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The work described in this thesis was carried out at the

Universität Innsbruck

Institut für Experimentalphysik

Technikerstrasse 25

A-6020 Innsbruck

and at the

Universität Ulm

Institut für Quantenmaterie

Albert-Einstein-Allee 11

D-89069 Ulm





Zusammenfassung

In dieser Arbeit habe ich mich mit Kollisionen zwischen lasergekühlten, gefan-

genen Ionen (Ba+ oder Rb+) und ultrakalten neutralen Atomen (Rb) beschäftigt.

Dafür war es notwendig einen neuartigen experimentellen Aufbau zu entwickeln,

welcher ein Bose-Einstein Kondensations (BEC) Experiment mit einer Paulfalle

für einzelne Ionen kombiniert. Die ultrakalten Atome werden dabei in einer

magnetischen Falle innerhalb des BEC Experiments hergestellt und mit Hilfe

eines bewegten optischen Gitters vertikal über eine Strecke von 30 cm zur Ionen-

falle transportiert.

Die Wechselwirkung zwischen Atomen und Ionen kann durch ein 1/r4 Polar-

isationspotential beschrieben werden. Sie ist im Allgemeinen langreichweitiger

und stärker als die Wechselwirkung zwischen zwei neutralen Atomen. In unseren

ersten Experimenten konnten wir sowohl elastische als auch inelastische Atom-

Ionen Kollisionen beobachten. Die elastischen Stöße wurden über die Messung

von Atomverlusten nachgewiesen. Mit Hilfe dieser Atomverlust-Messung konnten

wir eine typische Kollisionsenergie von ca. 10mK und einen elastischen Wechsel-

wirkungsquerschnitt von ungefähr 10−14m2 abschätzen. In unserem Experiment

ist die inelastische Streuung ist im Vergleich zu elastischen Kollisionen um einen

Faktor 104 bis 105 unterdrückt. Dennoch konnten wir nachweisen, dass der dom-

inante inelastische Prozess die Ladungstransferreaktion Rb + Ba+ → Rb+ + Ba

ist. Zudem haben wir gezeigt, dass ein einzelnes Ion verwendet werden kann,

um die Dichteverteilung einer ultrakalten Atomwolke zu bestimmen, was eine

mögliche Anwendung unseres Aufbaus darstellt.





Abstract

In this thesis I have investigated the collisions between laser-cooled trapped

ions (Ba+ or Rb+) and ultracold neutral atoms (Rb). For this purpose it was

necessary to develop a novel hybrid apparatus, where a Bose-Einstein condensa-

tion (BEC) apparatus is combined with a Paul trap for single ions. The ultracold

atom cloud is produced in a magnetic trap within the BEC apparatus and then

transported vertically over a distance of 30 cm using a 1d moving optical lattice.

The interaction between the atoms and the ions can be described by a 1/r4

polarization potential. Generally, the atom-ion interaction is stronger and long-

range compared to the interaction between two neutral atoms. In our experiments

we were able to observe elastic as well as inelastic atom-ion collisions. Elastic

scattering was detected by measuring the loss of atoms in the presence of an ion.

From this atom loss measurement we could estimate a typical collision energy

of about 10mK and an elastic scattering cross section on the order of 10−14m2.

Inelastic processes are suppressed by a factor 104 to 105 in our experiment. Nev-

ertheless, we were able to show that the dominant inelastic collision channel is

the charge transfer reaction Rb + Ba+ → Rb+ + Ba. As a possible application

of our apparatus, we have demonstrated that a single ion can be used to probe

the density profile of an ultracold atom cloud.





Für meinen Vater
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Chapter 1

Introduction

In recent years, both the fields of cold trapped ions and of neutral, ultracold

atomic gases have experienced an astonishing development. Full control has been

gained over the respective systems down to the quantum level. Single ions can

be selectively addressed and their quantum states can be coherently manipulated

and read out [1]. The collective behavior of neutral atomic quantum gases can

be mastered by controlling the particle-particle interactions, temperature, and

physical environment. The observation of Bose-Einstein condensation (BEC),

solitons, vortices, and the Mott-insulator quantum phase transition are prominent

examples for this achievement [2].

It was at the end of 2006, when we started our efforts of combining cold

trapped ions with ultracold neutral atoms in Innsbruck. Our vision was to merge

a Bose-Einstein condensation (BEC) apparatus with a linear Paul trap, where

single ions or a string of a few ions can be stored and cooled to the Doppler

limit. At that time a few theoretical proposals on cold and ultracold atom-ion

collisions had recently been made. And example is the work done by Robin

Côté and co-workers [3–5]. Parallel to our group, also Winthrop Smith and the

groups of Vladan Vuletic and Michael Köhl started their experimental efforts.

Their work is closely related to ours, since they all work with a combination of

trapped atoms and ions [6–10]. Besides these measurements in the mK regime,

various experiments with collision energies on the order of kB × 1K or beyond

have been performed in the past. Already back in 1991, reactions of NO+ with

He, Ar and N2 down to energies of kB × 0.3K have been studied by Hawley et.

al. [11]. Later on, Dieter Gerlich an co-workers have reported about experiments

with ions trapped in multi-pole traps and cold He buffer gases [12,13]. Recently,

Stefan Willitsch, Timothy Softley and co-workers have investigated reactive col-
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lisions between laser-cooled trapped Ca+ ions and velocity-selected polar CH3F

molecules [14]. Also, experiments with cold charged molecules have been per-

formed in the groups of Michael Drewsen and Stephan Schiller. In their setups

optical techniques were used to reduce the energy of the molecular ions [15, 16].

The ultimate goal of our experiment is to study the interaction between ions

and atoms in the limit of small collision energies. For this purpose we have built

up a novel hybrid apparatus, where ultracold Rb atoms can be brought into the

center of a linear Paul trap, which is typically loaded with a small and well de-

fined number of Ba+ or Rb+ ions. The central idea of our hybrid experiment

is the spatial separation of the BEC apparatus, where the ultracold atoms (or a

BEC) are produced, from the ion-trapping region, where the atom-ion collision

experiments are performed. Thereby, we avoid mutual disturbance between the

radiofrequency (RF) Paul trap and the RF used for forced evaporative cooling

of the atomic sample. Moreover, by keeping all the elements (coils, optical com-

ponents) needed for atom cooling away from the ion trapping region, we gain

valuable optical access to the “science section”, that can be used to trap, ma-

nipulate, and detect the atoms and ions. However, due to the large distance

of 30 cm between the BEC apparatus and the ion trap, a powerful and reliable

transport technique is required to transfer the ultracold atoms from their place

of production to the science section. For this purpose, we employ a moving 1-

dimensional (1-d) optical lattice. The details of our experimental setup will be

published in [17].

With our apparatus we were able to observe the interaction between a single

trapped Ba+ ion and an ultracold optically-trapped cloud of Rb atoms (T=100nK

or Bose-Einstein-condensed) [18]. By measuring the loss of atoms in the presence

of the ion we find the cross section for elastic scattering to be large, as expected

from theory [3], with values on the order of 10−14m2. In contrast, charge transfer

reactions, which are the dominant inelastic collision channel, are strongly sup-

pressed with cross sections on the order of 10−19m2 or below. In our type of

setup the collision energy is determined by the excess micromotion of the ion.

The first attempts of compensating excess micromotion, which I will present in

this thesis, have lead to minimal collision energies on the order of 10mK.

For comparison in the Vuletic experiment a magneto-optical trap (MOT) for

Yb is combined with a surface-electrode Paul trap for Yb+ [6, 7]. In their setup

the collision energy was too large to enter the regime of ultracold atom-ion col-

lisions, for which a quantum mechanical description is required. However, the
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observations of the Vuletić group have shown that atoms and ions can princi-

pally be trapped at the same location. On the other hand, the idea of the Köhl

experiment is very similar to ours. A single trapped Yb+ ion is immersed into

an ultracold cloud of Rb atoms [8–10]. The measured cross sections and the col-

lision energy are on the same order of magnitude as in our system. This is not

surprising since the inner structure of the ion is only relevant in the ultracold but

not in the mK regime.

In the future we plan to study the formation of molecular ions (such as Rb+2
or (BaRb)+) [19], polaron-type physics [20–23], charge hopping in the ultracold

domain [4] and the formation of a mesoscopic molecular ion [5]. For the latter type

of experiment it will be necessary to enter the regime of ultracold elastic atom-ion

collisions [3], which we might be able to reach by improving the compensation of

excess micromotion.

In the following chapter I will present the theoretical groundwork to under-

stand the atom-ion collision dynamics in the various collision energy regimes.

Subsequently in chapter 3 the focus is put onto the experimental setup. In chap-

ter 4 and 5 the preparation of the single Ba+ ion and the creation of the Rb BEC

are described. The main scientific results of this theses are presented in chapter

6, showing all the measurements on the atom-ion interaction. Finally, an outlook

on possible future experiments is given in chapter 7.
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Chapter 2

Theory of atom-ion collisions

In this chapter I will outline the theoretical groundwork for understanding the

dynamics of atom-ion collisions. I will start with a derivation of the atom-ion

interaction potential. Using this potential I will then derive the classical atom-ion

collision theory (Langevin theory) and calculate classical estimates for the colli-

sion cross sections. In a further step I will present a semiclassical description of

the atom-ion scattering and compare it with the classical results. The main focus

in this theory chapter is put on these two approaches (the classical and the semi-

classical), since they are sufficient to explain the experimental data presented in

this thesis. However, the aim for the future is to enter the ultracold regime, where

the collision energies are low enough that a full quantum mechanical treatment

becomes necessary. Therefore I will also touch the theory of ultracold atom-ion

collisions at the end of this chapter.

It is important to realize that the theories described in the following can only

be used to treat two-body collisions, such as

Rb + Ba+ →





Rb + Ba+ elastic

Rb+ + Ba + γ radiative charge transfer

Rb+ + Ba nonradiative charge transfer

(RbBa)+ + γ molecule formation

R̃b + B̃a
+

spin-exchange

(2.1)

where the tilde denotes a different spin-state of the ion or the atoms, respec-

tively. In the homo-nuclear case we can have

17



Rb + Rb+ →




Rb + Rb+ elastic

R̃b + R̃b
+

spin-exchange.
(2.2)

The assumption of binary collisions is justified by our experiments, where

we have only observed elastic and charge transfer collisions, but no other type

of collisions. Nevertheless, at high atomic densities we obviously also expect

three-body processes, such as

Rb + Rb + Ba+ →




Rb + (RbBa)+ molecule formation

Ba + Rb+2 molecule formation
(2.3)

Rb + Rb + Rb+ → Rb + Rb+2 molecule formation (2.4)

to take place. However, the proper description of the dynamics of many-body

processes is beyond the scope of this thesis.

2.1 The 1/r4 interaction potential

In the inhomogeneous field of an ion, a neutral atom is polarized and attracted

towards the ion. To derive the corresponding interaction potential we consider

an atom with an electric dipole moment p. The potential energy of the atom in

the presence of the electric field of the ion E is then given by

V = −1
2
pE . (2.5)

Since the dipole moment of the atom is induced by the electric field of the ion

we can write

p = αE (2.6)

where α = 4πǫ0α̃ is the dc polarizability of the atom. By plugging (2.6) into

(2.5) and using the well-known expression for the electric field of an ion, we get

V (r) =
C4
2r4

(2.7)

with
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C4 = −
α̃q2

4πǫ0
(2.8)

where r is the distance between the atom and the ion and q the charge of

the ion. For essentially any neutral atom the value for α̃ can be found in [24].

In our case of Rb α̃ = 4.7 × 10−29m3 or in atomic units α̃ = 318a30, where

a0 = 5.29× 10−11m is the Bohr radius. By equating the centrifugal energy with

the potential (2.7)

(
~
2

2µr2

)

r=r∗
=

(
C4
2r4

)

r=r∗
, (2.9)

we find the characteristic radius r∗ to be

r∗ =

√
µC4
~2

, (2.10)

Here µ = mionmatom/(mion+matom) is the reduced mass. For the case of (
87Rb,

138Ba+) we get r∗ = 295 nm and for (87Rb, 87Rb+) we find r∗ = 266 nm. The

corresponding characteristic energies ~2/(2µr∗ 2) are kB × 50 nK (87Rb, 138Ba+)

and kB × 80 nK (87Rb, 87Rb+), respectively. For collision energies much smaller

than this characteristic energy, only the partial wave with l = 0 (the so-called

“s-wave”) contributes to the scattering (see below). In this regime the scattering

cross section becomes energy-independent with a value on the order of 4πr∗ 2. The

characteristic radius r∗, which sets the length scale of the 1/r4 potential, is much

larger than the the van der Waals radius RvdW, which typically determines the

range of the atom-atom interaction potential. A typical value is RvdW = 5nm

for 87Rb [25]. The comparison of r∗ with RvdW clearly shows the long-range

characteristics of the atom-ion interaction potential (2.7), compared with the

1/r6 van der Waals potential between two neutral atoms.

2.2 Classical atom-ion collision theory

By simply applying the laws of classical mechanics, it is possible to calculate both

a classical estimate for the total elastic scattering cross section σelastic(E) as well

as the energy dependence of the inelastic collision cross section σinelastic ∝ E−1/2.
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Figure 2.1: Collision between two particles: In the equivalent one-body-problem
a particle with mass µ and starting velocity v0 is deflected by an angle θ, due
to the presence of the radially-symmetric potential given by equation (2.7). If
we adopt the common definitions, the scattering angle θ is negative for our case
of an attractive potential. At any instant of time the position of the particle is
well-defined by the distance from the center r and the polar angle ϕ. At the point
of minimum distance r0, the polar angle is ϕ(r0) = φ = π/2− θ/2.

2.2.1 Scattering at the 1/r4 potential - appearance of the

critical impact parameter bc

We start the calculation of the cross sections by considering the two-body problem

in the presence of the atom-ion interaction potential given by equation (2.7).

By making a transformation to the center-of-mass (COM) coordinates (COM

position ~R and relative coordinate ~r), we reduce our two-body problem to the

equivalent one-body problem. The relevant parameters are illustrated in Fig. 2.1.

In cylindrical coordinates ~r = r cosϕ~ex+ r sinϕ~ey+ z~ez the total energy E of our

quasi-particle with mass µ can be written as

E =
µ

2

(
ṙ2 + r2ϕ̇2

)
− C4
2r4

. (2.11)

Before the collision, the relative velocity between the two particles is v0 and

the distance r →∞. The total energy then reads

E =
µ

2
v20. (2.12)
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In a similar fashion we also find an equation for the angular momentum ~L =

L~ez of our virtual particle.

L = µr2ϕ̇ = µv0b, (2.13)

where the left hand side is the general expression and the right hand side the

angular momentum again before the collision. The so-called impact parameter b

is introduced in Fig. 2.1.

By equating (2.11) with (2.12) and substituting ϕ̇ using (2.13) we obtain an

expression for ṙ

ṙ = ±v0

√
1− b2

r2
+

C4
µv20r

4
. (2.14)

We can now calculate the minimal distance to the center r0, since we know

that ṙ(r = r0) = 0. We get

r20 =
b2

2
±

√
b4

4
− C4
µv20

. (2.15)

In order for r0 to be a real quantity, the impact parameter b needs to be larger

than the critical impact parameter bc given by

bc =

(
4C4
µv20

)1/4

=

(
2C4
E

)1/4

. (2.16)

Note that the critical impact parameter only depends on the collision energy

E and on the polarizability of the atom.

2.2.2 Collisions with b < bc - Langevin collisions

For impact parameters smaller than the critical impact parameter (b < bc) the

virtual particle is not simply deflected at the potential, as depicted in Fig. 2.1. In

fact, it follows an inward-spiraling orbit, where it finally ends up at the center of

the potential. The cross section for this type of collision is called Langevin cross

section and is given by

σLangevin = πb2c = π

√
2C4
E

. (2.17)

The Langevin cross section, initially derived by Langevin in 1905 [26], includes
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all collisions where the atom-ion separation eventually reaches zero. Assuming

that reactive collisions (such as charge exchange or spin-changing collisions) are

always Langevin-type collisions, we can relate σLangevin to the inelastic collision

cross sections

σinelastic = pinelasticσLangevin, (2.18)

where pinelastic = 1− pelastic is the probability for an inelastic collision to take

place, once the atom and the ion have come close to each other. It can be written

as a sum of the probabilities for all relevant processes

pinelastic = pch.ex. + pspin-ex. + ... (2.19)

In general these probabilities depend on the inner structure of the particles

and can obviously not be predicted with the simple Langevin theory. At this point

a quantum-mechanical description of the scattering process becomes necessary.

2.2.3 Collisions with b > bc - Glancing collisions

For collisions with impact parameters b > bc the atom-ion separation stays finite

and the two particles are deflected of each other with well defined angles. In the

COM frame the scattering angle is given by θ = π − 2φ where

φ =

∫ r0

∞

dϕ

dr
dr (2.20)

(see Fig. 2.1). The minimal separation r0 is given by equation (2.15), whereas

dϕ

dr
=
ϕ̇

ṙ
=

b

r2
√
1− b2

r2
+ b4

c

4r4

(2.21)

By introducing the dimensionless impact parameter b̃ = b/bc, the solution of

the integral (2.20) can be written as

φ = b̃
√
2

√
b̃2 −

√
b̃4 − 1 · K

(
2b̃4 − 2b̃2

√
b̃4 − 1− 1

)
(2.22)

where

K(m) =
∫ π/2

0

1√
1−m sin2 x

dx (2.23)
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Figure 2.2: The scattering angle versus the dimensionless impact parameter b̃ =
b/bc. For b̃ > 2.4 the scattering angle is smaller than 1◦ (red dashed lines), which

shows that the particles are only deflected significantly when b̃ ∼ 1.

is the complete elliptic integral of the first kind.

The expression (2.22) is plotted in Fig. 2.2. One clearly sees that the scattering

angle θ is very small unless b̃ is close to 1. To show that the main contribution

to the (total) cross section comes from scattering events with a small deflection

angle, we derive the differential scattering cross section

(
dσ

dΩ

)

glancing

=

∣∣∣∣
b

sin θ

db

dΘ

∣∣∣∣ (2.24)

The result is also plotted in Fig. 2.3. For small scattering angles the differential

cross section becomes many orders of magnitude larger than b2c . In fact, for θ → 0,

(dσ/dΩ)glancing → ∞. Thus, the integral which gives us the total cross section

σ =
∫

dσ
dΩ
dΩ has to be truncated for small θ. In the following section we will

discuss possible lower bounds for θ and will discover the total elastic collision

cross section.

