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Abstract

In the present thesis I report on experiments with optically trapped, ultracold Rb2 molecules
at temperatures on the order of one microkelvin. It will be shown that the dimers can be
prepared in a variety of precisely de�ned energy eigenstates, where the electronic, rotational,
Zeeman and hyper�ne structure is fully resolved. This �exibility enables us to investigate a
wide range of physical and chemical properties. Here, I want to focus on our results concerning
two di�erent aspects:

I. Alignment of the molecular axis. I will demonstrate a novel technique which allows for the
determination of the degrees of alignment of a nonpolar molecule with respect to a space-�xed
coordinate system. The method relies on measurements of the dynamical polarizability α(ω)
for all three spatial directions and is exempli�ed by application to spin-polarized ensembles
of Rb2 dimers in speci�c rotational levels within the vibrational ground state manifold of the
lowest triplet potential. Along with these studies, a detailed analysis of α(ω) is provided. In
particular, we are able to derive the dynamical polarizabilities parallel and orthogonal to the
molecular axis at a wavelength of 1064.5 nm.

II. Spectroscopy of hyper�ne levels. I will present the observation of the hyper�ne structure
of states with Ω = 0+ symmetry for the spin-orbit coupledA1Σ+

u−b3Πu complex. Our measured
spectra at a magnetic �eld of about 1000 G exhibit nonequal spacings of the hyper�ne levels,
unexpected large energy splittings up to more than 100MHz and a strong variation dependent
on the vibrational quantum number. Using a simple model, we explain the overall hyper�ne
structure as a result of the repulsion between 0− and 0+ states, coupled via hyper�ne and
Zeeman interactions. By �tting our model to the data, we can extract the frequency separation
of the 0− and 0+components for each spectrum, a quantity which is spectroscopically not
directly accessible starting from any singlet or triplet ground state molecular level.
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Zusammenfassung

In der vorliegenden Dissertation beschreibe ich Experimente mit optisch gefangenen, ultra-
kalten Rb2 Molekülen bei Temperaturen in der Gröÿenordnung von einem Mikrokelvin. Wie
ich zeigen werde, können wir die Moleküle in verschiedenen, energetischen Eigenzuständen prä-
parieren, wobei sowohl die elektronische als auch die Rotations-, Zeeman- und Hyperfeinstruk-
tur vollständig aufgelöst werden. Diese Flexibilität ermöglicht es uns, eine Fülle physikalischer
und chemischer Eigenschaften zu untersuchen. Hier werde ich mich auf die Vorstellung von
Resultaten konzentrieren, die sich den folgenden zwei Themengebieten zuordnen lassen:

I. Ausrichtung der molekularen Achse. Ich werde eine neuartige Technik demonstrieren,
die es erlaubt, die Ausrichtung eines unpolaren Moleküls bezüglich jeder der Achsen eines
raumfesten Koordinatensystems zu bestimmen. Die Methode beruht auf der Messung der dy-
namischen Polarisierbarkeit α(ω) in allen drei Raumrichtungen und wird am Beispiel von spin-
polarisierten Rb2 Molekülen vorgeführt. Dafür werden spezielle Rotationsniveaus innerhalb
des Vibrationsgrundzustands des energetisch am tiefsten gelegenen Triplett-Potentials verwen-
det. Basierend auf unseren Studien werden detaillierte Informationen über die Gröÿe α(ω)
gewonnen. Insbesondere können wir die Werte der dynamischen Polarisierbarkeiten parallel
und orthogonal zur molekularen Achse für eine Wellenlänge von 1064.5 nm ableiten.

