1Σ+
g potentials. With our model, we can predict all

deeply bound levels with rotational quantum number N ≤ 4 in the a 3Σ+
u potential with

an accuracy of about 30MHz. For higher N , this precision will increasingly degrade due
to reduced accuracy of the data from [Beser 2009] to about 300 MHz for N = 70. With
the help of the singlet-triplet levels, it becomes possible to improve the X 1Σ+

g ground
state model considerably. Using the data from [Seto 2000] and by including measure-
ments on Feshbach resonances from various other sources, we can calculate the deeply
bound levels with an accuracy of about 50 MHz. The asymptotic levels are accurate on
the order of a few MHz or better as their position is determined by the precisely measured
location of Feshbach resonances. Including the improved R-dependent hyperfine interac-
tion, Eberhard Tiemann improved the description of the large set of 87Rb Feshbach res-
onances as compared to Ref. [Marte 2002]. In the present model, the average deviation
over all 46 resonances, given in [Marte 2002, Roberts 2001, Erhard 2003, Papp 2006], is
about 0.15G.

Our model is valuable for our planned experiments on precision spectroscopy. The
location of the molecular states is now well known in theory and experimental data
will be mainly limited by the accuracy of the wave meter. Further experiments with
higher precision could be also used to test the fundamental limits of the coupled-channel
model, where we (1) assume the validity of the Born-Oppenheimer approximation, (2)
use Zeeman terms with atomic parameters only, (3) a limited functional dependence
in R of the hyperfine and spin-spin interaction and (4) neglect quadrupole hyperfine
coupling. Another set of experiments concerns the collisional behavior of ultracold triplet
ground-state molecules. Up to now, it is not clear whether triplet molecules are stable
when they collide with each other at temperatures below 1µK. With this knowledge it
might become possible to create a BEC of deeply bound triplet molecules. Jaksch et
al. [Jaksch 2002] propose a method where they melt an optical lattice-induced Mott
insulator. As we already created trapped molecules in the ro-vibrational triplet ground
state [Lang 2008], we then have to lower the depth of the optical lattice to melt the Mott
insulator and reach BEC. As we showed earlier, the molecules’ dynamic is not trivial
because it depends strongly on the lattice depth [Lang 2009].
A second path could use “classical” evaporation to throw the hottest molecules away.
Here, we must drive transitions between the molecular triplet ground state and another
molecular state which is not trapped magnetically. A detailed analysis is needed to
identify the appropriate molecular states.

Triplet molecules have a magnetic moment, and thus a much richer level structure
than singlet molecules. This structure is not only interesting by itself, but also serves
as a potential starting point for exciting new experiments. Depending on the coupling
between different triplet molecules, it could become possible to extend the scheme of Fes-
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hbach association towards dimer-dimer collisions to create weakly bound tetramers. In
the future we also want to combine Feshbach association with a bichromatic superlattice.
This lattice has a double-well structure where we can tune the potential depth and the
interaction between two neighboring lattice-sites within one double well. Full control of
the interactions between the two dimers hopefully allows management of the collisional
behavior. This is an important step towards few-body physics, as already started in
the experiments of [Zahzam 2006, Knoop 2009, Gross 2009, Pollack 2009, Knoop 2010,
Ospelkaus 2010a] and [Ospelkaus 2010b]. Future experiments on tetramers will continue
experiments on Efimov-states [Kraemer 2006, Ferlaino 2009, Zaccanti 2009] to further
enter the field of ultracold chemistry [Staanum 2006, Krems 2005, Krems 2008].

Precision measurements of spectroscopic lines also open up the possibility to test
for variation of the fundamental constants over time. For a review article see Chin et
al. [Chin 2009]. An early proposal uses the scattering length to measure the proton-
electron mass-ratio mp/me near narrow Feshbach resonances [Chin 2006]. Calculations
based on single- and two-channel scattering models show that any variation of the mass
ratio would propagate to the scattering length. They conclude that deviation should be
observed when measuring nearby narrow magnetic or optical Feshbach resonances for
6Li or 133Cs. As there are also many Feshbach resonances in 87Rb [Marte 2002] which are
known with high precision [Strauss 2010], it would be interesting to estimate the effect of
a change in the proton-electron mass ratio for the case of 87Rb. Here, the control of the
magnetic field strength and the homogeneity of the magnetic field are challenging but
should be within the bounds of possibility [Chin 2009]. A similar article by Flambaum
and co-workers [Flambaum 2007] suggests looking for variations of the fine structure
constant and the proton-electron mass ratio mp/me using transitions between levels of
different nature. For example, these levels can belong to different hyperfine structure
components and transition frequencies typically lie in the microwave regime. Here, the
required accuracy for 87Rb is about 10−5Hz. As the ground state potentials of 87Rb2 are
Σ states it is not possible to observe any drift of the fine structure constant because the
energy (and thus, the drift) is proportional to Λ ·Σ = 0 to first order. A similar approach
uses different electronic potentials and is given by DeMille [DeMille 2008]. In contrast to
the proposal by Flambaum [Flambaum 2007], they are not sensitive to a change in the
fine-structure constant α and only consider experiments to measure the proton-electron
mass-ratio using a nearly degenerate pair of molecular vibrational levels. To detect a
possible shift, a microwave field drives transitions between these fine-structure sublevels.
Here, the sticking point is that the two levels belong to different electronic potentials.
Furthermore they show that such a pair exists in Cs2. As explained in chapter 6, 87Rb2

exhibits several good singlet-triplet pair candidates. It would now be interesting to
calculate the sensitivity of these levels in 87Rb2 to estimate the effect of a change in the
proton-electron mass ratio. Here, the measurement of the transition frequency with high
precision is possible but not easy. All of this shows that molecules will have an exciting
future!
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A. J. Daley, A. Kantian, H. P. Büchler, and P. Zoller, Repulsively bound atom pairs
in an optical lattice, Nature 441, 853 (2006).

[Winkler 2007] K. Winkler, Molecules and Atom Pairs in Optical Lattice Potentials.
PhD thesis, Institut für Experimentalphysik, Universität Innsbruck (2007).

[Winkler 2007a] K. Winkler, F. Lang, G. Thalhammer, P. v. d. Straten, R. Grimm, and
J. Hecker Denschlag, Coherent Optical Transfer of Feshbach Molecules to a Lower
Vibrational State, Phys. Rev. Lett. 98, 043201 (2007).

[Wynar 2000] R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen,
Molecules in a Bose-Einstein Condensate, Science 287, 1016 (2000).

[Xu 2003] K. Xu, T. Mukaiyama, J. R. Abo-Shaeer, J. K. Chin, D. E. Miller, and W.
Ketterle, Formation of Quantum-Degenerate Sodium Molecules , Phys. Rev. Lett.
91, 210402 (2003).

[Yelin 2006] S. F. Yelin, K. Kirby, and R. Cote, Schemes for robust quantum computa-
tion with polar molecules, Phys. Rev. A 74, 050301(R) (2006).

[Zaccanti 2009] M. Zaccanti, B. Deissler, C. DÉrrico, M. Fattori, M. Jona-Lasinio, S.
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