2.2.4 Elastic scattering cross section

As we have learned in the previous sections, a classical treatment of the atom-ion

scattering leads to two different types of collisions, the Langevin-type collisions

and the glancing collisions. The latter ones are always elastic collisions, since re-

active collisions can only take place when the atom-ion separation vanishes. Fur-
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Figure 2.3: The differential cross section (dσ/dΩ)glancing is minimal for a scattering
angle of θ = 146◦ and diverges for θ → 0.

thermore for a hetero-nuclear system such as (Rb, Ba+) also the Langevin-type

collisions are predominantly elastic pinelastic ∼ pch.ex. ≪ 1 (see also the discussion

in the previous section). Thus, we can write the elastic cross section as

σelastic ≈ σLangevin + σglancing (2.25)

where σLangevin is given by equation (2.17) and

σglancing = 2π

∫ θmin

−π

(
dσ

dΩ

)

glancing

sin θdθ. (2.26)

The integral is truncated at a finite θmin, since the integrand diverges for

θ → 0.

Heisenberg limit θmin

If we want to take into account all collisions which can in principle be detected,

we have to truncate the integral at the Heisenberg limit

sin θmin =
∆pmin
p

(2.27)
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Figure 2.4: For a hetero-nuclear system the cross section for elastic scattering
is given by σelastic ≈ σLangevin + σglancing. For collision energies E down to about
10−5Kmainly the glancing collisions contribute to σelastic. Moreover, we recognize
the dependence σelastic ∝ E−1/3 over the entire range, where the classical model
is valid.

where p =
√
2Em. For a particle with a position uncertainty of b(θmin),

the minimal uncertainty of the momentum is given by ∆pmin ≃ ~/b(θmin). By

plugging this expression for ∆pmin into (2.27) we can (numerically) calculate θmin.

The resulting cross section is plotted in Fig. 2.4. For the energy range where the

classical theory is assumed to be appropriate (E & kB×30  K) we find the elastic
scattering cross section σelastic to be mainly determined by σglancing. Moreover, we

can read off from Fig. 2.4, that the total elastic collision cross section scales as

σelastic ∝ E−1/3. In the semiclassical theory described later, we will recover this

energy-dependence.
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Trap depth limit θmin, loss

Experimentally, elastic atom-ion collisions are observed via the loss of atoms

from their trap. This atom loss can be written as

Ṅ = −nσlossv0, (2.28)

where n is the atomic density and v0 =
√
2E/µ =

√
2Eion/mion. In our

system σloss ≈ σLangevin + σglancing, loss is almost identical with σelastic, except that

the integral

σglancing, loss = 2π

∫ θmin, loss

−π

(
dσ

dΩ

)

glancing

sin θdθ. (2.29)

is truncated at θmin, loss. The reason for this new limit θmin, loss is that an

atom is only lost from the trap, when the energy transferred to the atom Etrans

is larger than the trap depth Utrap. Here, it is important to note that the mean

free path of the atom is much larger than the size of the atom cloud. Therefore,

the probability for the atom colliding with another atom after being scattered at

the ion and before leaving the trap, is negligible. The transferred energy Etrans

can be calculated as a function of the scattering angle θ

Etrans = E
2µ

matom

(1− cos θ) . (2.30)

Thus, the integral needs to be truncated at

cos θmin, loss = 1− matom

2µ

Utrap
E

. (2.31)

In Fig. 2.5 the resulting σloss is plotted for three different trap depths Utrap.

For large Utrap we find σloss to be smaller than σelastic, since a significant fraction

of the collisions take place under a small scattering angle and thus do not directly

lead to an atom loss. However, for small trap depths Utrap ≈ 1...3  K as used in

the experiments described in this work, the majority of the collisions leads to the

atom being lost from the trap. In this limit the heating of the atomic sample can

be neglected and σloss ∼ σelastic.
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Figure 2.5: The cross section for σloss ≈ σLangevin + σglancing, loss. The integral for
σglancing, loss is truncated at θmin, loss, so that only collisions with an energy transfer
Etrans > Utrap are contributing. Additionally σelastic is plotted for comparison.
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2.3 Quantum mechanical atom-ion collision the-

ory

An important approach to describe the scattering between particles with quan-

tum theory is the method of partial wave expansion. This method is particularly

suitable for the case of low collision energies. As can be looked up in any stan-

dard quantum mechanics textbook (e.g. [27]), the scattering cross section can be

written as

σ =
∞∑

l=0

σl =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl (2.32)

where σl is the contribution of the l-th partial wave to the total scattering

cross section. The wave vector k2 = 2µE/~2 is set by the collision energy E. In

general, the scattering phase shifts δl depend on the exact form of the interaction

potential and thus also contain all the information about the inner structure of

the collision partners.

2.3.1 Semiclassical approximation

The following derivation of the semiclassical expression for the elastic scatter-

ing cross section is based on the work of Robin Côté and Alex Dalgarno [3].

For large angular-momentum quantum numbers l ≫ 1, the phase shifts can be

approximated by [3]

δl,semi = −
µ

~2

∫
∞

r0

V (r)√
k2 − l2/r2

dr (2.33)

where r0 is the classical turning point (see Fig. 2.1). By plugging in the

polarization potential V (r) = C4/2r
4, we get

δl,semi =
πµ2C4E

4~4l3
. (2.34)

As can be seen by a comparison with the full quantum mechanical treatment

[3], equation (2.34) is valid as long as δl,semi ≈ sin δl,semi ≪ 1. If we require δl,semi <

π/4, we get a minimum angular momentum lmin, for which the semiclassical

expression is valid

lmin =

(
µ2C4E

~4

)−1/3
. (2.35)
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For l < lmin the scattering phase shifts δl can only be derived via a full

quantum mechanical calculation, taking into account the inner structure of the

atom and the ion, respectively. However, in our case, where we take a sum over

many partial waves, it is possible to use the mean value δl = π/4, corresponding

to sin2 δl = 1/2 for all l ≤ lmin. The resulting cross section contributions are

lmin∑

l=0

σl =
2π

k2

lmin∑

l=0

(2l + 1) =
2π

k2
l2min (2.36)

and

∞∑

l=lmin

σl =
4π

k2

∫
∞

lmin

2lδ2l,semidl =
2π

k2
l2minδ

2
lmin,semi

=
2π

k2
l2min

π2

16
. (2.37)

If we take the sum of the equations (2.36) and (2.37) and make use of equation

(2.35), we get the semiclassical formula for the elastic scattering cross section

σelastic(E) = π

(
µC2

4

~2

)1/3(
1 +

π2

16

)
E−1/3. (2.38)

Due to the averaging over many partial waves this expression only depends

on the polarizability of the Rb atom and on the collision energy, just as in the

classical case. In fact, within the energy range where the semiclassical approxi-

mation is assumed to be valid (E & kB × 30 K), the semiclassical values match

the classical ones (see Fig. 2.6).

2.3.2 Full quantum mechanical treatment

In the ultracold regime, where only a few partial waves contribute to the scat-

tering, quantum mechanical calculations are necessary to determine the relevant

phase shifts δl. One possible method to describe ultracold atom-ion collisions are

numerical coupled-channel calculations [3, 28]. This treatment relies on the sin-

glet and triplet potential curves calculated by ab initio methods. Unfortunately,

these potential curves are usually not accurate enough to determine the scat-

tering lengths. An alternative approach is to apply the multichannel quantum

defect theory (MQDT) to the atom-ion scattering problem [19]. In this case, it is

not necessary to know the potential curves precisely. It is sufficient to know the

singlet and the triplet scattering lengths as and at and the long-range behavior

of the potential. Since the experiments are not yet able to give estimates for

these ultralow-energy scattering parameters, typical values on the order of r∗ are
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Figure 2.6: Comparison of the semiclassical cross section (equation (2.38)) with
the classical one, which is obtained by truncating the integral for σglancing at the
Heisenberg limit (see above). The two results are almost identical, both showing
a E−1/3 dependence on the collision energy.

assumed for as and at.

Zbigniew Idziaszek and co-workers have performed MQDT calculations for the
40Ca+ - 23Na system [19] and also for our 138Ba+ - 87Rb setup [29]. The results

for our system are depicted in Fig. 2.7. We recognize three different regimes: For

energies larger than 10−10 atomic units (corresponding to ∼ 30 K) the MQDT

calculation can be well approximated by the semiclassical formula. For smaller

energies, however, σelastic deviates from the simple E−1/3-dependence and cru-

cially depends on as and at. Finally, for collision energies in the nK range,

σelastic becomes energy-independent, indicating the start of the s-wave scatter-

ing regime. As expected, the right order of magnitude can be estimated with

σelastic ∼ 4πr∗ 2 ≈ 1 × 10−12m2. In addition to σelastic, also the elastic collision

rate Γelastic = vσelastic is shown in Fig. 2.7. Here v =
√
2E/µ is the relative

velocity between the ion and the atom.

Similar as the case of the atom-atom interaction [25], the strength of the

atom-ion interaction is expected to be tunable with magnetic fields. The MQDT

predicts the occurance of magnetic Feshbach resonances at relatively low fields

[19, 29]. According to this calculation the scattering resonances should stay ob-

servable well above the s-wave regime. In particular, by measuring charge ex-

change rates, resonant behavior might be visible up to collision energies of tens

of  K [29].
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Figure 2.7: Thermal average of the elastic scattering cross section (upper plot)
and of the elastic collision rate (lower plot), both calculated with the multichannel
quantum defect theory (MQDT) by Zbigniew Idziaszek and co-workers [19, 29].
Since as and at are not known, we plot σelastic and Γelastic for as and at having the
same sign and for having a different sign, respectively. Here r∗ is the characteristic
radius given by equation (2.10). Additionally the MQDT result is compared with
the semiclassical approximation (dashed line).
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Chapter 3

Experimental setup

In this chapter I would like to present all the important details about our exper-

imental apparatus. I will start with a description of our vacuum system. Then I

will explain how we generate the magnetic fields and the optical laser fields, re-

spectively, required for the manipulation of the cold atoms and ions. Eventually,

I will describe how we control the experimental procedures.

3.1 The vacuum system

A novel vacuum setup was designed to study the interaction between ultracold

atoms and cold trapped ions. The central idea of our hybrid apparatus is the spa-

tial separation of the BEC apparatus, where the ultracold atoms (or a BEC) are

produced, from the ion-trapping region, where the atom-ion collision experiments

are performed. This way we keep all the elements needed for atom cooling (such

as coils or optical components) away from the ion trapping region and gain valu-

able optical access to the “science section”, that is required to trap, manipulate,

and detect the atoms and ions. Moreover, with a macroscopic separation of 30 cm

we are able to avoid the mutual disturbance between the radiofrequency (RF)

Paul trap and the RF used for forced evaporative cooling of the atomic sample.

Alternatively, it is also possible to perform the rf evaporation right next to the

Paul trap, which allows for a simpler design of the vacuum apparatus. However,

one major drawback of such a solution is the resonant heating of the ions due to

the rf radiation needed for the evaporative cooling of the atoms [8, 30].

The three main building blocks of our vacuum system are the MOT chamber,

the BEC chamber and the science chamber (Fig. 3.1). The latter one is placed

about 30 cm above the lower plane of the setup, in which the MOT and the BEC
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Figure 3.1: Overview of the vacuum system: The MOT chamber, the BEC cham-
ber and the science chamber (red) are connected via two differential pumping
stages (purple). Each chamber is evacuated by its own pumping section (green)
and can be separated from the rest by closing the gate valves.
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chamber are located. To bring the ultracold atoms from their place of production

(BEC chamber) to the ion trap (science chamber), a reliable transport scheme

is required. We have chosen a 1-d moving optical lattice transport for this task.

Further details on this moving standing wave transport and an explanation why

the science chamber is not placed near the BEC chamber but above it, are given

in section 5.2.2.

The three vacuum vessels (MOT, BEC, science) are connected with each other

via two differential pumping stages. Furthermore, a series of vacuum gauges,

pumps and valves is used to evacuate the system and to determine the pressure.

In fact, UHV conditions with pressures around or below 10−11mbar have initially

been established in all three chambers. In order to achieve such low pressures it

was necessary to bake out the setup at temperatures between 180◦C and 250◦C.

Moreover, a He leak test was performed using an electron-multiplied residual-

gas-analyzer (RGA100 from Stanford Research Systems).

3.1.1 Lower level: Cold atom section

The lower level of the apparatus is entirely used for the production of the BEC.

In the MOT chamber the atoms are loaded from the surrounding background

gas (pmot ≈ 10−9mbar) into a magneto-optical trap. Subsequently the atoms are

moved through a differential pumping tube into the BEC chamber, where the

pressure pbec ≈ 10−11mbar is low enough to keep the atoms trapped for more

than 102 seconds.

MOT chamber

The MOT chamber is a home-made stainless steel (AISI 316L) vacuum vessel,

which features ten optical viewports. Most of the ports (six) are required for the

MOT beams, whereas the rest of them are needed to connect the Rb oven, to

pump out the chamber and to move the atoms out of the MOT chamber towards

the BEC chamber. In order to keep the chamber under ultrahigh vacuum (UHV)

conditions an ion getter pump (Varian StarCell 75 l/s) is used and the pressure

is determined with an Bayard Alpert type UHV pressure gauge (UHV-24p from

Varian).

The Rb oven consists of a stainless steel tube, which is welded to a small

hole of a blank flange. Since Rb is very reactive when exposed to air, a special

procedure for putting it into our system is followed. An ampule filled with bulk
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Figure 3.2: Vacuum system to produce a ultracold cloud of Rb atoms. The MOT
section (left) and the BEC section (right) are separated by a differential pumping
stage (middle/pink). The pressure in the MOT section is fully determined by the
Rb vapor entering from the Rb oven (blue) and is more than a factor of 100 larger
than the pressure in the BEC section.

Rb and He as an inert gas (Sigma-Aldrich Part-No 276332-1G) is put into the

tube. Then after evacuating the system the ampule is cracked by pinching the

thin-walled stainless steel tube. The helium is pumped out and the pressure in

the oven is determined by the vapor pressure of Rb, which is 4×10−7mbar at
room temperature. The pressure close to the ion pump is measured with the

UHV gauge to be about 1×10−9mbar. Since the MOT chamber is in between

the oven and the pumping section we estimate the pressure pmot to be a few

times 10−9mbar. Such a high Rb vapor pressure is necessary in order to be able

to load the MOT from the background gas. If necessary, the value for pmot can

be adjusted by heating the oven or by changing the setting of the valve, which

connects the oven with the MOT chamber.

Differential pumping stage

In order to keep the pressure in the BEC chamber pbec two orders of magnitude

lower than pmot we separate the two chambers with a differential pumping tube.

We determine the required length L and diameter D of the tube by making the

following estimate. The rate at which the BEC chamber is evacuated can be

written as Sbec pbec, where Sbec = 75 l/s is the pumping speed of the ion pump.
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In equilibrium, the pump rate has to be equal to the flux of molecules entering

through the differential pumping tube

Sbecpbec = C(pmot − pbec), (3.1)

where the conductance of the tube is given by

C ≈ a
D3

L
, a = 12 l/s cm2. (3.2)

Here we have neglected any leak rates as well as desorption from the chamber

walls, which is a valid assumption for a baked-out and leak-free UHV system.

From equation (3.1) we conclude, that for sustaining a large pressure gradient

we have to minimize the conductance and thus the diameter of the tube. The

lower limit of how small we can make the diameter of the tube is given by the

size of the atom cloud, which we want to transport through the tube. Since the

extension of the cloud is on the order of a few millimeters, we choose D = 8mm.

With equations (3.1) and (3.2) we then find a tube length of L = 115mm to be

sufficient to maintain the required vacua.

BEC chamber

Our BEC chamber features a non-standard geometry, which fulfills the following

list of demands.

 We require space for mounting a QUadrupole-Ioffe-Configuration (QUIC)

trap outside the chamber. For this purpose two quadrupole coils with an

inner diameter of 39mm and an outer diameter of 88mm need to be placed

as close as 15mm from the center of the chamber. In addition we have to

place the Ioffe coil at a distance of 11.2mm from the center.

 We want to have full optical access along the vertical direction (quadrupole

axis), in order to be able to implement the optical transport of the ultracold

atoms. In this context “full optical access” means, that we have optical

access to the center of the chamber as well as to the atoms, when they

are loaded into the minimum of the QUIC trapping potential. The latter

position is located on the Ioffe axis, typically about 5mm away from the

center of the chamber towards the Ioffe coil.

 We require full optical access along the direction perpendicular to the ver-

tical and the Ioffe axis, needed for imaging of the ultracold atoms.
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 Optical access along the magnetic transport axis is desired, since we want

to have the possibility to image the atom cloud at any intermediate posi-

tion of the magnetic transport. This feature is not mandatory for a running

experiment, though, it can be crucial when the magnetic transport is not

working properly. Moreover, we require this optical access to send spinpo-

larizing light through the BEC chamber and the differential pumping tube

to the MOT chamber. With this laser beam we spinpolarize the atoms af-

ter molasses cooling and before loading them into the magnetic quadrupole

trap.

 We also want to have optical access to the center of the chamber along an

additional third axis in the horizontal plane. This axis was designed to

have the possibility to implement a “blue-detuned plug beam” [31]. With

such a plug beam Majorana spin flip losses can be suppressed, which en-

ables evaporative cooling and the creation of Bose-Einstein condensates in

a magnetic quadrupole trap. We actually never added a plug beam to our

setup, since the operation of our QUIC trap turned out to be successful

and reliable.

 One large port to efficiently evacuate the BEC chamber.

To meet all the requirements listed above, we have designed the BEC chamber

as shown in Fig. 3.3. The chamber features DN40CF flanges on both ends of the

imaging axis, which are large enough not to distort the absorption beam and

to allow for a good imaging quality. Along the vertical axis DN16CF flanges

are used, so that the QUIC quadrupole coils can be mounted as desired. In

order to utilize the large pumping speeds of the ion pump and the TiSub pump,

respectively, we use a DN100CF flange to connect the pumping section to the

BEC chamber.