II. Spektroskopie von Hyperfeinniveaus. Ich werde die Beobachtung der Hyperfeinstruk-
tur von Zuständen mit Ω = 0+ Symmetrie des durch Spin-Bahn-Wechselwirkung gekoppelten
A1Σ+

u −b3Πu Komplexes präsentieren. Unsere bei einem Magnetfeld von etwa 1000G gemesse-
nen Spektren sind dadurch gekennzeichnet, dass die Hyperfeinniveaus nicht äquidistant ange-
ordnet sind und dass unerwartet groÿe Abstände bis zu mehr als 100MHz zwischen ihnen liegen.
Ferner treten deutliche Veränderungen in Abhängigkeit von der Vibrationsquantenzahl auf.
Mithilfe eines einfachen Modells können wir die Hyperfeinstruktur generell erklären als Resultat
der Abstoÿung der 0− und 0+ Zustände, welche durch Hyperfein- und Zeeman-Wechselwirkung
miteinander gekoppelt sind. Für jedes Spektrum ermitteln wir die Frequenzdi�erenz ∆ der 0−

und 0+ Komponenten, indem unser Modell an die jeweiligen Daten ange�ttet wird. Dies stellt
ein wichtiges Ergebnis dar, da ∆ spektroskopisch nicht direkt zugänglich ist, ausgehend von
beliebigen molekularen Energieniveaus des Singulett- oder Triplett-Grundzustands.
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1 Introduction

In order to experimentally investigate the physical and chemical properties of atomic and
molecular species, full control over the available degrees of freedom is desired. Besides transla-
tion, molecules can also rotate and vibrate and therefore represent much more complex systems
than atoms. The capability to access (all) the external and internal degrees of freedom in a
deterministic way is the basic element of the �eld of ultracold molecules which emerged at the
end of the last century. Since then, a variety of fascinating experiments have been carried out
and many applications have been proposed making use of the attainable extraordinary control.
In this introduction, I want to �rst give an overview of the development of the �eld before some
prospects of ultracold molecules will be mentioned. Then, I will brie�y describe the general
scheme of the rubidium experiment in Ulm and the types of measurements performed within
my PhD. Finally, the last two sections contain an outline of the present work and a list of
manuscripts related to this thesis.

1.1 Ultracold molecules - development of a fascinating �eld

Besides the ultralow temperatures, key features of ultracold molecules experiments are the
relatively long possible observation times as they are performed in a trap, the preparation of
precisely de�ned quantum states and the ability to isolate the particles from each other. These
properties are the result of a rapid scienti�c and technological progress that has been taken
place in recent years. They are essential for the measurements presented here and achieved in
our setup by forming the molecules from an already ultracold sample of atoms, holding them in
a 3D optical lattice, and employing coherent molecular state transfer. In view of these aspects,
I want to give an overview of some major advancements that made ultracold molecules to the
vibrant �eld of research it is now. Furthermore, I will put my work in the given scienti�c
context.

The creation of an ultracold sample of molecules in the microkelvin regime is a quite
involved task since laser cooling (see, e.g., Ref. [1]) cannot be easily applied. In general, cooling
cycles are not completely closed and spontaneous decay to other states occurs. Compared
to atoms, the additional vibrational and rotational branching of the molecular level structure
gives rise to many more undesired transitions. Therefore, in order to obtain su�cient cooling
rates a large number of so-called repump lasers that transfer the corresponding populations
back into the main cycle is necessary. Nevertheless, laser cooling, respectively magneto-optical
trapping of polar dimers was demonstrated for a few, particularly well suited species like SrF
[2, 3] or YO [4], lowering the temperature either in 3D or reduced dimensions to typically a few
millikelvin. Other methods to produce cold samples of molecules rely, e.g., on elastic collisions

1



1 Introduction

with a bu�er gas [5], electrooptical [6, 7] or Stark deceleration techniques [8]. Particularly, in
terms of molecular ions, sympathetic cooling of the translational degrees of freedom is feasible
in ion traps due to the Coulomb interaction [9]. Moreover, via optical pumping, it was possible
to accumulate population in the rovibrational ground state, both for MgH+ [10] and HD+ [11].

An alternative, indirect approach to prepare ultracold (neutral) molecular samples is the
association of already ultracold atoms. This circumvents the direct cooling of molecules, ex-
ploiting the well-established techniques for atoms, which are very e�cient as documented by
the observation of Bose-Einstein condensation at typically below one microkelvin [12, 13]. Here,
reliable and e�ective methods to form molecules, applicable in the relevant temperature regime,
are mandatory. Widely used are photoassociation schemes, where two colliding atoms absorb a
photon and form a bound molecule (for further information, I refer to the review article [14]).
Based on this association mechanism di�erent diatomic molecular species were successfully
prepared in the vibrational (RbCs [15], Cs2 [16]) or even rovibrational (LiCs [17], KRb [18])
ground state of the lowest electronic potential.

A di�erent method to convert ultracold atoms into molecules relies on magnetic Feshbach
resonances [19]. Compared to photoassociation, this technique is characterized by high e�-
ciency and robustness. In brief, a Feshbach resonance occurs, when two colliding atoms are
resonantly coupled to a bound molecular level [20]. In the �eld of ultracold quantum gases,
such scattering resonances have been observed for the �rst time in the year 1998 [21-23]. Since
they allow for the control of the interaction of particles, they represent an important tool to
manipulate fermionic as well as bosonic atomic ensembles and have a wide range of applications
besides magnetoassociation. However, by ramping the magnetic �eld across such a scattering
resonance a weakly bound molecule with a binding energy on the order of tens of MHz×h can
be formed, which was demonstrated for several atomic species (see, e.g., Refs. [24-30]) shortly
after the observation of atom-molecule coherence in 2002 [31]. Using magnetic Feshbach reso-
nances a variety of di�erent homo- and heteronuclear diatomic molecules were produced up to
now. This approach has turned out to be very successful leading to impressive achievements
like the creation of molecular Bose-Einstein condensates [32-34]. In our setup, we create 87Rb2

dimers utilizing a Feshbach resonance at a magnetic �eld of 1007.4G. The obtained molecules
have both singlet as well as triplet character and therefore represent a good starting point for
spectroscopic purposes, since many di�erent excited states can be addressed via optical dipole
transitions according to selection rules. Moreover, the dimers are nonrotating, which allows for
the investigation of levels of low rotational angular momentum. This can strongly complement
the research with thermal and thus rotationally excited samples as exempli�ed by our studies
of the spin-orbit coupled A1Σ+

u − b3Πu complex reported here and in Ref. [35], where we have
observed unexpected large and irregular hyper�ne structures. The gained precise informa-
tion about level energies was also valuable for the explanation of the population distribution of
molecular reaction products after three body recombination of 87Rb atoms, which was recorded
by the team of the BaRbI experiment at our institute [36].

As already mentioned, Feshbach molecules are very weakly bound and therefore can be
described essentially as atomic pairs. In the context of ultracold chemistry deeply bound
molecules are much more of interest. The so-called STIRAP (stimulated Raman adiabatic

2



1.1 Ultracold molecules - development of a fascinating �eld

passage) technique represents a powerful method to transfer population from one state to
another state. First demonstrated in molecular beam experiments, it has become a standard
technique in the �eld of atomic and molecular physics [37, 38]. It relies on a coherent two photon
process and is very e�cient. Using STIRAP and starting with magnetoassociated Feshbach
dimers, rovibrational ground state molecules were prepared in either the lowest singlet (KRb
[39], Cs2 [40], RbCs [41, 42] and NaK [43]) or triplet (KRb [39] and Rb2 [44]) potential. In
addition, coherent transfer of population between di�erent hyper�ne levels of the rovibronic
ground state manifold of KRb employing a microwave Raman scheme was realized [45]. With
respect to the lowest vibrational triplet state of Rb2, I will show in the present thesis the
preparation of molecules in energy levels that exhibit di�erent rotational quantum numbers
(see also Ref. [46]) and nuclear spins.