Having the BEC chamber connected along three different directions in space

(to the MOT chamber, the science chamber and the pumping section), leads to

shear forces on the chamber. When using a glass cell these shear forces can lead

to a leak or even a crack of the recipient. Thus we have decided to use a stainless

steel chamber, even though a glass cell would have provided much better optical

access.

The pressure in the BEC chamber is kept below 10−11mbar, which is sufficient

to achieve lifetimes of the atom cloud of more than 2min. To reach these X-UHV

conditions in the BEC chamber a combination of a titanium sublimation (TiSub)
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Figure 3.3: Top: BEC chamber together with the coils for the QUIC trap (blue
housing). The coils are mounted outside the vacuum system and as close as
possible to the center of the BEC chamber. The atoms enter the chamber along
the magnetic transport axis and leave it again along the vertical axis. Bottom:
Photo of the BEC chamber together with the (water-cooled) upper quadrupole
coil (copper housing) and the gate valve, with which the BEC chamber and the
science chamber are separated from each other.

38



Figure 3.4: The two DN200CF flanges (blue) are mounted on top and on the
bottom of the science chamber (golden). The pumping section (red) and the
channeltron detector (green) are connected via DN63CF ports. Our eight optical
axes are indicated with green arrows.

pump (TSP filament type from Varian) and an ion getter pump (Varian StarCell

75 l/s) is used to efficiently pump out a variety of different gases. The TiSub

pump works particularly well for adsorbable gases such as N2 and water, whereas

the ion pump is optimized for pumping non-adsorbable gases such as He. Since we

baked out our system thoroughly, most of the adsorbable gases are removed from

our system. To sustain X-UHV conditions in our chamber it is thus sufficient to

only operate the ion pump.

3.1.2 Upper level: Ion trapping and science section

The science chamber (Fig. 3.4) is the heart of our vacuum setup and is designed

for maximum optical access with 8 optical axes. The optical access is needed for

cooling and imaging of the ions as well as for trapping, manipulating and imaging

of the atoms. The octagon-shaped science chamber is made out of stainless steel

(AISI 316L) and evacuated with a combination of an ion getter pump and a

Titanium sublimation pump. During experiments, when the Ba oven is turned

off, the pressure in the science chamber drops to typically 1×10−11mbar. The

pumping section is connected to one end of the ion trap axis and a channeltron
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Figure 3.5: The imaging objective and the entire ion trap are directly mounted
onto the “science flange”. The flange is then put on top of our science chamber.

ion detector (CEM-4823G from Burle) to the other end. The channeltron can be

used to identify ions via time-of-flight (TOF) mass spectrometry.

All parts of the ion trap as well as the objective required to image the ions

and the atoms are mounted onto the so-called “science flange” (see Fig. 3.5). This

CF200 flange also features various electrical feedthroughs, which are needed to

apply the required voltages to the Paul trap electrodes and to run currents of up

to 12A through our Ba oven. The flange is put on top of the science chamber.

3.2 Generation of magnetic fields

Magnetic fields are an essential tool in our experiments. They are needed to trap

and to transport the neutral atoms. Moreover, it has been shown theoretically

that in the ultracold regime (i.e. for sufficiently low kinetic energies) the strength

of the atom-ion interaction can be tuned via magnetic fields [19] (see also chapter

2).

Self-made coils and four 3 kW power supplies (Delta Elektronika SM15-200D

and SM30-100D) are used to generate the magnetic fields. All the coils (except

for the compensation cages, where we have simply used ribbon cable) are wound

with an enameled copper wire (from the company Synflex), which has a cross

section of 1.2 x 2.5mm2. Subsequently the coils are potted with an epoxy casting

resin (Raku-Pur 21-2176 from the company Rampf Giessharze). This epoxy was
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Table 3.1: Properties of our home-made magnetic field coils
coil MOT Push Transport Quadrupole Ioffe Feshbach

inner ∅ (mm) 70 38 47 39 6.7 130
outer ∅ (mm) 107 48 - 67 130 88 16.5 - 21.4 147
windings 2 × 15 40 2 × 17 4 × 20 16 2 × 15
distance (mm) 25 57 50 and 57 16.5 11 63
current (A) 5 or 80 90 45 - 80 37 37 -
housing Al Al Al Cu Cu Al

chosen due to its exceptionally high thermal conductivity of 0.8W/(mK). We

have done the potting under vacuum using a bell jar. This way we have avoided

blowholes, which would worsen the heat conductivity. The coil forms are water

cooled and typically made of aluminum (Al), which has a thermal conductivity

of λAl = 235W/mK. An exception are the housings of our QUIC coils (two

quadrupole coils and the Ioffe coil), which are made of copper (Cu). Cu is more

expensive than Al, however, it also features a much higher thermal conductivity of

λCu = 400W/mK, as compared with Al. The copper housing allows to dissipate

about 530W (steady state), corresponding to a maximal operating current of our

QUIC of 37A. A complete list of our magnetic field coils and their properties is

given in table 3.1.

3.3 Laser systems

In our experiment we predominantly use diode lasers to prepare our cold ions

and atoms. The big advantages of diode lasers are the low cost and the easy

handling, as compared with other types of lasers. Therefore they are well suited

for laser cooling of atoms and ions, where high frequency stability but usually

only a rather small amount of power is needed. In contrast, a fiber-amplified solid

state laser is employed for high power applications, such as the optical transport

or the crossed dipole trap.

3.3.1 Rb lasers

We have set up two home-built external cavity diode lasers (“Master” and “Re-

pumper”) tuned to the 52S1/2 →52P3/2 transition of Rb (Fig. 3.6). By splitting

their outputs we derive ten different beams from these two lasers (Fig. 3.7). Each

beam is frequency-shifted using acousto-optical modulators (AOMs) and subse-
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Figure 3.6: The D2 line of
87Rb: The values for the main transition frequency

and for the hyperfine splittings given here are taken from [32].

quently coupled into a polarization-maintaining single-mode glass fiber. This way

we are able to transfer the beams from the laser table to the experiment table,

where they are used for the cooling, manipulation and detection of the Rb atoms.

Master laser

The Master laser features an anti-reflection (AR) coated laser diode (eagleyard

EYP-RWE-0780-02000) and a holographic grating with 1200 lines/mm and a

diffraction efficiency of roughly 10% (EdmundOptics NT43-772). Using an AR

coated laser diode leads to a wide mode-hop-free frequency tuning range and en-

sures stable lasing so that the laser can be kept locked for several days. Together,

the laser diode and the grating determine the frequency stability of our home-

made diode lasers. The resulting spectral linewidth is typically on the order of

100 kHz.

The frequency of the Master is locked to the |F = 2〉 → |F ′ = 3〉 transition
of 87Rb via modulation transfer spectroscopy. For this purpose we have set up a

doppler-free spectroscopy, where we additionally modulate the pump beam at a

frequency on the order of the natural linewidth of the transition (6MHz). The
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Figure 3.7: Rb laser table: Altogether ten laser beams, derived from two different
diode lasers are required for the laser cooling and the detection of Rb.
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spectroscopy signal is detected with a fast photodiode (bandwidth = 100MHz)

and then mixed with the modulation signal (see Fig. 3.7). The output of the mixer

is low-pass filtered and can then be used as an error signal for the stabilization

of the laser frequency. For more details on the modulation transfer technique see

for example [33].

For the spectroscopy setup we need about 5mW of laser power. Another

3mW of the light from the master laser are transferred to the Ba+ laser table,

where the light is used as an absolute frequency reference to which the Ba+ lasers

are locked. The rest of the master light (about 20mW) is amplified with a tapered

amplifier (BoosTA from the company Toptica). The majority of the 800mW of

laser power available at the output of the BoosTA is used for the MOT cooling

beams, whereas small fraction (a few mW) is employed for absorption imaging

of the atoms.

Repumper laser

Via the frequency modulation (FM) technique [34] the repumper is locked to the

|F = 1〉 → |F ′ = 1〉/|F ′ = 2〉 cross over line. The frequency of the repumping
light is then shifted to the |F = 1〉 → |F ′ = 2〉 resonance using an AOM. A

total repump power of 6×1.5mW is employed to operate the MOT. The rest of

the light (about 1mW) is needed for spin-polarizing and during imaging of the

atoms, respectively.

Here I would like to point out that we were initially having troubles with

bad interferences between the stabilization electronics of our home-built lasers

and the rf used to drive the Paul trap. However, we were able to solve these

problems by avoiding ground-loops when powering our electronics and by getting

rid of circuit elements that directly pick up the 5MHz radiofrequency (such as for

instance the instrumental amplifier INA114 used in our temperature controllers).

3.3.2 Ba+ lasers

Cooling laser

For the Doppler cooling of the 138Ba+ ion a few mW of laser light at 493 nm

are required (see Fig. 3.9). Since there are no laser diodes available at this wave-

length the cooling light is generated via frequency-doubling of a 986 nm diode
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Figure 3.8: Ba+ laser table: An ionization laser (413 nm) as well as two cooling
lasers (493 nm and 650 nm) are used to prepare the Ba+ ion. The cooling lasers
are locked relative to the Master laser (780 nm) using optical resonators.
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Figure 3.9: Relevant energy levels for Doppler cooling of 138Ba+: Two laser
frequencies (493.4 nm and 649.7 nm in air) are required to cool Ba+ to mK tem-
peratures. The linewidths are Γcool/(2π) = 15.1MHz for the 493 nm transition
and Γrepump/(2π) = 5.3MHz for the 650 nm transition. Therefore the ion decays
into the ground state about 75% of the time and into the metastable 5D3/2 state
about 25% of the time.

laser. Both the diode laser and the frequency-doubling stage are part of the com-

mercially available system “DL SHG” from the company Toptica. To stabilize

the frequency of the 493 nm light, 986 nm laser light is coupled into a stabilization

cavity, together with the 780 nm master laser. Since the master laser is already

stabilized to an atomic transition (|F = 2〉 → |F ′ = 3〉 in Rb), it serves as a fre-
quency reference. The cavity is scanned continuously and transmission peaks for

both the 986 nm and the 780 nm laser are recorded. The frequency of the 986 nm

and thus also of the 493 nm light is then stabilized by keeping the position of

a 986 nm cavity transmission peak fixed with respect to two consecutive 780 nm

peaks. We calculate the relevant time differences between the peaks and subse-

quently the error signal using home-built digital electronics. The feedback loop

is closed by adding the error signal to the offset voltage on the piezo-electrical

transducer (PZT) of the diode laser. The bandwidth of this locking scheme is

limited by the frequency with which the cavity is scanned and is thus only on the

order of 10 to 100Hz. For this reason we can only correct slow thermal drifts of

the laser frequency. For ordinary Doppler cooling our stabilization scheme is suf-

ficient, since the spectral linewidth of the 493 nm light is a few hundred kHz and

thus well below the linewidth of the cooling transition of 15.1MHz (see section

4.2.2.
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Repumping and ionization laser

For the cooling of the Ba+ ion we additionally need a second cooling laser at

650 nm. Since the branching ratio between the 650 nm transition and the 493 nm

transition is 1:3, this laser is usually called repumping laser (Fig. 3.9). We derive

the 650 nm light from a home-built external cavity diode laser, which features

an anti-reflection coated laser diode to guarantee stable lasing at the desired

wavelength. The locking scheme to stabilize the frequency of the repumper is the

same as for the 986nm laser.

The ionization laser is a commercially available external cavity diode laser

(DL100 from Toptica). It features a blue laser diode to generate up to 12mW of

coherent light at 413 nm. The neutral Ba is ionized by the 413 nm radiation, which

drives a resonant two-photon transition from the ground state to the continuum

via the 3D1 state. For more details on the ionization procedure and on the ion

loading I would like to refer to section 4.2.1.

Stabilization cavities

The stabilization cavities are required to keep the frequency of the Ba+ lasers

fixed. For each of our four cavities we have drilled a hole through a ultralow

expansion glass (ULE) block. Due to its extraordinarily low expansion coefficient

(on the order of 10−10/K) this material is well-suited for keeping the cavity mirrors

in place. The length of the block and thus the length of the cavity is L =10 cm,

leading to a free spectral range of FSR = c/2L =1.5GHz. In order to be able

to vary the length of the cavity (on the micrometer scale) ring-shaped piezo-

electrical transducers (PZTs) are mounted in between the ULE block and the

cavity mirrors.

Our ULE block is put into a vacuum tube (size 63CF), which gets sealed with

AR-coated viewports at both ends. This way we avoid changes of the cavity

length due to variations of the surrounding atmospheric pressure. Moreover the

temperature of the vacuum tube is stabilized with mK precision using a heating

wire, which we have wound around the tube. In order to keep influences of air

flows or fast changes of the surrounding air temperature small we have put the

vacuum tube into a polystyrene housing.

The cavity mirrors have a radius of curvature of 250mm and are specified

to have a reflectivity of R ≈ 99%. From this value we expect the finesse to

be F = πR/(1 − R) ≈ 310 and therefore the cavity linewidth to be FSR/F =
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4.8MHz. The measured value of the cavity linewidth is slightly lower (5.8MHz),

which corresponds to a finesse of F ≈ 260.

3.3.3 High power laser system for atom trapping

For the optical trapping and the transport of the ultracold atom cloud we employ

a far-red detuned (from the atomic resonance) high power laser. The main idea of

our high power laser system is to optically amplify the output of a commercially

available narrow-band laser source. As a source we use a 2W solid state laser

(Mephisto) from the company Innolight. This single-frequency laser has an emis-

sion wavelength of 1064 nm and a spectral linewidth below 1 kHz. By changing

the temperature of the crystal the laser frequency can be tuned over a range of

30GHz (tuning coefficient = -3GHz/K).

The light from the Mephisto is seeded into an amplifying fiber, which is op-

tically pumped from the opposite end of the fiber using high-power laser diodes.

Pumping the fiber in the absence of the seed beam leads to an irreparable damage

of the amplifying fiber. For this reason a safety circuit was implemented, which

shuts the pumping laser down when either the power of the seeding beam is to low

or when the power at the fiber output is fluctuating too much. All components

of the fiber amplifier, including the safety circuit, the entire control electronics

for the pumping laser as well as the housing for the fiber and the pump laser are

home-built.

The output beam of the amplifier has a total power of up to 10W and is split

into three beams, with which we generate the 1d optical lattice as well as the

crossed optical dipole trap.

3.4 Experimental control

In our experiment we use an inexpensive and powerful control system mainly

developed by our research colleagues Florian Schreck and Gerhard Hendl [35].

The hardware includes circuit boards for digital and analog outputs (16-bit

DACs). The outputs are required to trigger our cameras and to control the

laser shutters, the currents through our magnetic field coils and the frequency

of our lasers. Furthermore we have also implemented direct digital synthesizer

(DDS) boards from Analog Devices (AD9854). This way we have full control

over amplitude, frequency and phase of the radiofrequency signal used to drive

our AOMs.
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For the communication between the hardware and the control computer we

use a high speed 32-bit parallel digital I/O interface from National Instruments

(NI-6533). The data is sent from the interface to the individual boards via a

general purpose parallel bus. The clock frequency of 2MHz enables to update

the values at the outputs every 500 ns. We phase-lock our clock to the 50Hz of

the AC power line, in order to keep the electronic noise at a minimum.

The control software is a self-written LabView program (version 8.5), which

runs on our so-called “control computer”. It features a user interface to enter the

values for our experimental sequences and passes these values on to the NI-6533

board.

In addition a second computer is required to display and to store the pictures

taken by our CCD-cameras. This so-called data “acquisition computer” not only

files the camera picture, but also the corresponding values of the control outputs.

These values are sent from the control computer to the data acquisition computer

via TCP/IP.
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Chapter 4

Trapping of Barium ions

Over the last view decades the Paul trap and the Penning trap have been used

for a lot of beautiful experiments. Particularly, both traps have routinely been

employed to store ions on a single particle level. In a Penning trap, however,

the state of minimal ion energy is not stable. Therefore this kind of trap is not

suited for the investigation of ultra-cold atom-ion collisions, for which the ion

energy is desired to be as low as possible. Thus we confine the ions in a Paul

trap with a combination of a static and an oscillating electric field. The two most

common variations of the Paul trap are the ring trap and the linear trap. In our

experiment we employ the latter one, since it gives us the opportunity to work

with a linear string of several ions. For deeper insight and a general overview

about ion trapping I would like to refer to a review article of Dave Wineland et.

al. [36] and to the book of P. K. Gosh [37].

4.1 The Linear Paul trap

In a linear Paul trap the radial confinement (xy-plane) is achieved by applying

a high-voltage radiofrequency to two of the four blade electrodes, just like in the

case of a quadrupole mass filter. Trapping along the axial (z) direction is ensured

by applying positive DC voltages to the endcap electrodes. The total trapping

potential can be written as

Φ = Φblade + Φend, (4.1)

where Φblade and Φend are the potentials formed by the blade electrodes and

the end-cap electrodes, respectively. When a voltage URF cos(Ωt) is applied to
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Figure 4.1: Linear Paul trap: Four rf blades (blue) are used to confine the ions
along the radial direction (xy-plane). Two endcap electrodes (golden) are needed
for trapping along the third (z) direction. The ions are moved within the xy-plane
by applying appropriate voltages to the compensation electrodes (green).

two opposite blade electrodes, a potential of the form

Φblade(x, y) =
URF
2

(
1 +

x2 − y2

r̃20

)
cos(Ωt) (4.2)

is generated close to the center (i.e. x, y ≪ r̃0). In the case of hyperbolically

shaped electrodes the parameter r̃0 is equal to the minimum distance of the elec-

trodes to the trap center r0. In general for non-hyperbolically shaped electrodes

r̃0 = νr0, where ν is a dimensionless parameter which depends on the geometry of

the electrodes. A DC voltage Uend applied to the end-caps leads to the potential

Φend(x, y, z) =
κUend

z20

(
z2 − x2

2
− y2

2

)
, (4.3)

where L = 2z0 is the distance between the endcaps and κ is again a dimen-

sionless number which depends on the details of the trap geometry. The total

potential then reads

Φ(x, y, z) =
URF

2
cos(Ωt) +

(
URF

2r̃20
cos(Ωt)− κUend

2z20

)
x2

−
(
URF

2r̃20
cos(Ωt) +

κUend

2z20

)
y2

+
κUend

z20
z2. (4.4)
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Figure 4.2: Front and side view of the trap: All dimensions are given in mm.
The edge of the blade electrodes has a radius of curvature of 0.4mm and the
electrode is mounted such that the clear view diameter is cvd = 3mm. The
endcaps have a bore with a diameter of 2.5mm and are separated by a distance
of L = 2z0 = 14mm. The compensation electrodes are placed 9.3mm away from
the trap center.