So far, we have convinced ourselves, that, indeed, ultracold samples of dimers in well-
de�ned molecular states can be produced. But what about the control of the interaction be-
tween the particles? In general, the ability to either isolate the molecules from each other or let
them collide is desired. For this purpose, a tunable, external trapping potential is appropriate.
Although demanding, trapping of molecules has been reported even for the millikelvin regime
(see, e.g., Refs. [5, 7, 47-49]). However, in terms of most of the molecular beam apparatuses,
where vapors or supersonically expanded gases are investigated, there are still no such traps
at all and the experiments have to be performed on short timescales, often in a pulsed fashion.
In contrast, various, relatively simple techniques to trap ultracold atoms or molecules exist
owing to the low temperatures. Among them, optical lattices allow for unique control over the
interparticle interaction. They are created by standing light waves which lead to equidistant
potential wells according to the ac Stark e�ect. These arrays of microtraps can be tailored
by adjusting the intensities of the laser beams appropriately. Many opportunities arise from
the �exibility of the optical lattice approach as has been demonstrated in seminal experiments
like the observation of the super�uid to Mott insulator transition [50] or the realization of a
Tonks-Girardeau gas [51, 52].

Concerning molecular studies, starting with a deep 3D optical lattice is advantageous,
since the ultracold samples can be prepared with no more than a single molecule per lattice
site and therefore collisional losses are strongly suppressed [53, 54]. Consequently, long-lived
molecular ensembles with lifetimes of several seconds in the trap have been produced (cf.
Refs. [40, 55]). In this context, the state- and frequency-dependent, in general anisotropic,
dynamical polarizability is an important quantity as it determines the potential depth and the
photon scattering rate for a given light �eld intensity. For instance, in Ref.[44] a laser at 830nm
was used in order to trap Rb2 molecules. It turned out that this wavelength is unfavorable
owing to the large di�erence of the dynamical polarizabilities between the Feshbach state and
the triplet rovibrational ground state which gives rise to a signi�cant loss of the deeply bound
molecules on timescales of tens of microseconds after the STIRAP transfer. Hence, we have
implemented a 3D optical lattice at 1064.5nm, where the dimers exhibit lifetimes on the order
of seconds both for the Feshbach state and the rovibrational ground state of the lowest triplet
potential. Moreover, we have performed a thorough investigation of the molecular dynamical
polarizabilities [46, 56] as knowledge about trap depths and scattering rates is a prerequisite
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for well controlled experiments.
An ensemble of molecules in a 3D optical lattice is an ideal starting point for chemical

reaction studies. By ramping down the potential depths independently in each spatial direction
the dimers are allowed to encounter each other in 3D or reduced dimensions. Up to now,
measurements of inelastic collisions in terms of ultracold, vibrational ground state molecules
have been predominantly carried out with polar KRb in the lowest singlet potential. The
dependences of reaction rates on various parameters like the electric dipole moment [57] or
the hyper�ne state [58] were investigated. Further impressive results were the observations of
spin-exchange interactions [59] and the quantum Zeno e�ect [60], which was also demonstrated
with Rb2 Feshbach molecules beforehand [61]. Recently, some data concerning collisions of
RbCs singlet rovibrational ground state molecules in a crossed optical dipole trap, where the
magnetic �eld was varied, were presented [41]. However, when it comes to ultracold chemistry
of deeply bound triplet molecules, there is no data available so far. During my PhD, we have
started to look into this by investigating inelastic encounters of nonpolar Rb2 dimers for various
molecular states and di�erent collision geometries. Our results including the determination of
reaction rates will be discussed in the doctoral thesis of my colleague Björn Drews.

An important aspect in the context of ultracold chemistry is the in�uence of the relative
alignment or orientation of the colliding particles. Such studies require the ability to engineer
and measure alignment or orientation. With ultracold molecules, �rst experimental �ndings
concerning stereodynamics were obtained again with a sample of KRb that was exposed to a
dc electrical �eld [62]. For the case of nonpolar dimers, di�erent techniques to create alignment
have to be developed. I will show here the successful preparation of an aligned ensemble of
Rb2 molecules. For this purpose, we exploit the fact that the STIRAP transfer entails a spin
polarization of the dimers. In addition, I will demonstrate a novel method to probe the degrees
of alignment of the molecular axis with respect to a space-�xed coordinate system using the
3D optical lattice (see also Ref. [46, 63]). The described techniques to control and probe the
axis alignment pave the way for the experimental observation of stereochemical processes in
the ultracold temperature regime, in particular with respect to nonpolar molecules.