From this we can derive the electric field

E(x, y, z) =

(
URF

r̃20
cos(Ωt)− κUend

z20

)
x êx

−
(
URF

r̃20
cos(Ωt) +

κUend

z20

)
y êy

+
2κUend

z20
z êz. (4.5)

In this field the equation of motion mẍ = −eE for a singly charged ion with

mass m and charge e is given by

ẍ+ [2q cos(Ωt)− b]
Ω2

4
x = 0

ÿ − [2q cos(Ωt) + b]
Ω2

4
y = 0

z̈ +
Ω2

2
b z = 0

(4.6)

with
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q =
2eURF

mr̃20Ω
2

(4.7)

b =
4eκUend

mz20Ω
2
. (4.8)

These equations of motion (4.6) are known as the Mathieu equations. To solve

them we separate the motion of the ion into a fast micromotion at frequency

Ω and into a slow secular motion [37–39].

For b≪ 1 and q ≪ 1 the solutions of (4.6) can be written as [39, 40]

x(t) ≈ Ax cos(ωxt+ φx)
(
1 +

q

2
cos(Ωt)

)

y(t) ≈ Ay cos(ωyt+ φy)
(
1 +

q

2
cos(Ωt)

)

z(t) ≈ Az cos(ωzt+ φy)

(4.9)

where the secular frequencies are given by

ωrad ≡ ωx = ωy =
Ω

2

√
q2

2
− b (4.10)

ωz =
Ω

2

√
2b. (4.11)

On time scales much larger than 1/Ω the trapping potential of the rf Paul

trap is quasi-static. Close to the center of the trap this quasi-static potential has

a harmonic shape, with trap frequencies given by (4.10) and (4.11).

4.2 Operating the trap

4.2.1 Loading of ions

A commercially available oven (Alvasource from the company Alvatec) is used as

a source of neutral Barium. The oven is a stainless steel tube with a diameter

of 2mm and a length of about 30mm. The tube, which is welded up at both

ends, is filled with He as an inert gas and with a stable intermetallic compound

of barium and another non-toxic metal such as indium, gallium, tin or bismuth.

Once the chamber is evacuated, the oven can be put into operation. In a first

step a current of about 9A is sent through the oven in order to melt the very
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Figure 4.3: Collimation of the atomic beam: By heating up the oven, Ba atoms
start to exit at the front end of the oven. The majority of these atoms are moving
along the direction of the oven. However, some particles (in particular those,
which are evaporated off close to the front end) will have a random direction.
These atoms would not be able to reach the center of the Paul trap, but rather
they would hit one of the rf blades of our trap. Therefore, in order to avoid
that our blades get gradually coated with Ba, we put an aperture plate into our
atomic beam. This way, we are able to sort out the particles, that are indeed
moving towards the trap center.

thin Indium weld at the front side of the tube. As soon as the oven is “open”,

the He is pumped away and pure atomic Ba is released from the intermetallic

compound. By following this procedure the Ba does not get into contact with air

and thus the formation of BaN or BaO on the surface of the Ba is avoided.

The oven tube is mounted such that it points directly to the center of the

ion trap (see Fig.4.5) and the position is fixed using a ceramics (Macor) part. In

order to evaporate off neutral Barium, we typically run a current of about 7.5A

(corresponding to about 6W) through the oven. An additional aperture plate

(also made of Macor) is used to collimate the atomic beam and thus to avoid that

the electrodes get coated with Barium (see Fig. 4.3). Once the Ba atoms reach

the center of the trap, they are photoionized by driving a resonant two-photon

transition from the ground state to the continuum via the 3D1 state [41]. For

this purpose a few mW of laser power at a wavelength of 413 nm are used (see

Fig. 4.4). With this ionization procedure typical loading times (single ion) are on

the order of one minute.

Once the ions have been trapped, they are laser-cooled for tens of seconds
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Figure 4.4: Relevant transitions for the photo-ionization of neutral Ba: At first,
the 413 nm laser excites the atom into the 5d6p 3D1 state and then drives the
transition far into the continuum.

to reach mK temperatures. For this purpose we overlap the cooling(493 nm),

the repumping(650 nm) and the ionization (413 nm) laser beam with very high

precision using a laser beam profiler. Eventually the ions can be detected via

fluorescence imaging.

4.2.2 Cooling of ions

In order to properly describe the laser cooling of trapped atoms and ions it is

necessary to determine the value for the so-called Lamb-Dicke parameter η. This

parameter compares the mean extension of the particle’s wavepackage

√
〈∆X̂2〉

with the wavelength of the cooling light. For a particle trapped in a harmonic

potential and being in number state |n〉, η is defined as

η = k

√
〈∆X̂2〉 = k

√
2n+ 1

√
~

2mω
(4.12)

where k = 2π/λ is the wavevector of the cooling laser, m the mass of the

particle, and ω the trap frequency. In our experiment η is about 1, when the

ion reaches the Doppler temperature. Above Doppler temperature η is larger

than one, meaning that we do not enter the Lamb-Dicke regime during Doppler

cooling. Therefore, we can describe the laser cooling in our case as if the ion was

a free particle [42].

The Doppler-cooling is performed on the 6S1/2 →6P1/2 cycling transition
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Figure 4.5: Overview of the ion trapping region: The Paul trap electrodes are
mounted onto the center of the 200CF science flange using trap holders (stainless
steel) and trap mounts (macor). Additional macor parts are required to mount
the Ba oven and to aperture the Ba atom beam. The imaging objective for
collecting the fluorescence of the Ba+ ions is also put onto the science flange at
a distance of 6 cm from the center of the trap.

(see Fig. 3.9), which has a transition wavelength of 493 nm and a linewidth of

Γcool/(2π) = 15.1MHz. The minimum temperature we can reach is kBTD =

~Γcool/2 ≈ kB× 360µK. With a probability of about 25% the ion does not decay

into the 6S1/2 groundstate, but into the metastable 5D3/2 state. For this reason a

second cooling laser at a wavelength of 650 nm is needed. Since the contribution

of the 650 nm light to the cooling is only about 25%, this second laser is often

called repumping laser.

4.2.3 Detection of ions

We detect the ion by collecting its fluorescence using a “high-aperture laser ob-

jective (HALO)” from the company Linos. The HALO has a numerical aperture

of NA=0.2 and a focal length of f =60mm, which enables to collect about

NA2/4 ≈ 1% of the spontaneously emitted photons. In order to be able to place

the HALO at a distance of f =60mm from the trap center, it has to be put

into the vacuum chamber. The original mount, which holds all four lenses of the

objective at a fixed position, is anodized and generally not designed to be put

into a UHV environment. For this reason an exact copy of the original mount
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was made by our mechanical workshop (Fig. 4.5). Our home-built mount is made

out of UHV-capable aluminum and features an air vent in order to avoid slow

outgassing of air that is enclosed in between the different lenses of the objective

(virtual leaks).

The collimated fluorescence light exits the chamber through a CF63 AR-

coated viewport and a f =300mm achromat is then used to focus the light

onto the CCD chip of an Andor Luca(S) camera. Together the HALO and the

achromat form a telescope with a magnification of 5. Diffraction at the aperture

of the HALO ultimately limits the resolution of the imaging system to about

1.5  m, which is an order of magnitude smaller than the typical distance between

two neighboring ions of an ion string. The Andor Luca(S) is a cost effective EM-

CCD (electron-multiplying charge coupled device) camera designed for low light

imaging. At 493 nm the quantum efficiency is about 50%. During operation the

CCD chip of the camera is held at -20◦C. Cooling the CCD-chip together with

operating the camera in the electron-mulitplying (EM) mode reduces the noise

level to less than 100 photons per second. Being able to measure such low light

levels is particularly important when one wants to trap ions for the first time. In

the beginning the fluorescence signal from the ions is typically very small, since

the exact values for the experimental parameters (such as the oven current, laser

powers, focus position) are not known. However, once an ion signal is detected,

the parameters can be adjusted properly. For the optimal settings we expect the

number of detectable photons to be

Γdetect =
Γcool
2

d2

16f 2
ηCCD (4.13)

where the diameter of the lens is d = 25.4mm, the distance between the

lens and the ion f = 60mm, the transition linewidth Γcool/(2π) = 15.1MHz

and the quantum efficiency of the camera ηCCD ≈ 80%. With these numbers we

theoretically expect almost 105 photons per second. In the experiment we are

able to collect several 104 photons per second per ion with our imaging system.

4.3 Oscillation frequencies

In this section I will discuss the normal mode frequencies of a single ion as well as

of a two-ion crystal stored in our Paul trap. These eigenfrequencies are important

parameters for characterizing the trapping of the ions.
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4.3.1 Single ion - trap frequencies

The oscillation frequencies of a single ion (= trap frequencies) have already been

calculated in the first section of this chapter (equations (4.10) and (4.11)). Using

the expressions for q (equation (4.7)) and for b (equation (4.8)) we obtain the

eigen-frequencies

ωrad =

√
e2U2

rf

2m2r̃40Ω
2
− eκUend

mz20
(4.14)

ωz =

√
2eκ

mz20
Uend (4.15)

as a function of the rf amplitude Urf and the end-cap voltage Uend.

Experimentally the radial trap frequency is determined via amplitude mod-

ulation of the rf voltage. The modulation frequency is varied and when it is

equal to the trap frequency the ion is resonantly heated. For a sufficiently large

modulation amplitude the heating is strong enough to put the ion into an orbit

of several µm, that can be detected via fluorescence imaging. For a single ion we

actually find two radial trap frequencies on the order of 200 kHz, which differ by

about 5%. We explain the existence of two radial eigenfrequencies by the fact,

that due to geometrical imperfections the potential generated by the rf blades

is not perfectly cylindrically symmetric. A simple estimation shows that an un-

certainty of ∆ω/ω ≈ 5% corresponds to ∆r̃0/r̃0 = −2∆ω/ω ≈ 2.5% and thus

to ∆r̃0 ≈ 60  m. In Fig. 4.6a the two radial eigenfrequencies are plotted versus

the end-cap voltage. The frequencies decrease for increasing end-cap voltages,

because the end-caps generate a (small) anti-trapping potential along the radial

directions. By fitting the relation (4.14) to the data, we obtain values for the two

geometric parameters κ = 0.295 and r̃0 = 2.6mm, which depend on the exact

geometry of all ion trap electrodes. The “effective distance” r̃0 is the distance to

the center, that ideal quadrupole-shaped electrodes would have to have in order

to generate the same trap frequencies as our blade electrodes. As expected, r̃0

is slightly larger than the “real distance” to the trap center r0 = 2.3mm. By

plugging the values for κ and r̃0 together with the typical voltages used in our

experiment URF = 700V and Uend = 40V into the equations (4.7) and (4.8), we

obtain q ≈ 0.13 and b ≈ 6× 10−4.

To determine the axial trap frequency we modulate the end cap voltage and
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Figure 4.6: Measurement of the trap frequencies for a given rf amplitude Urf =
700V, rf-drive frequency Ω = 2π×5.24MHz and end-cap separation 2z0 = 14mm.
(a) By fitting the relation for the radial trap frequencies (4.14) to our data
we find κ = 0.295 and r̃0 = 2.6mm. (b) Fitting the expression for the axial
trap frequency (4.15) to the data leads to κ = 0.293.
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again look for resonant heating of the ion. Typical axial trap frequencies in our

experiment are between 50 kHz and 100 kHz. We also measure ωz for various DC

voltages on the end-cap electrodes (see Fig. 4.6b) and fit the expression (4.15) to

our data. By again using κ as a free fit parameter we extract κ = 0.293. This

value is in very good agreement with the one obtained from the measurement of

the radial trap frequencies.

By measuring the trap frequencies ωrad and ωz for various endcap voltages

Uend, we have been able to determine the geometry parameters κ and r̃0. With

these two quantities we can simulate our trapping potential, in order to find

values for our trap depth.

4.3.2 Normal mode frequencies of a two-ion crystal

The potential energy U of two singly-charged ions with masses m1 and m2, con-

fined in a harmonic trap with radial trap frequencies ωr,1 and ωr,2 and axial trap

frequencies ωz,1 and ωz,2 is given by

U =
1

2
m1

(
ω2z,1z

2
1 + ω2r,1r

2
1

)
+

1

2
m2

(
ω2z,2z

2
2 + ω2r,2r

2
2

)

+
e2

4πǫ0

1√
(z1 − z2)2 + (r1 − r2)2

(4.16)

where the last term arises from the Coulomb repulsion of the two ions. A

linear Paul trap is usually operated such that ωr ≫ ωz. In this case the radial

equilibrium positions are r
(0)
1 = r

(0)
2 ≈ 0. To find the axial equilibrium positions

z
(0)
1 and z

(0)
2 we calculate (∂U/∂z1)(0) = 0 and (∂U/∂z2)(0) = 0, where the sub-

script “(0)” denotes that we have to plug in the radial equilibrium positions. At

this point it is very helpful to note, that m1ω
2
z,1 = m2ω

2
z,2, since ωz ∝ 1/

√
m. As

a consequence the ions are displaced symmetrically from the trap center, even in

the case of m1 6= m2. We get

z
(0)
1 =

(
e2

4πǫ0

1

m1ω2z,1

)1/3

=

(
e2

4πǫ0

1

m2ω2z,2

)1/3

z
(0)
2 = −

(
e2

4πǫ0

1

m1ω2z,1

)1/3

= −
(

e2

4πǫ0

1

m2ω2z,2

)1/3

. (4.17)

The motion of the two ions is coupled via the Coulomb interaction. Thus,

61



the eigenfrequencies of the two-ion-system are not simply given by the trap fre-

quencies. However, the eigenfrequencies can be calculated by solving the classical

equations of motion for the potential given by (4.16) [43]. Assuming small oscil-

lations the equations of motion have the form

T r̈ + Vradr = 0 (4.18)

T z̈ + Vaxz = 0 (4.19)

with

r =

(
r1

r2

)
z =

(
z1

z2

)
(4.20)

Tii = mi Tij = 0 for i 6= j (4.21)

V rad
ij =

∂2U

∂ri∂rj
(4.22)

V ax
ij =

∂2U

∂zi∂zj
. (4.23)

It is well known, that the solutions to the equations (4.18) and (4.19) are

harmonic functions. The corresponding eigenfrequencies Ωrad and Ωax are found

by solving

det(Vrad − Ω2
radT ) = 0 (4.24)

det(Vax − Ω2
axT ) = 0

Using the potential given by equation (4.16), the equations (4.24) can easily

be solved analytically. We obtain for the axial direction (see also [44])

Ωax
±

=

√
ω2z,1 + ω2z,2 ±

√
ω4z,1 + ω4z,2 − ω2z,1ω

2
z,2

= ωz,1

√√√√1 +
m1

m2

±
√
1− m1

m2

+
m2
1

m2
2

(4.25)

where m1 ≤ m2. For the special case of equal masses m1 = m2 (and thus also
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Table 4.1: Axial eigenfrequencies of a two-ion crystal, when one of the two ions
is 138Ba+ with a trap frequency of ωz,1.

second ion Ωaxial
+ /ωz,1 Ωaxial

−
/ωz,1

138Ba+
√
3 1

87Rb+ 1.99 1.09
(138Ba87Rb)+ 1.58 0.86
87Rb+2 1.65 0.94

ωz,1 = ωz,2 = ωz) we get the well-known eigenfrequencies Ωax
−
= ωz (center-of-

mass (COM) mode) and Ωax
+ =

√
3ωz (breathing mode).

For the transverse motion (radial direction) the eigenfrequencies are found to

be

Ωrad
±

=

√
ω2r,1 + ω2r,2

2
−
ω2z,1 + ω2z,2

4
± 1

2

√(
ω2z,1 − ω2z,2 − ω2r,1 + ω2r,2

)2
+ ω2z,1ω

2
z,2

(4.26)

Again looking at the special case of m1 = m2, meaning that ωz,1 = ωz,2 = ωz

and ωr,1 = ωr,2 = ωr, the eigenfrequencies take the simple form Ωrad
+ = ωr (COM

mode) and Ωrad
−

=
√
ω2r − ω2z (rocking mode).

Analogous to the case of a single ion, the eigenfrequencies Ωrad
±

and Ωax
±
are

experimentally found via modulation of the rf amplitude and the endcap voltage,

respectively. For our purposes the most important situation is when one of the

ions is a (bright) Ba+ ion and the second one a dark unknown ion. We then watch

the fluorescence of the Ba+ ion to find the eigenfrequencies and use the values for

Ωradial
±

and Ωaxial
±

together with the expressions (4.25) and (4.26) to figure out the

mass of the unknown ion (see also table 4.1). We use this technique to identify

the dark ions formed in an inelastic atom-ion collision.

4.4 Trap depth

The trap depth is the energy required to remove the ion from the trap. For given

trap frequencies the trap depth increases with the size of the trap. With the rf

blade electrodes placed at a distance of r0 = 2.3mm from the trap center, the

size of our Paul trap and thus also its trap depth is large, as compared with most

of the other Paul traps for cold ions which are in use worldwide. Due to the large
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Figure 4.7: Trap depth (on left axis in eV and on right axis in K) as a function
of the rf amplitude Urf. The circles are the results from the numerical simulation.
The solid line is a harmonic fit Etrap = ǫU2

rf, from which we obtain ǫ = 1.041 ×
10−5 eV/V2.

trap depth we are able to store ions even without laser cooling for basically any

amount of time.

The trap depth can be derived numerically by solving the Laplace equation

using finite element methods. Such a calculation also provides values for the trap

frequencies, which we have cross-checked with the measured values. This way

we were able to verify the simulation. In Fig. 4.7 the calculated trap depth is

plotted versus rf amplitude Urf. Typical values are on the order of a few eV,

corresponding to several kB × 104K.

4.5 Micromotion

As derived previously the motion of an ion in a rf Paul trap is a combination of a

slow secular motion and a fast micromotion (see equation (4.9)). The amount of

micromotion is determined by the amplitude of secular motion and thus by the

temperature of the ion. The only way to reduce the micromotion for a given set

of parameters is to cool the ion.