1.2 Prospects of ultracold molecules

For ultracold molecules, many prospects are predicted making use of the unprecedented control
over the internal and external degrees of freedom. Since comprehensive overviews are given,
e.g., in Refs. [64, 65], a detailed discussion is omitted, here. However, some aspects, speci�cally
relevant with respect to Rb2 and our experiment will be described in the outlook (chapter 8).
The main part of the proposed applications can be divided into the following topics:

� ultracold chemistry (see, e.g., Refs. [66, 67])

� many body physics (see, e.g., Refs. [68, 69])

� high precision spectroscopy (see, e.g., Ref. [70])

� precision measurements of fundamental constants (see, e.g., Refs. [71-74])
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� quantum simulation (see, e.g., Refs. [75, 76])

� quantum computation (see, e.g., Refs. [77-79])

This list documents that experiments with ultracold molecules are, respectively will become,
important for versatile �elds of physics and chemistry.

1.3 The Rb2 setup in Ulm

Within the rubidium project our aim is to investigate the properties of ultracold 87Rb2 mole-
cules. For this purpose an experimental apparatus was designed and built up at the �Institut für
Experimentalphysik� in Innsbruck. After running successfully for several years the rubidium
project was moved to the �Institut für Quantenmaterie� in Ulm at the end of the year 2009.
Unfortunately, the experiment, especially all the laser systems had to be disassembled for the
transport from Innsbruck to Ulm. At this stage my colleague Björn Drews and I started with
our PhDs and we began to rebuild and improve the system.

In the following, I want to give a short overview of our general experimental scheme. We
work with ultracold Rb2 molecules either in a weakly bound Feshbach state or in the vibrational
ground state (v = 0) of the lowest triplet potential a3Σ+

u . After being loaded into a magneto-
optical trap (MOT), 87Rb atoms are magnetically transferred to a glass cell. Subsequently
the sample is cooled by means of forced evaporation until the ultracold temperature regime
is reached. We are able to routinely produce Bose-Einstein condensates (BECs). However,
the molecule formation is mainly performed with thermal clouds at temperatures of a few µK
as this leads to a larger absolute number of dimers. For this purpose a 3D optical lattice is
switched on, while the magnetic trap is switched o�. Then, by using a magnetic Feshbach
resonance and applying a puri�cation scheme a pure ensemble of weakly bound molecules with
no more than a single dimer per lattice site is produced. In order to transfer the molecules to the
vibrational ground state, we utilize the STIRAP technique which relies on a coherent optical
two-photon process. Since we are able to fully resolve the hyper�ne, rotational and Zeeman
structure, single well-de�ned quantum levels can be deterministically populated. Both, the
Feshbach molecules as well as the deeply bound molecules exhibit lifetimes on the order of
seconds within the optical lattice which is plenty of time for experiments.

1.4 Overview of performed experiments

During my PhD we have performed various types of experiments with ultracold 87Rb2 molecules.
They can mainly be classi�ed into �ve di�erent groups:

1. Preparation of molecular states: We have prepared the molecules in diverse precisely
de�ned energy levels within the vibrational ground state (v = 0) of the lowest triplet
potential a3Σ+

u . By applying the highly selective STIRAP technique we have been able
to unambiguously populate levels with di�erent rotational quantum number R (R = 0
and 2), and di�erent nuclear spin I (I = 1 and 3).
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2. Measurements of dynamical polarizabilities and determination of the align-

ment of the molecular axis: We have investigated the dynamical polarizabilities of
nonpolar 87Rb2 dimers for several molecular quantum states utilizing lattice modula-
tion spectroscopy. From the obtained experimental data the degrees of alignment of the
molecular axis with respect to a space-�xed coordinate system have been determined.
For this purpose we have exploited the fact that the axis alignment is directly re�ected
in an anisotropy of the dynamical polarizability.

3. Spectroscopy of the A − b system: We have studied the spin orbit coupled A1Σ+
u −

b3Πu complex by means of one-photon spectroscopy starting with weakly bound Feshbach
molecules at a magnetic �eld of about 1000 G. As a consequence of selection rules, we
have addressed only the 0+ components. However, the observed combined hyper�ne
and Zeeman structures with respect to 0+ entail information about the term values of
b3Πu 0− owing to the spin orbit coupling between 0+ and 0− vibrational levels. In this
rather indirect way, it has been possible to infer the spectral splittings of the 0+ and 0−

components.

4. Inelastic collisions: We have performed reaction studies of a3Σ+
u vibrational ground

state molecules and Feshbach molecules, respectively. Starting with a deep 3D optical
lattice, where the dimers are well separated from each other we have reduced the lattice
depth either equally in each direction or just for single directions. Thereby, molecules are
allowed to approach each other giving rise to interaction. We have carried out collision
experiments for various geometries, i.e., quasi-1D, quasi-2D and quasi-3D structures.
Regarding the v = 0 molecules, we have investigated the rotational states R = 0 and 2
individually, and observed a strongly inelastic behavior, i.e., already in the �rst or after
just a few molecular encounters a chemical reaction occurs. In general, the interpretation
of our data is di�cult as several loss-mechanisms have to be considered and the system,
including the in�uence of the trap itself, has to be fully understood. Here, our collisional
experiments with Feshbach molecules have helped a lot since these dimers can routinely
be created and therefore high statistics are possible. Currently, Björn Drews is preparing
a manuscript, where we present our measurements of inelastic collisions of the triplet Rb2

molecules in an array of quasi-1D traps.

5. Spectroscopy of the c state: We have studied the c3Σ+
g state starting either with

weakly bound Feshbach molecules or molecules in well-de�ned levels corresponding to
v = 0 of a3Σ+

u . From our experiments we have gained information about the c3Σ+
g as

well as the a3Σ+
u state, in particular on the Zeeman shift of the individual hyper�ne

levels.

Please note, our �ndings concerning the aspects mentioned in 4. and 5. of the given list will
not be presented here. They will be discussed in detail in the forthcoming doctoral thesis of
Björn Drews.
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1.5 Outline of the thesis

This thesis is structured as follows:
Chapter 2 gives a short, rather technological survey of the experimental apparatus focusing

on the main parts like the vacuum chamber, the coils, laser systems, cameras and the control
system.

Chapter 3 describes the basic experimental procedure, i.e., the various steps necessary
to prepare pure samples of ultracold Rb2 molecules in the lowest vibrational level of a3Σ+

u ,
trapped in an optical lattice. Here, the fundamental techniques are discussed and important
parameters are provided.

Chapter 4 presents measurements of the real part of the dynamical polarizability α(ω) of
Rb2 dimers in the rovibrational ground state of a3Σ+

u . Furthermore, information about the
imaginary part of α(ω) is gained from the observed lifetime of the molecules in the optical
lattice. These experimental results are obtained at λ = 1064.5nm. Theoretical studies of both
the lowest singlet (X1Σ+

g ) as well as triplet (a
3Σ+

u ) potential for a wide range of wavelengths
are provided, including an analytical model that can be used to reproduce the numerically
calculated dynamical polarizabilities with respect to all vibrational levels.

Chapter 5 reports on the creation and the probing of alignment of the molecular axis of an
ultracold, nonpolar dimer. Here, a novel technique to determine the degrees of alignment with
respect to all directions of space is demonstrated. The method relies on measurements of the
dynamical polarizabilities utilizing individually the standing light waves of a rectangular 3D
optical lattice. Our experiments with Rb2 show, that for the nonrotating state the molecular
axis is randomly oriented, while rotating dimers exhibit characteristic alignment, which is
re�ected in an anisotropy of α(ω). As will be exempli�ed, this fact can be exploited to gain
information about unknown molecular states giving rise to spectroscopic applications of the
given technique. In addition, from the obtained data, the dynamical polarizabilities parallel
and orthogonal to the molecular axis at a wavelength of 1064.5 nm are derived.