Besides the “ordinary micromotion” discussed so far, the ion also exhibits

so-called “excess micromotion”. For the collision energies in the experiments
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described here, the main cause for “excess micromotion” are unwanted dc electric

fields along the radial direction, which push the ion out of the rf node into a region

of enhanced rf. Excess micromotion can also arise from a phase difference between

the ac voltages applied to the rf electrodes. I will discuss this effect at the end

of this section.

4.5.1 Ion kinematics in the presence of an electric field

Ideally the electric field in the center of a linear Paul trap is equal to zero. In the

experiment, however, dc electric fields are present at the position of the ion. We

classify these fields using their origin and thus distinguish between “charge fields”

and “geometrical” fields. The latter ones are typically caused by imperfections in

the fabrication and the alignment of the trap electrodes. The source for so-called

charge fields are surface charges on the trap mountings and on the trap electrodes

themselves. These charges are particularly a problem in experiments where an

electron emitter is used for ionization.

In the following we derive the effect of a dc electric field Edc on the motion of

the trapped ion. The equations of motion take the form

ẍ+ [2q cos(Ωt)− b]
Ω2

4
x =

eEdc,x

m

ÿ − [2q cos(Ωt) + b]
Ω2

4
y =

eEdc,y

m

z̈ +
Ω2

2
b z =

eEdc,z

m
.

(4.27)

They can be solved in the same way as the equations for zero electrical field.

The solution has the form

x(t) ≈ (Ax cos(ωxt+ φx) +Bx)
(
1 +

q

2
cos(Ωt)

)

y(t) ≈ (Ay cos(ωyt+ φy) + By)
(
1 +

q

2
cos(Ωt)

)

z(t) ≈ (Az cos(ωzt+ φy) + Bz) ,

(4.28)

where Ai is the amplitude of the secular motion and

Bi =
eEdc,i

mω2i
(4.29)

the position shift of the ion, when a field is applied. As can be seen from

this solution, the motion in the radial plane has two “micromotion terms”, both
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oscillating with frequency Ω. The first part is the “ordinary micromotion” with

amplitude qAi/2, i = {x, y}, which can only be reduced by cooling of the ion.

Our new term is the second one, which has an amplitude of qBi/2 and thus is

proportional to the dc electric field at the position of the ion Edc,i. Since Edc,i

can in principle be made arbitrarily small by proper compensation of electrical

stray fields, the second term is called “excess micromotion”.

The kinetic energy of the ion

Ekin =
1

2
m

(
〈ẋ2〉+ 〈ẏ2〉+ 〈ż2〉

)
(4.30)

is calculated by averaging over one period of the secular motion. Plugging in

the expressions for the trajectory (equation (4.28)), we get

Ekin = Esecular
kin + Emicro

kin + Eexcess micro
kin

Esecular
kin =

1

2
m

(
A2

xω
2
x + A2

yω
2
y + A2

zω
2
z

)

Emicro
kin =

1

16
mΩ2q2

(
A2

x + A2
y

)

Eexcess micro
kin =

1

m

(
2eq

(q2 − 2b)Ω

)2 (
E2
dc,x + E2

dc,y

)

(4.31)

4.5.2 Compensation electrodes

The atom-ion collision energy is fully determined by the kinetic energy of the ion.

Therefore it can be controlled via the ion’s excess micromotion by applying an

additional dc electric field along the radial direction. To generate these external

electric fields four “compensation electrodes” are added to the design of our Paul

trap (see Fig. 4.1 and 4.2).

Applying a voltage Ucomp,x to the two horizontal and Ucomp,y to the two vertical

compensation electrodes leads to a position shift ∆x and ∆y, respectively. The

shift along the vertical direction ∆y can be determined using the fluorescence

images of the ion. When measuring ∆y as a function of the compensation voltage,

we find ∆y ∝ Ucomp,y, as expected, with a proportionality constant of 2.1(2) m/V

(Fig. 4.8). Using the expression (4.29) we can then derive the external electric

field as a function of the compensation voltage

Eext,y ≈ 4.9
V/m

V
· Ucomp,y. (4.32)
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We do not have the ability to measure the x-position of the ion with high

resolution. Due to symmetry, however, we can assume the gauging factor to be

approximately the same as for the y-direction.

4.5.3 Minimization of excess micromotion

For the majority of the experiments we want the ion energy and thus the excess

micromotion to be as small as possible. Therefore we compensate for stray fields

by adjusting the external field Eext such that the total dc electric field Edc =

Eext +Estray vanishes. The following two methods are used in our experiment to

null the dc electric field.

Compensation via ion position:

In the presence of an electric field the ion position changes when the steepness

of the ion trap (the trap frequency) is varied. For this reason, we adjust the

compensation voltages so that the position shifts of the ion due to changes of the

rf amplitude is minimal. This compensation method is simple and reliable. For

the experiments described in this thesis the DC electric field at the position of

the ion was reduced to below 4V/m, corresponding to a maximum ion energy

of kB×40mK. As mentioned above, it is not possible with our current setup

to measure the x-position of the ion with high resolution. Thus we can only

compensate the stray fields along the y-direction with this “position method”.

Compensation via heating of the ion:

For the compensation of the stray fields along the x-direction we apply the

following method. The trapped ion is resonantly heated, when we modulate the

amplitude of the rf voltage with the modulation frequency being equal to the

trap frequency. This heating leads to a smear-out of the ion’s fluorescence, that

can be detected by taking fluorescence images (see also section 4.3). The amount

of heating is increased, when the ion is not in the rf node, i.e. in the presence

of a dc electric field. Therefore, we are able to compensate excess micromotion

by minimizing the heating for given modulation parameters. We estimate that

for the experiments presented in this work the residual electric field along the

x-direction was also about 4V/m.

Over the last couple of months a great effort was made to further reduce the dc
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Figure 4.8: The vertical ion position is measured as a function of the voltage
on the compensation electrode (left y-axis). Plugging the value for the trap
frequency ωrad = 200 kHz into (4.29), we can also plot the electric field along the
y-direction Ey as a function of the compensation voltage (right y-axis).

electric fields, so that the residual fields are now (summer 2011) about 50mV/m

for the y-direction (“position method”) and 150mV/m for the x-direction (“heat-

ing method”). These values prove the high accuracy of the both compensation

methods.

4.5.4 Further sources of excess micromotion

Additional micromotion can not only be caused by a dc electric field but also

by a phase difference between the ac voltages applied to the rf electrodes. The

existence of such a phase difference ϕac will lead to an electric field pointing

towards one of the two rf-driven blade electrodes. Consequently, the kinetic

energy of the ion will be increased by an amount of [39]

Ephase
kin = 1

64
m (q r0 αϕacΩ)

2 , (4.33)

where α is a dimensionless parameter on the order of 1. A phase difference

ϕac can occur for instance when the rf electrodes are not wired up properly or the

supply cables do not have equal length. This effect can be roughly estimated as

follows. Assuming a speed of propagation of c = 3× 108m/s, the radiofrequency

of ν = 5MHz has a wavelength of λ = c/ν = 60m. For a length difference of
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δl = 1mm we would get a phase difference of ϕac/(2π) = δl/λ ∼ 10−5. Using

equation (4.33) the excess kinetic energy of the ion due to such a phase difference

is then estimated to be on the order of Ephase
kin ∼ kB× 100  K. This value is much

smaller than the typical excess micromotion energies due to dc electric stray

fields. A more precise calculation of the phase difference effect is quite involved,

since one would have to know the characteristic impedance and thus the exact

geometry of the supply cables.
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Chapter 5

Bose-Einstein condensates of

Rubidium

5.1 Generation of the ultracold atom cloud

The techniques used in our experiment to create ultracold quantum gases of

Rubidium atoms are very similar to those described in [45]. The atoms are

collected in a magneto-optical trap (MOT) and then further cooled by the use of

optical molasses. Subsequently the atom cloud is transported magnetically from

the MOT chamber into the BEC chamber, where it is loaded into a QUadrupole-

Ioffe-Configuration (QUIC) trap. Since the magnetic field is non-zero at the

minimum of the QUIC trapping potential, the atom cloud can be cooled down

to quantum degeneracy. In table 5.1 I have listed the particle number and the

atom temperature after each step of the preparation process. In the following

I will summarize in a nutshell our roadway to BEC and describe a few selected

experimental characteristics in more detail.

5.1.1 Magneto-optical trap

The preparation of the neutral atom cloud starts with loading the Rb atoms

from the background vapor into a standard six-beam MOT [46–48]. The MOT

is operated at the |F = 2〉 → |F ′ = 3〉 cycling transition of 87Rb. To maximize
the particle number we have chosen a detuning of -3.5Γ, where Γ = 2π×6MHz
is the natural linewidth of the transition.

The atoms are not slowed down prior to capturing them in the MOT. Instead

they are directly loaded from the surrounding Rb vapor, which is in equilibrium
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Table 5.1: Roadway to a degenerate Rb quantum gas: Approximate values for
the particle number as well as for the temperature of the atom cloud are listed.

Molasses Magnetic after after
stage MOT cooling trap transport evaporation

Particle number 3× 109 2× 109 1× 109 5× 108 2× 106

Temperature [ K] 120 40 150 230 1

with the chamber walls and thus has room temperature. For maximum particle

number we therefore require the MOT cooling beams to be as large as possi-

ble. Since we employ a tapered amplifier (see section Laser systems) the totally

available MOT beam power is about 250mW, which allows for having MOT

beams with a diameter of 30mm (the saturation intensity of the transition is

∼ 1.6mW/cm2).

The MOT light can also excite the atoms into the |F ′ = 2〉 state with a

small but non-vanishing probability, from which they can then decay into the

|F = 1〉 groundstate. For this reason we need a “repumper laser”, which is

tuned resonantly to the |F = 1〉 → |F ′ = 2〉 transition. To pump the atoms

back into the cycling transition, we use a total repumper power of about 10mW.

To ensure the trapping of atoms in our MOT we add a pair of anti-Helmholtz

coils to our setup. The MOT coils are placed at a distance of 25mm above and

below the MOT chamber. Both coils have an inner diameter of 70mm, an outer

diameter of 107mm and consist of two layers with 2 x 15 windings in total. To

operate the MOT we typically run a current of 5A through the coils, leading to

a magnetic field gradient of about 8G/cm.

With the parameters given here we are able to load about 3×109 87Rb atoms

within a time of typically 8 s into our MOT, as detected via absorption imaging.

Using time-of-flight (TOF) images, we find the temperature of the atom cloud to

be slightly below the Doppler temperature of 140  K.

5.1.2 Molasses cooling, spinpolarizing and magnetic trap-

ping

Immediately after we have completed the loading of the MOT, we turn off the

magnetic field and linearly change the detuning of the MOT cooling beams within

3ms to about -8.5 Γ. The power of the beams is kept at the same value as for

the MOT. The MOT beams now form a so-called optical molasses [47,48]. For a

total duration of 10ms the atoms are not trapped. However, the temperature of
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Figure 5.1: Left: Magnetic transport line: The neutral atom cloud is transported
over a distance of 431.2mm from the MOT chamber (green) to the BEC chamber
(golden). All required magnetic field coils (brown) as well as their respective
housings (blue) are shown. Right: Photo of the magnetic transport coils and the
MOT coils (far right) before they are mounted to the vacuum apparatus.

the cloud is reduced further to about 40  K.

In a next step the atoms are optically pumped into the lowest lying magneti-

cally trappable state |F = 1, mF = −1〉. For this spin-polarizing procedure we
require a magnetic offset field, which we generate with our push coil. We then

pump the atoms towards the mF = −1 substate by shining in σ− light propagat-
ing along the magnetic field axis and tuned to the |F = 1〉 → |F ′ = 1〉 transition.
Since the atoms are originally (during MOT and molasses cooling) in the |F = 2〉
state, we shine in another σ− beam tuned to the |F = 2〉 → |F ′ = 2〉 transition.
This beam excites the atoms to the |F ′ = 2〉 state from where they can then

decay into the |F = 1〉 ground state.
Subsequently the spin-polarized atoms are loaded into a magnetic quadrupole

trap. For this purpose we run a current of 80A through our MOT coils to

generate a magnetic field gradient of B′z = 130G/cm. This field gradient exerts

a confining force of 4mRbg on the atoms, which is clearly sufficient to hold them

against gravity. Loading the atom cloud into the magnetic trap increases its

temperature to about 150  K. The total number of atoms at this stage is about

1× 109.

5.1.3 Magnetic transport

Following the concept described in [49], we transport the cold atom cloud mag-

netically from the MOT chamber to the BEC chamber. For this transport we

employ all together 13 anti-Helmholtz pairs of coils (11 transport coil pairs, the
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Figure 5.2: Efficiency as a function of the duration for the transport to the
intermediate point x = 385mm and for the transport to the final position in
the BEC chamber x = 431.2mm. The rise of the cloud’s aspect ratio, when it
enters the BEC chamber, leads to the significant drop of the maximal efficiency
(ηmax385mm = 62% and ηmax431mm = 48%).

MOT coil pair, the QUIC quadrupole coil pair) and an additional “push coil”.

Each magnetic transport coil has an inner diameter of 47mm and an outer di-

ameter of 130mm, with 2x17 windings in total. The transport coils are arranged

in two (semi-overlapping) layers above and below the atoms. In order to keep

the required current minimal, the distance between the coils and the atoms is

chosen to be as small as possible. The distance, which is mainly limited by the

size of the gate valve, is 50mm for the inner layer and 57mm for the outer layer,

respectively.

The atoms can be moved from the center of one pair of quadrupole coils to

the next by reducing the current through the first coil pair while ramping up

the current through the second pair. However, since such a simple scheme would

lead to a periodic change of the cloud’s aspect ratio and thus to a heating of the

atoms, we operate three neighboring coil pairs simultaneously. This way we can

keep the aspect ratio at a constant value of 1.69.

We encounter a special situation at the beginning of the transport line, where

the aspect ratio would blow up, since the size of the MOT coils makes it impossible

to mount the first transport coils as close as required. This problem, though, has

been fixed by adding a so-called “Push-coil” to the setup. The Push coil generates

a force which points along the direction of the transport and it ensures that the

aspect ratio is ramped smoothly from 1 (magnetic trap) to 1.69 (transport).
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In an analogous way a so-called “Pull coil” would have been necessary at the

end of the transport line. However, due to the geometry of the BEC chamber it

was not possible to implement such a Pull coil. As a consequence the aspect ratio

can only be kept at 1.69 until a transport position of x = 385mm. When the

cloud enters the BEC chamber the aspect ratio rises temporarily to 4.71, which

leads to a larger duration and a smaller efficiency of the transport (see Fig. 5.2).

Together with the aspect ratio we also keep the magnetic field gradient along

the vertical direction (∂B/∂z = 130G/cm) constant throughout the transport.

These input parameters uniquely define the curves for the currents through the

coils I as a function of the atom cloud position x. For the kinematics of the atom

cloud x(t) we have chosen a smooth spline interpolation between the starting

point x = 0 and the intermediate point x = 385mm, as well as between the

intermediate point and the final position x = 431.2mm. The only parameter,

that remains variable, is the transport duration, which is chosen such that the

transport efficiency is maximal (Fig. 5.2). By combining I(x) and x(t) we can

derive the desired current ramps I(t) (see Fig. 5.3). However, since the power

supplies show a typical low pass behavior, the current ramps cannot directly be

fed into the respective modulation inputs. In fact, it is necessary to accurately

record the frequency response of the power supplies and to correct for the low

pass behaviour.

With the procedure described here we are able to move the cloud over a dis-

tance of 431.2mm within a time of 1.5 s. The final particle number after transport

is typically 5×108, corresponding to an overall efficiency of about 50%. The tem-
perature of the atom cloud increases from initially 150  K to about 230  K.

5.1.4 QUIC trap and evaporative cooling

The first step of loading the atoms into the QUIC trapping potential is to increase

the current through the QUIC quadrupole coils within a duration of 1.5 s from

16A to the maximal steady state value of 36A. The corresponding maximum

magnetic field gradient is ∂B/∂z = 320G/cm.

At this point we start rf-induced forced evaporative cooling to reduce the

temperature of the atom cloud. To selectively remove hot atoms, a small coil with

3 turns and a diameter of about 20mm is placed inside the vacuum at the bottom

of the chamber at a distance of 13mm from the atoms. The coil is driven with

30 dBm of rf power. The rf is generated with a direct digital synthesizer (DDS)

board from Analog Devices (AD9854). The DDS allows to smoothly change
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Figure 5.3: Transport currents as a function of time for the optimum duration of
1.6 s. The dashed line at 0.9 s indicates the point of time, when the atom cloud
is at the intermediate position of 385mm.

the frequency while keeping the rf phase coherent. In our case the frequency is

ramped linearly from 70MHz to 40MHz within 3 s and from 40MHz to 10MHz

within 5 s. At this point the atom temperature is about 70micro K and Majorana

losses start to play a role. Therefore the current through the Ioffe coils is also

ramped up to 36A within a time of 0.8 s. At the end of the ramp the quadrupole

coils and the Ioffe coil are connected in series and driven by a single power supply.

Having all the QUIC coils wired up in the same circuit minimizes heating of the

atom sample and leads to a 1/e lifetime of the cloud on the order of 2min. The

QUIC coil system generates an offset magnetic field of about 2G and close to the

center a nearly harmonic potential with trapping frequencies of (ωx, ωy, ωz) =

2π×(105, 105, 20)Hz.
In the QUIC trap the evaporative cooling is continued by ramping the rf

within a time of 5 s exponentially from 10MHz down to about 3MHz. With

this procedure we are able to produce Bose-Einstein condensates of up to 3×105
atoms (BEC transition temperature Tc ≈ 100 nK). However, we usually stop the

evaporation when the temperature of the cloud is on the order of 1  K and the

atom number is about 2×106. This way we are able to work with larger atomic
samples in our science chamber.

Here I would like to point out that we achieve final particle numbers of 2×106
only when we start the rf evaporation in the quadrupole trap, i.e. before the
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current through the Ioffe coil is ramped up. With this procedure we avoid that

atoms get into contact with the chamber walls, after they have been loaded from

the steep quadrupole trap into the shallow QUIC trap. As a result, we find that

preventing the atoms from collisions with the chamber walls leads to an increase

of the final atom number.

5.2 Optical trapping of the atoms

As discussed so far, we have used magnetic fields to trap the atom cloud during

its preparation. However, after the 1  K cold atomic sample has been generated,

it is loaded into an optical trapping potential for the following reasons.

A moving 1-d optical lattice is employed for the transport of the atoms from

the BEC chamber to the science chamber. Since we only need two counter-

propagating laser beams to form such a lattice potential, the optical transport

setup is very simple compared with other methods (such as a magnetic transport).

Moreover, the optical transport scheme works for arbitrarily cold atom samples,

provided that a small magnetic offset field is present along the transport line.

Once the atoms have arrived in the center of the ion trap, they are loaded

into a crossed optical dipole trap. Since the depth of the dipole trap is orders

of magnitude lower than the one of the Paul trap, the influence of the optical

trap on the ion can be neglected. Another advantage of the dipole trap is that

its position can be adjusted fast and easily. As we will see later, this feature is

essential for the optimization of the overlap between the atoms and the ion.

5.2.1 The Dipole force

In the presence of a laser light field the atomic energy levels are shifted due to

the AC Stark effect [48, 50]. The shift arises from the electric dipole interaction

between the atom and the laser field. Its magnitude can be calculated using

time-dependent perturbation theory.

Optical dipole traps are operated far-detuned from the atomic resonance, so

that the photon scattering rate is typically much smaller than the linewidth of the

transition. Thus the atoms spend basically all the time in the electronic ground

state. Under these conditions the optical dipole potential is directly given by the

AC Stark shift of the atomic ground state.

In our experiment the Rb atoms are optically trapped using a fiber amplified

solid state laser at λ = 2πc/ω = 1064 nm (see section 3.3.3). A laser intensity
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distribution of I(x, y, z) then leads to a potential of the form [50]

Udip(x, y, z) = −
3πc2Γ

2ω30

(
1

ω0 − ω
+

1

ω0 + ω

)
I(x, y, z) (5.1)

where ω0 is the transition frequency of the relevant atomic transition, which

in our case is the 5S→5P transition in Rubidium. For the calculation of Udip the

fine structure splitting of 5P level can be neglected, since it is much smaller than

the detuning of the trapping laser from the atomic resonance. Rather, we can

work with the mean transition frequency

ω0 =
1

2
ω1 +

2

3
ω2 (5.2)

which can then be calculated as a weighted average of the frequencies of the

two Rb D-lines 2πc/ω1 = 795 nm and 2πc/ω2 = 780 nm. With these values

we find 2πc/ω0 = 785 nm. The (average) transition linewidth is given by Γ =

2π × 5.9MHz [32].

Since our trapping laser is red-detuned from the atomic resonance ω < ω0,

the atoms are stored in the intensity maxima of the trapping beams. Therefore it

is necessary to estimate the heating rate of the atomic sample due to scattering

of photons from the trapping beam. The maximal photon scattering rate is given

by

~Γscatt ≈ U0
Γ

ω0 − ω
, (5.3)

where U0 is the depth of the dipole potential. For all the dipole potentials used

in our setup U0 is chosen such that 1/Γscatt is larger than then typical trapping

time.

5.2.2 Transport of ultracold atoms using a moving optical

lattice

A key feature of our experiment is the long-distance optical transport of the

ultracold atoms. This transport scheme allows us to separate the science chamber

from the BEC chamber by a macroscopic distance of 30 cm. Thereby we are able

to avoid mutual disturbance between the Paul trap and the setup used to generate

the Rb quantum gas. In particular we minimize the heating of the ions due to

the rf radiation needed for evaporative cooling of the atoms. In the future this

feature might make our apparatus superior over other atom-ion experiments,
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since it makes it easier to reduce the ion energy and thus to enter the regime of

ultracold atom-ion collisions.

During transport the ultracold Rb atoms are stored in the nodes of a 1-d op-

tical standing wave. We achieve the confinement with the optical dipole force, as

described above. By introducing a detuning between the two counterpropagating

lattice beams the standing wave nodes and therefore the atoms are moved. With

this transport scheme we are able to control the position of the atoms very pre-

cisely. Furthermore, the moving lattice transport is very reliable with an almost

perfect reproducibility.

Before I describe our transport technique in more detail, I will summarize the

previous efforts of transporting BECs with far-off-resonant laser fields.

Introduction - earlier transport experiments

For the optical transportation of quantum-degenerate gases two different meth-

ods have already been implemented successfully. On the one hand the group of

Wolfgang Ketterle has trapped BECs in so-called optical tweezers, generated by

the focus of a far-off-resonant laser beam. By moving the focussing lens they

have managed to transport the condensate over a distance of about 40 cm [51].

On the other hand ultracold atoms have been moved over macroscopic distances

of up to 20 cm using a 1-dimensional optical lattice [52–54]. To set the interfer-

ence pattern and thus the atoms in motion, a relative detuning between the two

counterpropagating lattice beams is introduced. The major issue of this trans-

port scheme is the vertical confinement. In order to avoid that gravity drags

the atoms out of the lattice potential, the waist of the lattice beams needs to be

sufficiently small. However, due to the wave nature of the light a small waist is

directly linked to a small Rayleigh range and thus to a large divergence of the

beam. Therefore, ordinary Gaussian laser beams are not well suited to generate

the 1-d lattice needed for a horizontal long distance transport of atoms. One pos-

sible solution to this problem is to exchange one of the Gaussian-shaped lattice

beams with a so-called “Bessel beams”. A Bessel beam allows for holding the

atoms against gravity along the entire transport line [53]. A drawback of this

technique is the fact that special and more expensive optics (e.g. a conical lens

or holographic elements) is needed to generate the Bessel beam [54]. Moreover,

most of the Bessel beam’s power is not carried by the central spot, in which the

atoms are trapped, but by the outer rings of the beam. Therefore an increased

amount of laser power is needed to create a Bessel beam with which ultracold
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Figure 5.4: An optical standing wave is used to transport the ultracold atoms
from the BEC chamber into the science chamber
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atoms can be trapped.

In the BaRbI experiment we require a transport technique with which we can

move ultracold atoms over a distance of 30 cm. A 1-dimensional moving Bessel-

Gauss lattice, as described above, would be well-suited for this purpose. However,

in our setup we wanted to avoid the usage of Bessel beams, due to the drawbacks

discussed before. Therefore, we have decided to build the experiment such that

the atoms get transported vertically. In this case the strong axial confining force

Fax points along the direction of gravity. And since Fax can easily be made larger

than the gravitational force for any realistic beam diameter, it is sufficient for a

vertical transport to use two Gaussian beams.

The 1-d optical lattice potential

Our 1-d optical lattice is formed by two counterpropagating Gaussian laser beams,

which are traveling along the vertical z-direction. Both beams have a waist of

w0 = 500  m and are slightly focussed onto the same spot located right in between

the BEC and the science chamber. The intensity distribution of the resulting

standing wave pattern is then given by

I(r, z) = |
√
I1e

−r2/w2
0eikz +

√
I2e

−r2/w2
0e−ikz|2

=
(
I1 + I2 + 2

√
I1I2 cos(2kz)

)
e−2r

2/w2
0 , (5.4)

where the distance between two consecutive nodes is λ/2 = π/k = 532 nm.

The beam intensities I1 and I2 are derived from

I1,2 =
2P1,2
πw2

0

(5.5)

with the power of the beams being P1 = 1.5W and P2 = 0.5W.

Here we have neglected the divergence of the trapping beams. This assump-

tion is valid, since the Rayleigh range zR = πw2
0/λ = 74 cm is much larger than

the transport distance.

By plugging (5.4) into (5.1) we get the expression for the trapping potential

U(r, z) =
(
−U0 + Ulatt sin

2 (kz)
)
e−2r

2/w2
0 (5.6)

where total trap depth U0 and the modulation depth of the lattice Ulatt are

given by
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Figure 5.5: The total trap depth U0, the lattice depth Ulatt and the periodicity
λ/2 of the potential are illustrated.

U0 =
πc2

2ω30

Γ

∆

(
I1 + I2 + 2

√
I1I2

)
(5.7)

Ulatt =
πc2

2ω30

Γ

∆
4
√
I1I2 (5.8)

Close to the potential minima we can make a harmonic approximation of (5.6)

and calculate the trap frequencies

ωr = 2πfr =

√
4U0
mw2

0

(5.9)

ωz = 2πfz = k

√
2Ulatt
m

(5.10)

Loading of the lattice

After evaporative cooling in the magnetic QUIC trap the atom cloud has a tem-

perature of 1  K and a particle number of about 2 × 106. The ultracold atoms

are loaded into the standing wave trap by smoothly ramping down the currents

through the QUIC coils and by simultaneously ramping up the power of the lat-

tice beams. A long loading time of 300ms is chosen in order to keep the heating

of the atoms small and the efficiency of the loading process high. Moreover, for

a high loading efficiency it is obviously necessary to maximize the spatial overlap

between the magnetic trap and the optical lattice.
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At first a coarse overlap between the two traps is established with the following

procedure. A resonant 780 nm laser beam is sent along the optical transport

axis. It is aligned in such a way that it passes exactly through the center of

the ion trap. Furthermore we assure that the beam also hits the center of the

magnetically trapped atom cloud by maximizing the atom loss due to the (almost)

resonant light. Subsequently, the first 1064 nm lattice beam is aligned precisely

along the 780 nm beam. In a third step we exchange the 780 nm beam by the

second 1064 nm lattice beam and walk the new beam until the relative alignment

between the two lattice beams has reached an optimum.

An even finer overlap between the 1d lattice and the magnetically trapped

atoms is subsequently achieved with the diffraction technique described in [55].

For this purpose we load the atoms non-adiabatically into a moving 1-d optical

lattice. Due to the abrupt turning-on of the lattice potential the atomic wave

function (plain wave) |φq〉 is projected on the Bloch eigenstates |n, q〉. Here

n = 1, 2, ... is the n-th Bloch band and q the initial momentum of the atoms

relative to the lattice. The subsequent dynamics crucially depends on the lattice

potential experienced by the atoms. When the lattice is turned off again the

wave function is projected back onto the plain wave basis, which consists of the

eigenvectors |φq+2n~k〉, where 2π/k = 1064 nm. In our case we have chosen the

relative momentum to be q = ~k, corresponding to a relative detuning between

the two lattice beams of 2~k2/m. To reveal the momentum distribution of the

atom sample after the lattice pulse, we perform time-of-flight imaging. We find

only the |φ0〉 and the |φ2~k〉 momentum state to have relevant populations. To

optimize the overlap between the lattice and the atoms, we set the length of the

lattice pulse such that initially the majority of the atoms is in the |φ0〉 state and
only a small fraction occupies the |φ2~k〉 state. By adjusting the position of our
magnetic trap for this fixed pulse length, we then maximize the population of the

|φ2~k〉 state and thus the spatial overlap.

Along the Ioffe axis the atom cloud is moved by changing the current through

the quadrupole coils, while keeping the Ioffe current constant. On the other hand

for slight position changes along the imaging axis (which is orthogonal to the Ioffe

axis) we operate the last pair of the magnetic transport coils. For the (third)

vertical direction a precise optimization of the atom position is not necessary,

since the atoms can be loaded into any node of the optical lattice. However, we

need to assure that establishing the overlap along the two horizontal directions,

does not change the height of the atoms by more than few hundred microns.

83



0

10

20

30

p
o
s
it
io

n
 (

c
m

)

b = 2

b = 4.5

b = 8

0

0.94

1.88

2.82

3.76

4.7

d
e
tu

n
in

g
 (

M
H

z
)

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

time (s)

v
e
lo

c
it
y
 (

c
m

/s
)

Figure 5.6: The transport ramps are shown for a transport distance of D =
304mm, a transport time of Ttrans = 0.9 s and three different form parameters
b = 2, b = 4.5 and b = 8. The transport efficiency is found to maximal for b = 4.5
(blue solid line). (a) Position y(t) of the atoms versus time. (b) Velocity v(t)
of the atoms and the corresponding relative detuning between the lattice beams
∆ν(t) versus time.

Otherwise the atom cloud would leave the field-of-view of our imaging system.

For this reason we add a levitation coil (Fig. 5.4) to our system, with which we

can also control the vertical position of the atoms.

Eventually, when the overlap between the magnetic trap and the optical trap

is optimized, the population of the individual momentum states |φ2n~k〉 is mea-
sured as a function of the diffraction pulse length. From this time evolution of

the momentum states it is possible to determine the lattice depth Ulatt [55, 56].

Typical values are Ulatt ≈ 5Er, where the recoil energy is given by Er = (~k)2/2m.
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Vertical lattice transport

Like an elevator, the lattice drags along the atoms over a distance of D = 304mm

from the BEC chamber into the science chamber. To make the standing wave

move with a velocity v we introduce a relative detuning

∆ν =
2v

λ
(5.11)

between the two lattice beams. We choose the ramp ∆ν(t) such that the atom

position y(t) =
∫ t

0
v(t′)dt′ obeys the relation

y(t) =
D

2 tanh(b)
[tanh (b (2t− Ttrans) /Ttrans) + tanh(b)] , (5.12)

where Ttrans is the duration of the transport and b a variable form parameter

[57]. In Fig. 5.6 the atom position and the velocity are plotted for three different

values of b. In the limit b → 0 the curve y(t) has a linear behavior, whereas for

b≫ 1 y(t) is a step function. For a given transport distanceD, the transport time

Ttrans and the form parameter b are optimized for maximum transport efficiency.

In our case with D = 304mm we find a maximum efficiency of 60% for Ttrans =

0.9 s and b = 4.5.

In addition, we have shown that the optical transport may be extended to

even larger distances. As a proof of principle we have transported the atom cloud

from the BEC chamber over 45 cm to the very top of the science chamber and

then back into the BEC chamber again. In this experiment the total roundtrip

distance covered is 90 cm and is only limited by the extension of our vacuum

apparatus.

Final position of the lattice transport

The lattice transport distance D has to be chosen such that at the end of the

transport the atoms are located right in the center of the ion trap. In a first

step, to find an approximate value for D, we determine the position of the atom

cloud relative to the RF electrodes via standard absorption imaging. We set D

such that the atoms roughly end up midway in between the lower and the upper

electrodes.

For a more precise adjustment, we load a cloud of Rb+ ions into the Paul

trap. We then transport the atom cloud into the trap, hold it for 1 s at the

final position, and take an absorption image. In the region where the ion cloud
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Figure 5.7: Absorption images of the atom cloud after it is transported into or
close to the center of the ion trap. The Paul trap is loaded with hundreds of Rb+

ions, which are responsible for the localized loss of atoms around the trap center.
Outside of the trap center the atom loss is very small, since the strong lattice
confinement along the direction of transport (y-axis) keeps the atoms away from
the ions. The transport distance is varied between 303.90mm to 303.925mm. The
pictures are taken after the atoms are held at the final position for a duration of
1 s and after a time-of-flight of 12ms.

is located we observe a substantial loss of atoms, as shown in Fig. 5.7. (For a

detailed discussion on the mechanism of the atom loss, I would like to refer to

the chapter 6.) The strong confinement in the 1-d optical lattice prevents atoms,

which are located outside the central region, from colliding with the ions. Thus,

only a minor atom loss is observed in this outside section. We adjust the transport

distance D such that the maximal atom loss appears right in the center of the

atom cloud (see Fig. 5.7).

By analyzing the total number of lost atoms, we can also optimize the overlap

between atoms and ions along the two horizontal directions within the x-z plane.

The atom loss is larger when the ions are placed at a position of higher atom

density. Once the final position of the lattice transport is roughly overlapped,

the atoms are loaded from the lattice into the crossed dipole trap.
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Preparation of the lattice beams

The light for the lattice beams is derived from a fiber-amplified solid state laser

(Mephisto from the company Innolight). Due to its very narrow spectral linewidth

(1 kHz) the laser is well suited for the generation of an optical lattice. Both beams

are sent through acousto-optical modulators (AOMs) in order to be able to control

their frequency as well as their intensity. At the beginning of the transport both

AOMs are driven with a radiofrequency of 80MHz. For the transport scheme

to work, it is essential that both radiofrequencies are kept phase locked to each

other throughout the entire transport sequence. Therefore the rf signals are

generated using direct digital synthesizers (AD9854), which can be locked to the

same external reference oscillator. In order to make the standing wave pattern

move with a velocity v = ∆ν λ/2, we detune the frequency of the upper lattice

beam by ∆ν (Fig. 5.6). The AOM frequencies and thus also the values for the

detuning ∆ν(t) are updated with a rate of 24 kHz. Modifying the AOM frequency

changes the diffraction angle and the beam path. To preserve the alignment of the

lattice throughout the transport it is thus necessary to couple the upper lattice

beam through an optical fiber before sending it to the experiment. The fiber

coupling limits the power of the upper lattice beam to about 500mW. The lattice

beams enter and exit the vacuum system through AR-coated viewports, which

are welded to the chamber at an angle of about 4◦ with respect to the (vertical)

propagation axis. Thereby we ensure that the reflections at the viewports do not

modify or even destroy the standing wave pattern. Unwanted back-reflections

from other optical elements along the beam path (such as lenses, beamcubes,

etc.) are filtered by placing 40 dB optical isolators right before the viewports.

At this point I would like to mention that we have spent quite some time on

experimentally figuring out the proper waist for the two lattice beams. On the

one hand, if the waist becomes too large, the central intensity of the beam will

be very small. On the other hand if the waist gets too small, the divergence of

the beam will be very large and thus a transport over a macroscopic distance will

be impossible. For this reason we have performed the optical transport of our

atoms for various values of the waist. The position and the value of the waist are

measured by redirecting the beams before they enter the vacuum apparatus. For

the best value of the waist, the laser power required for the transport to work is

minimized. This procedure can be very time-consuming, since the lattice has to

be completely realigned once the waist of the beams is changed.

87



5.2.3 Crossed dipole trap

The dipole trap

After transport the atoms are loaded into a crossed optical dipole trap, formed

by the lower lattice beam and an additional dipole trap beam. This additional

dipole beam is derived from the same laser as the lattice beams and propagates

horizontally and at an angle of 45◦ with respect to the ion trap axis (Fig. 5.8).

It has a waist of 50  m and a corresponding Rayleigh range of 7mm. One more

AOM is used to control the power of the dipole beam and to shift its frequency

such that an interference with the lattice beams is avoided.