Chapter 6 covers experimental and theoretical investigations of the combined hyper�ne
and Zeeman structure of the spin-orbit coupled A1Σ+

u − b3Πu complex of Rb2. Results of
one-photon spectroscopy of the 0+ state starting from the Feshbach level are presented. The
measurements show an unexpected wide spreading of the hyper�ne spectra for vibrational
states with strong triplet character. A simple model reveals a mixing of the 0+ and 0− states
of b3Πu induced by cooperative hyper�ne and Zeeman interactions to be responsible for the
large hyper�ne splittings. From simulations, the typical frequency spacings ∆ between the 0+

and 0− components are inferred. This represents an important aspect of our work, since ∆ is
not directly accessible in conventional spectroscopy schemes.

Chapter 7 is a reprint of data concerning three body recombination of 87Rb atoms obtained
by the BaRbI team at our institute. These experiments are discussed in detail in the doctoral
thesis of Arne Härter [80]. In order to explain the recorded population distribution of the
molecular reaction products I have performed spectroscopic measurements on Rb2 dimers in
collaboration with my colleague Björn Drews. We precisely determined relevant energy levels
within the A1Σ+

u −b3Πu complex and the c3Σ+
g potential. For the former case, the main results
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are largely discussed in chapter 6. However, our data allowed for the assignment of resonances
to molecular transitions in the three body recombination studies.

Chapter 8 is dedicated to a short summary and an outline of possible future experiments.

1.6 Publications

The results obtained in the framework of this thesis are, respectively will be presented in
the following manuscripts (in chronological order) which have been published as articles, are
submitted or already accepted, or are currently in preparation:

1. A. HÄRTER, A. KRÜKOW, M. DEIÿ, B. DREWS, E. TIEMANN, and J. HECKER DEN-
SCHLAG: Population distribution of product states following three-body recombination in
an ultracold atomic gas. Nat. Phys. 9, 512 (2013).
(congruent with chapter 7)

See also �News and Views� article by S. WILLITSCH:Molecular physics: Ultracold ménage
à trois. Nat. Phys. 9, 461 (2013).

2. M. DEIÿ, B. DREWS, B. DEISSLER, and J. HECKER DENSCHLAG: Probing the axis align-
ment of an ultracold spin-polarized Rb2 molecule. Phys. Rev. Lett. 113, 233004 (2014).
(congruent with chapter 5, except for section 5.9 which contains additional information)

This article appeared as an �Editors' Suggestion�.
See also �spotlight article� of the American Physical Society by K. WRIGHT: Making
molecules stand to attention. Available at http://physics.aps.org/synopsis-for/

10.1103/PhysRevLett.113.233004.

3. M. DEIÿ, B. DREWS, J. HECKER DENSCHLAG, N. BOULOUFA-MAAFA, R. VEXIAU, and
O. DULIEU: Polarizability of ultracold Rb2 molecules in the rovibrational ground state of
a 3 Σ +

u . arXiv: 1501.03793 (2015). Accepted for publication in New Journal of Physics.
(congruent with chapter 4)

4. M. DEIÿ und J. HECKER DENSCHLAG: Ultrakalte Moleküle in Reih und Glied. Physik in
unserer Zeit 46 (2), 60 (2015).
(congruent with appendix A.2)

5. M. DEIÿ, B. DREWS, J. HECKER DENSCHLAG, and E. TIEMANN: Mixing of 0 + and 0−

observed in hyper�ne and Zeeman structure of ultracold Rb2 molecules. arXiv: 1505.00682
(2015).
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(congruent with chapter 6, except for section 6.11 which contains additional information)

6. B. DREWS, M. DEIÿ, K. JACHYMSKI, Z. IDZIASZEK, and J. HECKER DENSCHLAG: In-
elastic collisions of strongly con�ned triplet Rb2 molecules. Manuscript in preparation.
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2 Experimental Apparatus

In the context of our experiment, especially vacuum technology, laser technology, microwave
and radiofrequency (RF) technology, optics and electronics are of great importance. Further-
more, we have a complex computer control system in order to run the experiment cycle and
for analyzing the data delivered by several cameras.