Altogether the loading of the dipole trap takes 3 s. In a first step the power

of the lower lattice beam is increased from 1.7W (lattice setting) to about 3.5W

(dipole trap setting) within 1 s. After 0.5 s the power of the dipole beam is ramped

up to about 1W within 1 s and finally the power of the upper lattice beam is

lowered to zero again within 1 s. The depth of the resulting dipole trap potential

is on the order of a 2 K. We are able to load about 50% of the atoms from the

optical lattice into the crossed dipole trap.

Evaporative cooling

We start the final evaporation stage with up to 2×106 atoms. By exponentially
decreasing the power of the dipole beam and thus the depth of the dipole trap

within a time span of 4 s, we perform evaporative cooling until quantum degen-

eracy is reached. We typically end up with pure BECs of up to 1×105 atoms.
Optionally we stop the evaporation right before the onset of Bose-Einstein con-

densation (T ≈ 100 nK), in case we want to work with an ultracold thermal atom

cloud. The final trap frequencies are found to be (ωx′ , ωy, ωz′) = (8Hz, 60Hz,

60Hz).
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Figure 5.8: Laser powers of the trapping beams during loading of the dipole trap
and during final evaporative cooling of the atoms. The crossed dipole trap is
formed by the lower lattice beam and the dipole beam. The latter one propagates
horizontally at an angle of 45◦ with respect to the x- and the z-axis, respectively.
For evaporative cooling of the atomic sample, the power of the dipole beam is
ramped down exponentially.
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Chapter 6

Collisions of cold ions with

ultracold neutral atoms

In the previous chapters I have explained the theoretical groundwork as well

as our experimental approach for studying collisions of a cold trapped ion with

ultracold neutral atoms. Now, I will present the first experimental data that we

have obtained with our novel hybrid apparatus.

These first results include the observation of elastic atom-ion collisions on

our setup, which we detect via the loss of atoms in the presence of the ion.

By measuring the lifetime of the atom cloud and making a simple model of

the atom-ion collision we find rough values for the corresponding collision rate

and the collision cross section as well as for the typical collision energy (∼ ion

energy). This simple model is sufficient to explain our first results presented here

and published in [18]. However, a more sophisticated model has to be used to

describe the newest measurements made with our apparatus. For more details

on the recent developments I need to refer to the final chapter 7.

Besides elastic collisions we have also observed charge transfer collisions in our

experiment, which can be detected via a loss of the Ba+ fluorescence. The corre-

sponding collision rate (or cross section, respectively) is estimated by comparing

the number of charge transfer collisions to the amount of elastic collisions. Also,

we have already investigated one possible application of our setup in more detail.

By varying the relative position between atoms and ion, we have demonstrated

that a single ion can be used to probe the density profile of an ultracold atom

cloud.
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Figure 6.1: Overlapping the position of the ultracold atoms with the position of
the trapped ion. (a) and (b) The ion is located on the z-axis at a distance of about
300  m away from the atom cloud. (b) The atoms are cooled evaporatively to or
close to BEC. The relative overlap within the x′-y plane is achieved by properly
adjusting the AOM frequencies. (c) By changing one of the endcap voltages, the
ion is shifted along the Paul-trap axis (z-axis) into the center of the atom cloud.

Overlap between the ion and the atoms

Prior to the investigation of the atom-ion collision dynamics we have to bring

the ion and the atom cloud together. For this purpose we follow the procedure

illustrated in Fig. 6.1. First, the atoms are loaded into the crossed dipole trap

and are further cooled to either a temperature of Tatoms ≈ 250 nK or to BEC (see

section 5.2.3). At this stage the center of the atom cloud is located about 300 m

away from the ion. Then the cooling lasers for the ion are switched off in order

to ensure that the ion relaxes into its electronic ground state |F = 1/2, mF =

±1/2〉 and to avoid changes in the atom-ion collision dynamics due to the cooling
radiation. Subsequently the ion is moved within 2ms along the Paul trap axis

(z-axis) into the atom cloud by changing one of the endcap voltages. To ensure

that the atom and the ion position coincide for all three directions in space, it is

essential to have full control over the relative position between the atoms and the

ion. As mentioned above, along the z-axis we can move the ion by changing the

settings of the endcap voltages. To adjust the relative atom-ion position along

the other two directions (x’ and y), the position of the dipole trap is changed by

sending the lower lattice beam and the dipole trap beam through AOMs. For this

purpose, we use AOMs with a center frequency of 80MHz and a corresponding

Bragg angle of about 10mrad. Since the bandwidth of such an AOM is typically

10%, the diffraction angle can be varied by about 1mrad. For distances between

the AOMs and the science chamber on the order of 1m, this results in a shift

of the atom trap position by up to 1mm. Our method to find the proper AOM
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Figure 6.2: The rf drive is constantly pumping energy into the system. In an
atom-ion collision this energy can then be transferred from the ion’s excess mi-
cromotion to the ion’s secular motion as well as to the motion of the atom. The
amount of transferred energy is usually enough for the atom to leave the dipole
trap.

frequencies and endcap voltages for which the overlap between ion and atoms is

maximized, is based on the detection of the atom-ion collisions. Therefore we

will first discuss the atom-ion collision dynamics in detail and then present more

technical details about the optimization of the overlap (see section 6.1.4).

6.1 Elastic collisions between a cold ion and ul-

tracold neutral atoms

Elastic collisions are the dominant physical process in our hybrid atom-ion setup.

Estimates for its rate can be found by measuring the losses of atoms from their

trap. Before the interaction with the ion, the temperature of the atom cloud is

Tatoms ≈ 80 nK, which is about a factor of 10 smaller than the depth of the dipole

trap Udip ≈ kB× 1  K, as expected for plain evaporative cooling. For this setting
of the dipole trap depth no heating of the atomic sample is allowed. Rather,

increasing the kinetic energy of one of the atoms, leads to an atom being lost

from the trap. Since Tatoms ≪ Tion, the atom’s kinetic energy is increased after

the collision for the vast majority of atom-ion collisions (see chapter 2).

It is important to understand that the dynamics of the atom-ion collisions

in our setup is crucially influenced by the rf Paul trap. If the ion was trapped

in a static trap, it would be sympathetically cooled to atomic temperatures and

the atom loss would stop after a few collisions. In our system, however, we find
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a continuous decline of the number of trapped Rb atoms as a function of the

interaction time (Fig. 6.3). It is the driven micromotion [39] of the rf trap, which

is responsible for this continuing loss. In an atom-ion collision, energy can be

redistributed among all motional degrees of freedom, enabling also the flux of

excess micromotion energy Eexcess micro
kin to secular motion Esecular

kin (see Fig. 6.2).

After each collision, micromotion is quickly restored by the driving rf field. An

equilibrium between the energy that is inserted by the driving field and the

energy taken away by the lost atoms is reached within a few collisions. Therefore

the minimal temperature of a sympathetically-cooled ion stored in a rf trap is

determined by the amount of micromotion of the ion [10,58,59]. Since Eexcess micro
kin

can be varied by applying dc electric fields along the radial direction, the kinetic

energy of the ion is tunable.

Fig. 6.3 shows the elastic collision measurements with either (a) a thermal

cloud of atoms (temperature TRb atoms=80 nK, which is just above Tc) or (b)

a BEC. Here I want to point out, that the atom losses in our experiment are

predominantly determined by atom-ion collisions. For comparison, the lifetime of

the atom sample without an ion being present exceeds 15 s. In the following I will

analyze the atom loss measurement in detail and show how we can derive order-

of-magnitude estimates for the collision cross section and for the ion temperature

from our data.

6.1.1 Elastic collision cross section - simple model

The position of the ion is fixed up to a length scale that is much smaller than the

extension of the atom cloud. The ion is pinned down because it is laser-cooled

prior to the collision experiment and because of the high trap frequencies with

which it is confined in the Paul trap. Due to this localization of the ion and since

atom-ion collisions can only take place in the vicinity of the ion, the atoms are

removed locally from the trap. As a consequence, one expects the atomic density

distribution to be modified due to the collisions with the ion.

At first, we will discuss a simple model where we neglect this modification

of the density distribution. We assume that merely the total atom number N

changes with time, according to

Ṅ = −nσlossvrel ≈ −nσelasticvI (6.1)

where n the peak density of the atom cloud, when we assume that the ion
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Figure 6.3: Number of remaining Rb atoms as a function of time as a sample
of Rb atoms interacts with an ion. For some interaction times the number of
datapoints is unfortunately rather small, which results in large errorbars. (a) A
single Ba+ ion is immersed into the center of a thermal Rb cloud. The line is
an exponential decay fit. (b) A single ion (Ba+ or Rb+) is immersed in a Rb
Bose-Einstein condensate. The lines are fits based on our simple model described
in the text.
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is placed into the center of the atom cloud. Since for our experimental parame-

ters basically every atom-ion collision leads to an atom being lost from the trap

(see discussion at the beginning of the section), the atom loss cross section σloss

is approximately equal to the elastic atom-ion scattering cross section σelastic.

Moreover, the atomic velocity is much smaller than the ion velocity vI, so that

the relative velocity between atoms and ion is vrel ≈ vI.

For a thermal atom cloud the peak density reads [60]

n = N

(
ω̄atomsmRb ldB

h

)3

(6.2)

with the mean trap frequency for the atoms ω̄atoms = (ω
(x)
atomsω

(y)
atomsω

(z)
atoms)

1/3 =

2π × 29Hz and the thermal de-Broglie length ldB = h/
√
2πmRbkBTatoms. By

plugging the expression (6.2) into (6.1), we find the solution

N(t) = N0e
−Γt. (6.3)

From the fit to the data (Fig. 6.3a) we get N0 = 4.8 × 104 and Γ = 0.30 s−1.

With the time constant Γ we calculate the elastic collision rate coefficient

Relastic = Γ

(
h

ωatomsmRbldB

)3

= σelasticvI (6.4)

to be R = 1.6× 10−14m3s−1. Using vI =
√
2E/µ and

σelastic(E) = π
(

µC2
4

~2

)1/3 (
1 + π2

16

)
E−1/3 [3] we can then estimate the collision

energy E ≈ 7mK and the elastic scattering cross section σelastic ≈ 1× 10−14m2.

One drawback of this analysis is the strong dependence of the collision energy

E ∝ Γ6 on the measurable time constant Γ, which leads to a large uncertainty for

E and for σelastic of almost one order of magnitude. Another issue of our simple

model is obviously the assumption that the density distribution is not modified

in the presence of an ion. As we will see in the following, this supposition is not

valid, in particular not for high atomic densities (which we find for example for

non thermal states). Therefore our model has to be improved such that it allows

for a local depletion of the atomic density distribution at the position of the ion.
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6.1.2 Elastic collision cross section - “sphere of depletion”

model

One simple way of taking into account the local depletion of atoms is to introduce

a so-called “sphere of depletion” (Fig. 6.4). The size of the sphere is determined

by the mean position spread of the ion when it is trapped in a harmonic trap

with a mean trap frequency of ω̄ I. According to the ion’s mass mI and energy

EI = mIv
2
I /2 this mean position spread is given by

R0 =
√
EI/mIω̄2I. (6.5)

Inside this sphere with radiusR0 we assume a homogeneous density ñ (Fig. 6.4).

Right outside the sphere, the density is given by equation (6.2). Similar as in the

simple model described before, we write for the atom loss

Ṅ ≈ −ñσelasticvI. (6.6)

In contrast to equation (6.1), the atom density at the position of the ion is

now given by ñ. Here, all three quantities σelastic, vI and ñ are unknown. However,

based on our measurements and additional constraints of our model we can still

find estimates for them.

The net flux of atoms into the “sphere of depletion” can be written as

Ṅ = −πR2
0(n− ñ)vthermal (6.7)

where πR2
0 is the cross section of the sphere and vthermal =

√
kBTatoms/8πmRb ≈

4.4mm/s the thermal velocity of the atoms. By equating (6.7) to (6.6) we find

ñ

n
=

πR2
0vtherm

πR2
0vtherm + σelasticvI

, (6.8)

From this equation we recognize that ñ ∝ n ∝ N for all times, so that the

atom number again follows an exponential decay with a lifetime of 1/Γ, as in our

simple model described above.

At t = 0 (beginning of the interaction) Ṅ = N0Γ = 1.5× 104 s−1 (as can also

be read off from Fig. 6.3a) and n = 9 × 1011m−3. By plugging these values into

equation (6.7) and additionally setting ñ = 0 we get a lower bound for the ion

energy EI & kB×17mK. On the other hand we are able to estimate an upper

limit of the ion energy from our micromotion compensation procedure. For this

measurement with the thermal atom sample we are able to reduce the DC electric
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Figure 6.4: (a) Illustration of our “sphere of depletion model”: The peak den-
sity of the atom cloud without an ion being present is n. When a single ion is
placed into the center of the atom cloud the atomic density distribution is locally
depleted. We model this depletion with a sphere of homogeneous density ñ and
radius R0. (b) The velocity of the atoms which enter the sphere of depletion has
no preferred direction in the thermal case (left) and points along the radial direc-
tion in the case of a BEC (right). This difference has to be taken into account,
when one calculates the flux of atoms into the sphere of depletion (equations (6.7)
and (6.14)).
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field at the position of the ion to below 4V/m, which gives us EI . kB×40mK
using equations (4.31). By taking the midpoint between the two bounds we

estimate the ion energy to be about EI ≈ kB×30mK and thus the collision

energy to be E = EIµ/mI ≈ 12mK. Plugging this energy into (6.5) above we get

R0 ≈ 1.45  m. Using (6.7) and (6.8), we can determine the density ñ ≈ 0.45n

and the elastic scattering cross section σelastic ≈ 1.9× 10−14m2. For comparison,

the semiclassical expression yields σelastic ≈ 9× 10−15m2 for a collision energy of

E ≈ 12mK.

Measurement with a BEC (Fig. 6.3b)

A slightly different analysis has to be done for the measurement with the BEC

shown in Fig. 6.3b. Again, collisions of the atoms with the trapped ion will lead

to a sphere of depletion within the condensate. However, the flux of atoms into

the sphere is now driven by mean field pressure rather than thermal motion.

Therefore, to find an expression for this flux, analogous to equation (6.7), we

study the time evolution of the condensate wave function ψ(r, t) according to the

time-dependent Gross-Pitaevskii equation [60]

i~ψ̇(r, t) =

[
− ~

2

2m

(
∂2

∂r2
+
2

r

∂

∂r

)
+
1

2
mω̄2atomsr

2 +
4π~2as
m

|ψ|2 − iVloss(r)

]
ψ(r, t).

(6.9)

Here the third term is the well-known mean field interaction, with as being

the s-wave scattering length between two particles of the condensate (for Rb

as = 5.61 nm) and |ψ|2 being the atomic density. Thus, the total number of

particles can be calculated with

N(t) =

∫
∞

0

4πr2|ψ(r, t)|2dr. (6.10)

In our model the particle number is not a conserved quantity, since we have

introduced a imaginary potential term iVloss(r). This term takes into account

the losses of atoms due to collisions with the ion. As in the thermal case, we

assume that the ion is well localized within a region of radius R0 (see figure 6.4).

Therefore we can model our losses with a potential of the form

Vloss(r) = ClossΘ(R0 − r) (6.11)

where Θ(R0 − r) is the Heaviside step function. We then solve the Gross-
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Figure 6.5: (a) The numerically derived density distribution |ψ(r, t)|2 for a fixed
interaction time t = 0.1 s. The green dashed line indicates that here we have
chosen a typical radius of R0 = 0.5  m. (b) The velocity with which the atoms
enter the sphere of depletion. The datapoints (blue) are calculated numerically
by using equation (6.12) and are compared to the analytic expression (6.13) (red
line).
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Pitaevskii equation (6.9) for different amplitudes of the loss term Closs and various

R0. After a certain interaction time t the atomic density distribution |ψ(r, t)|2 has
a shape as given in Fig. 6.5a. In the center at r = 0 the density drops to ñ. For

r > R0 the density distribution hardly deviates from its original shape at t = 0.

By studying the dynamics we find that after an interaction time corresponding

to an atom loss of typically 5%, ñ and thus the depletion ∆n = n − ñ reach a

steady state value. With the wavefunction ψ, the maximum velocity with which

the atoms enter the sphere of depletion can then be calculated

ve =
~

m
max

(
∂

∂r
arg(ψ)

)
. (6.12)

In Fig. 6.5b we have plotted ve as a function of the depletion ∆n = n − ñ

and for three different values of R0. The depletion ∆n is varied by changing

Closs. When a condensate atom moves into the sphere of depletion, its mean-field

energy is decreased by 4π~2as∆n/m. Assuming that this amount of energy is

transferred into kinetic energy of the atom mv2c/2, we would expect the atoms to

have a velocity of vc = ~
√
8πnas/m. By comparing the result of our simulation

ve with vc, we find for ∆n/n . 0.9 that

ve = 2vc =
~

mRb

√
32πas(n− ñ). (6.13)

For ∆n/n→ 1 the deviation of ve from this analytic expression (6.13) becomes

large and starts to depend on the size of the sphere of depletion R0 (see Fig. 6.5b).

With our simulation we have also verified that the net flux of atoms into the

sphere of depletion and can be written as

Ṅ = −4πR2
0ñve. (6.14)

Here it is important to note that the atom flux cross section is not given by

πR2
0, as in the thermal case, but by the surface of the sphere 4πR

2
0. The reason for

this difference between the two cross sections can be understood by the fact that

ve points along the radial direction, in contrast to vtherm, which has an arbitrary

direction (Fig. 6.4b).

We have checked that our model is self-consistent. For this purpose we com-

pared the value for the particle loss derived from the analytic expression (6.14)

with the numerical value directly obtained from the simulation (equation (6.10)).

As expected, we find the two numbers to be the same, regardless of R0 and Closs.

Now, that we have proven the validity of the analytic expressions for ve and Ṅ ,
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we can use them to determine the ion energy and the atom-ion scattering cross

section. We start by calculating the peak density of the condensate [60]

n =
1

8π

(
15m3

Rbω̄
3
atomsN

~a3/2

)2/5

. (6.15)

For this measurement the mean trap frequency of the atom trap was ω̄atoms =

2π × 31Hz, leading to a density of n = 3.8 × 1013 cm−3. Similar to the thermal

case, we then equate (6.14) to (6.6) and get for the depletion

n− ñ =

(
σelasticvImRb

4πR2
0~
√
32πa

)2

. (6.16)

Plugging this expression back into (6.6) we get a differential equation for the

atom number of the form

Ṅ(t) = A ·N(t)2/5 +B. (6.17)

The (numerical) solution to this equation is fitted to our data (Fig. 6.3b).

For t = 0 we find the atom loss rate to be Ṅ = 8 × 104 s−1. By equating this

value together to the net flux (6.14), we find the lower bound on the ion energy

for the BEC measurement to be EI & kB×1mK. On the other hand, the upper
bound on EI is again set by how well we can compensate excess micromotion.

Since a comparatively large effort was made to compensate micromotion for the

experiments with the BEC, we believe that the residual dc electrical fields here

are smaller than 2V/m, corresponding to EI . kB×10mK. These bounds suggest
an ion energy of EI ≈ 5mK and thus a collision energy of E ≈ 2mK. This implies

R0 ≈ 0.8  m, a density of ñ ≈ 0.1n and a cross section of σelastic ≈ 3.1×10−14m2.

In the measurements discussed so far, single Ba+ ions have been used. How-

ever, we have also performed the atom loss experiment with a single Rb+ ion.

For the typical collision energies in our experiment, the inner structure of the

atom and the ion, respectively, is not relevant. Nevertheless, a slight difference

in the collision rate coefficient Relastic = σelasticvI is expected between
138Ba+ and

87Rb+, since both σelastic ∝ µ1/3 and vI ∝ µ−1/2 depend on the mass of the ion.

By assuming the same collision energy E we can use these scalings and find that

the collision rate (and thus the inverse lifetime) should only be about 3% larger

in the case of a 87Rb+ ion, as compared with the 138Ba+ ion. Unfortunately we

were not able to resolve this small difference between 87Rb+ and 138Ba+, due to

the large experimental uncertainties in our lifetime measurements on the order
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Figure 6.6: Loss rate of a thermal atom cloud when a static electric field is applied.
In the presence of a field, the energy of the Ba+ ion and thus the amplitude of its
secular motion are increased. As a result the sphere of depletion becomes larger,
leading to an enhanced atom loss rate. For fields | Edc |> 30V/m, the amplitude
of the secular motion is so large, that the ion spends a significant amount of time
in a region of lower atom density. Therefore the loss rate decreases at high fields.

of 25% (Fig. 6.3b).

Again, I want to point out that the discussion presented here (i.e. the “sphere

of depletion” model) can only be used to get rough estimates for the physical

quantities. One issue of our simplified model is clearly the fact that we assume

a spherical range of depletion, even though our ion trap is highly anisotropic.

Moreover, the depletion will neither be uniform nor will it have a sharp spatial

cut-off. For these reasons a more sophisticated description of the atom losses

is required, in order to be able to derive more precise values for the ion energy

(collision energy) from our measurements.

6.1.3 Energy dependence of the collision rate

For the measurements discussed so far, the dc electric field at the position of the

ion and thus the ion’s excess micromotion was minimized. In the following we

intentionally increase the dc electric field Edc and thus the collision energy E. In

this case we expect the atom loss rate to rise for two reasons. First, the elastic
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Figure 6.7: An ion as a local density probe: We vary the z-position of the ion
(orange). At each position we measure the atom loss on a freshly prepared atom
cloud (blue).

atom-ion scattering rate rises as Relastic = σelasticvI ∝ E1/6 ∝ |Edc|1/3, and second,
as the sphere of depletion increases, the density inside the sphere ñ becomes larger

(see equation (6.8)). The corresponding measurement is shown in Fig. 6.6. We

find an increase of the loss rate up to an electric field of |Edc| ≈ 30V/m, where

the amplitude of the ion’s secular motion is R0 ≈ 20  m. This value is comparable

to the size of the atom cloud, which has an extension of about 15  m along the

radial and 80  m along the axial direction. The model of a well-localized ion

and a sphere of depletion is clearly no longer valid in this regime. We explain

the decrease of the atom loss rate for even higher fields by the fact that the ion

spends a significant amount of time in regions of lower atom density.

6.1.4 A single ion as a local density probe

To optimize the spatial overlap between the ion and the atoms along all three

directions in space, we measure the atom loss as a function of the endcap voltage

and the two AOM frequencies. As an example I would like to present a mea-

surement, where we have varied the endcap voltage and thus the z-position of a

single Rb+ ion (see Fig. 6.7). At each position the atom loss is measured on a

freshly prepared atom cloud for a given interaction time tint. The measurement

is performed with a thermal cloud, a semi-condensed cloud and with an almost

pure BEC (Fig. 6.8). As expected, the atom loss is always maximal when the ion

is placed right into the center of the atom cloud.

We can theoretically reproduce the data shown in Fig. 6.8 with our model,

which demonstrates our quantitative understanding of the dynamics. We start

again with the general expression for the total atom loss
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Figure 6.8: Number of Rb atoms remaining in the trap depending on the position
of the Rb+ ion relative to the center of the atom cloud. The measurement is
performed with (a) a thermal cloud, (b) a partially condensed cloud and (c) an
almost pure Bose-Einstein condensate. The interaction time was (a) 1.5 s, (b)
1 s and (c) 0.5 s. The solid lines are fits, where the ion energy EI and the atom
temperature TRb are used as free fit parameters. EI is kept fixed for all three
cases and is found to be 14mK. The atom temperature on the other hand is
varied and turns out to be (a) 50 nK, (b) 35 nK and (c) 25 nK.
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Ṅ = −ñσelasticvI. (6.18)

However, the density is now given by

ñ = ñth + ñc (6.19)

where

ñth(z) = Nth

(
mRbω̄atoms

ldB

)3

exp

(

−mRbω
(z) 2
atoms

2kBTatoms
z2

)

πR2
0vtherm

πR2
0vtherm + σelasticvI

(6.20)

is the density of the thermal part of the cloud and

ñc(z) =
1

8π

(

15m3
Rbω̄

3
atoms

~a3/2

)2/5

N2/5
c − m2

Rbω
(z) 2
atoms

8π~2a
z2−

(

σelasticvImRb

4πR2
0~
√
32πa

)2

(6.21)

the density of the condensed part. The last factor in equation (6.20) and the

last term in equation (6.21) are required to take into account the depletion effect.

Moreover we have made use of the well-known density profile for a thermal atom

cloud (Gaussian) as well as for a Bose-Einstein condensate (parabolic) confined

in a harmonic trap. For the number of thermal atoms Nth and the number of

condensed atoms Nc we can write [60]

N = Nth +Nc (6.22)

Nth

N
=

(

Tatoms
Tc

)3

(6.23)

Nc

N
= 1−

(

Tatoms
Tc

)3

. (6.24)

For a harmonic trap the BEC transition temperature is given by

kBTc = ~ω̄atomsζ(3)
−1/3, where ζ(3) = 1.202. Using the expressions (6.20)-(6.24)

and setting σelastic = 3 × 10−14m2 (as suggested by the results of the previous

section), we numerically solve the differential equation (6.18). We assume that

the temperature of the atomic sample Tatoms is constant, due to the very shallow

optical trap. Tatoms is used as a free fit parameter in our model together with the

ion energy EI, which we keep fixed for all three measurements. The results of our
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numerical calculations are also depicted in Fig. 6.8. The values for TRb obtained

from the fit (a) 50 nK, (b) 35 nK and (c) 25 nK are in nice agreement with the

temperatures determined separately in time-of-flight measurements. Moreover

the fit suggests EI ≈ kB×14mK, which is in the same range as the temperatures
found in the lifetime experiments.

With this measurement we have shown, that a single ion can be used to locally

probe the atomic density distribution. In contrast to the absorption imaging,

which integrates over the line of sight, a full 3-dimensional scan of the atom den-

sity can be performed with our ion probe. Moreover our new technique features

a high spatial resolution on the  m scale.

6.2 Inelastic processes

In addition to the elastic processes discussed so far, we have also investigated

inelastic atom-ion collisions. Studying inelastic processes is more involved, since

the Ba+ ion is either lost from the trap or exchanged by another ion. In both cases,

one has to repeatedly load the Paul trap with a new, fresh Ba+ ion, which takes

a valuable amount of time on the order of minutes. For this reason the amount of

data, that we have obtained so far on inelastic collisions, is limited. Fortunately,

all inelastic processes are highly suppressed with respect to the elastic collisions,

so that it was possible in the first place to study the elastic processes and the

atom-ion collision dynamics in general.

We start the discussion with the most dominant inelastic channel, which turns

out to be the charge transfer process

Rb + Ba+ →







Rb+ + Ba (non-radiative)

Rb+ + Ba + ν (radiative)
(6.25)

as expected. The energy released in this reaction is either carried away by a pho-

ton (radiative charge transfer) or transferred into kinetic energy of the collision

partners. The fact that the charge exchange is exothermic can be read off from

the potential curves shown in Fig. 6.9. We start our experiment with a Ba+ ion

and neutral Rb atoms, which follow one of the first two excited state potentials

(dotted lines in Fig. 6.9), when they come close to each other. Whether they enter

the singlet or the triplet channel, respectively, depends on the relative orienta-

tion of the electron spin of the Ba+ ion and the Rb atom. Anyway, in both cases
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Figure 6.9: The 3 lowest lying potential curves for (138Ba - 87Rb)+: The asymp-
totic limit (internuclear distance R→∞) of the dotted lines corresponds to Ba+

and Rb in their respective groundstates, which are the atomic states with which
we start our experiments. Since the ground state potential of our (Ba-Rb)+ sys-
tem (solid line) asymptotically leads to Rb+ and Ba, the electron is expected to
jump from Rb to Ba+. The energy released in such a process is about 1 eV, as
can be read off from the asymptotical difference between solid and the dotted
potential curves. The data is taken from [61].

the transition into the molecular ground state potential has a small but finite

probability. Such a transition corresponds to a charge transfer process, since the

molecular ground state potential of the (Ba-Rb)+ system asymptotically (i.e. for

a large internuclear distance) leads to neutral Ba and Rb+. More details on the

charge transfer collisions (detection, rate, cross section) are given below.

The second type of inelastic collision which are expected to take place in our

system are molecule formation processes, such as e.g.

Rb + Ba+ → RbBa+ + γ (6.26)

Rb + Rb + Ba+ →







Rb + RbBa+

Ba + Rb+2
(6.27)
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and

Rb + Rb + Rb+ → Rb + Rb+2 , (6.28)

respectively. These processes are particularly interesting, since they can be used

to trap cold molecular ions on a single particle level. In order to be able to observe

the 3-body process in our experiment, it will be essential to maximize the atomic

density, since the three-body collision rate depends quadratically on the density.

6.2.1 Observation of charge transfer reactions

For the detection of the charge transfer process we load two 138Ba+ ions into

the ion trap. Typically after a time corresponding to 104-105 elastic atom-ion

collisions, the fluorescence of one of the Ba+ ions is lost (Fig. 6.10). Since the

position of the remaining bright Ba+ ion does not change, we infer that the other

Ba+ ion has been replaced by an unknown dark ion formed in a reaction. We

identify the dark ion by measuring the radial eigenfrequencies of the two-ion

crystal. For this purpose we modulate the amplitude of the rf voltage. When the

modulation frequency is close to the eigenfrequencies, the motion of the ions is

resonantly excited and a drop of the Ba+ fluorescence signal is observed. This

procedure has also been used for the determination of the trap frequencies (of a

single ion), as described in chapter 4. In the same chapter I have also derived

expressions for the theoretically expected eigenfrequencies of the (hetero-nuclear)

two-ion crystal (equations (4.14), (4.15), (4.25) and (4.26)). Using these equations

and taking the measured trap frequencies of a single 138Ba+ ion, it is possible

to calculate the expected eigenfrequencies of all relevant two-ion systems (table

6.1). In the experiment we observe the radial resonance frequencies to be about

219(1) kHz and 346(1) kHz. By comparison with the table 6.1, we find these values

to be in nice agreement with the ones expected for a two-ion crystal consisting of
138Ba+ and a 87Rb+. Therefore we can conclude that the dark ion formed in the

reaction has to be Rb+ and that the dominant inelastic process in our system is

indeed the charge transfer process.

As mentioned above, for our experimental settings the charge transfer collision

rate is a factor of 104-105 smaller than the elastic collision rate. This strong

suppression of the charge exchange is very important, since it is a necessary

prerequisite for all elastic collision experiments. The cross section for charge
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Figure 6.10: Left : Fluorescence image of two Ba+ ions. Right : Fluorescence of
one 138Ba+ next to an unknown dark ion. We infer the existence of the dark ion
from the position of the Ba+.

exchange can therefore be estimated with

σch.ex. ≈
σelastic
104... 105

≈ 10−19... 10−18m2. (6.29)

This value is comparable to the charge transfer cross section for Rb+Yb+ →
Rb++Yb determined by the group of Michael Köhl in Cambridge [9]. For a

collision energy on the order of E ≈10mK, the corresponding charge transfer

rate is

Rch.ex. = σch.ex.

√

2E

µ
= 10−13... 10−12 cm3s−1. (6.30)

This charge transfer rate is roughly a factor 103 smaller than the one observed in

the group of Vladan Vuletic for the energetically resonant case of αYb - βYb+ [7].

From the potential curves (Fig. 6.9) we can read off that the energy released

in the charge transfer reaction (6.25) is about ∆Erel ≈ 1 eV. This energy can

either be transferred into kinetic energy of the collision partners or carried away

by a photon. In both cases the Rb+ ion will stay in the trap, since our Paul trap

is very deep with a depth of about 5 eV (see Fig. 4.7). Switching to a lower trap

depth of below mRb/(mRb+mBa)∆Erel ≈ 0.6 eV would enable us to discriminate

between the radiative charge transfer and non-radiative charge transfer. The

theoretical prediction tells us that the process predominately takes place under

an emission of a photon [28].
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Table 6.1: Trap frequencies and the eigenfrequencies of a two-ion crystal given
in kHz.

ωaxial ωradial Ωaxial
+ Ωaxial

−
Ωradial
+ Ωradial

−

single 138Ba+ 40.5 220.5
single 87Rb+ 51 348
two 138Ba+ 70 40.5 220 215.5
138Ba+ and 87Rb+ 81 44.5 346 219
138Ba+ and 87Rb+2 66.5 38 218.5 171.5
138Ba+ and (87Rb138Ba)+ 64 35 218.5 132
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Chapter 7

Conclusion and Outlook

In this thesis I have presented an experimental setup, with which collisions be-

tween a single trapped Ba+ or Rb+ ion and a cloud of ultracold neutral Rb atoms

can be studied. For this purpose we have combined a Bose-Einstein condensation

(BEC) apparatus with a linear radiofrequency (rf) Paul trap used for trapping

the ions. The ultracold atoms are generated in a Quadrupole-Ioffe-configuration

(QUIC) trap and transported over 30 cm into the center of the ion trap. Due

to this large distance, mutual disturbance between the rf Paul trap and the pro-

duction of the ultracold atom cloud is avoided. For the transport we employ a

moving 1d optical lattice transport. After the atoms have arrived in the Paul

trap, they are loaded into a crossed optical dipole trap and precisely overlapped

with the position of the ion.

With our setup both elastic and inelastic collisions between the atoms and the

ion can be detected. The cross section for elastic scattering is found to be on the

order of 10−14m2. This value is more than a factor of 104 larger than the cross

section for inelastic scattering. In our system we have identified the dominant

inelastic collision channel to be the charge transfer Rb + Ba+ → Rb+ + Ba.

With the help of the elastic collision measurements we were able to investigate

the dynamics of the atom-ion scattering. In our case, where we trap the ions

using radiofrequency fields, the collision energy is fully determined by the excess

micromotion of the ion. We have managed to minimize the collision energy to

values on the order of kB×10mK by properly compensating the electric stray

fields at the position of the ion.

After the first experiments discussed in this thesis, a large effort has been made

to further improve the compensation of the DC electric stray fields. Thereby,

it was possible to further reduce the radial and in particular the axial excess
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micromotion notably, so that experiments in the sub-mK regime are now possible.

In this low energy regime the sympathetic cooling of the ions towards the ground

state of the secular potential should be possible. Since the number of partial

waves contributing to the scattering gets small for energies below the mK range,

quantum mechanical effects should become observable. For example, we should

be able to detect magnetic Feshbach resonances in this ultracold regime [19,

29]. These scattering resonances could be used to tune the interaction between

the atoms and the ion via an external magnetic field. In addition, they should

allow for a controlled formation of an ultracold (BaRb)+ molecular ion, which

is an important goal in molecular physics [15, 16]. Alternatively, such ultracold

(BaRb)+ ions could also efficiently be produced via photo-association [62].

Besides molecular physics, also polaron-type effects can be studied with our

atom-ion system [20–23]. In this context, the ion (Ba+ or Rb+) is treated as an

impurity in the sea of ultracold atoms. The ionic impurity is expected to lead to

a modification of the atomic density distribution [20,63]. A related mechanism is

the formation of mesoscopic molecular ions [5]. For this purpose ionic impurities

need to be put into a BEC. A large number of atoms can then be captured

into loosely bound states via “super-elastic scattering”. In this type of collisions

a BEC atom is captured by the ion and the kinetic energy is released via the

emission of a phonon, i.e. it is shared among the remaining atoms and the

freshly formed mesoscopic ion.

Our setup also allows to study the charge mobility in an ultracold atom cloud

[4]. In particular with our homo-nuclear configuration (Rb-Rb+), we could search

for the predicted transition between the high temperature regime, where the

charges are transported by the ions themselves, and the low temperature regime,

where the electrons hop from the neighboring atom to the positive ion (hopping

conductivity). In the long term it might be interesting to implement an optical

lattice potential for the neutral atoms. Thereby controlled collisions between a

single atom and a single ion could be studied [64].

Since the ion energy was successfully reduced to the sub-mK range, the ex-

perimental realization of many of the proposals given above, is now within reach.

For experiments that require ion energies below what can be reached in rf Paul

traps, the ion could be loaded into an optical dipole trap. However, the trapping

of ions using laser fields is not yet fully developed. First experiments in this

direction have been performed recently [65, 66].

114



Chapter 8

Danksagung
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[4] R. Côté, “From classical mobility to hopping conductivity: Charge hopping

in an ultracold gas,” Phys. Rev. Lett., vol. 85, p. 5316, 2000.
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of cold ions for surface-electrode traps,” Phys. Rev. A, vol. 76, p. 041401,

2007.

[7] A. T. Grier, M. Cetina, F. Oruc̆ević, and V. Vuletić, “Observation of cold col-
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