This chapter is devoted to an overview of the main parts of the apparatus. The intention
is to provide all informations from a technological point of view, i.e., no measurement results
are presented here. For more details, particularly on the vacuum chamber, the coils and the
experiment control system, I refer to the theses of Matthias Theis [81], Klaus Winkler [82, 83]
and Gregor Thalhammer [84].

2.1 Vacuum chamber

The vacuum apparatus is divided into two main sections (see Fig. 2.1). In the �rst section, a
reservoir provides the 87Rb atoms for the MOT which is directly loaded from the background
vapor. The second section is connected to the MOT chamber by a di�erential pumping stage
and contains a glass cell, where the 87Rb2 molecules are produced and the actual experiments
take place. Via the di�erential pumping stage the pressure is lowered from about 10−8 mbar in
the MOT chamber to < 10−11 mbar in the glass cell, which, as another advantage, allows for
good optical access due to its exposed position. A detailed description of the vacuum apparatus
can be found in [81].

2.2 Coils

With the division of the vacuum apparatus into di�erent regions one problem comes along. It
is necessary to transfer the cold atom cloud from the MOT chamber to the glass cell. In our
case, this is done by a magnetic transport [85] using 13 pairs of quadrupole coils (see Fig. 2.2).
The starting point of the magnetic transport is a quadrupole trap created by the MOT coils.
Since the distance of the MOT coils to the next pair of quadrupole coils is too large, we have an
additional coil to push the atoms in the direction of the transport line. The current ramps for
the quadrupole pairs are designed such that the minimum of the trapping potential is shifted
smoothly along the transport line.

When the atoms arrive in the glass cell, we change to a QUIC1 trap. The magnetic �eld of
the QUIC trap is created by a pair of quadrupole coils and an additional Io�e coil (see Fig.2.3).

1Abbreviation for quadrupole-Io�e-con�guration.
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Figure 2.1: Vacuum system. We have two main sections which are connected by a di�erential
pumping stage. First of all, the atoms are trapped in the MOT chamber before they
are transferred magnetically into the UHV section where the glass cell is located.
The �gure is adapted from Ref. [82].

In this trap con�guration the main part of the evaporative cooling takes place. Unfortunately,
the position of the ultracold atomic cloud in the QUIC trap is displaced by about 6 mm from
the center of the quadrupole coils which also create the Feshbach �eld later on. Since the
Feshbach �eld has to be homogeneous, it is inevitable to shift the atoms back. Most of the
coils surrounding the glass cell are involved in this procedure. Among them, especially the
levitation coil is important because it is necessary to compensate for the gravitational force
while the transfer takes place.

Four power supplies2 serve as current sources for the coils. This is su�cient since not all
the coils are operated at the same time. We use a switch box based on MOSFETs to connect or
disconnect the coils from the power supplies during the experimental sequence. The coils are
water cooled in order to carry away the dissipated power (for example, the magnetic transport
demands currents up to 120A). In addition, a safety circuit is implemented which switches o�
all currents if the signal measured by one of the integrated temperature sensors is too high or
the water �ow is too low for some reason.

For our experiments, stable magnetic �elds are of great importance. Especially, the e�-

2SM 30-100D (two times) and SM 15-200D (two times), Delta Elektronika B.V., Zierikzee, Netherlands.
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magnetic
 transport line

differential
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gate
valve
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Figure 2.2: Overview of the coils involved in the magnetic transport. On the left hand side one
of the MOT coils (yellow) is shown and the coil which is used to push the atoms in
the direction of the transport line (green). The yellow coils on the right hand side,
which surround the glass cell, are used to create the QUIC trap. In between there
are 13 pairs of transport coils (blue, red and green). The �gure is adapted from
Ref. [82].

ciency of the Feshbach ramping used in order to associate atoms to molecules can be reduced
by �uctuations. Thus, a servo loop has been implemented to suppress the noise. We measure
the magnetic �eld created by the quadrupole coils using a current transducer3. After A/D
conversion the signal is fed in a digital PID controller which acts on the control input of the
power supply. By doing so, we achieve a stability of ±5mA at a current of 80A. So the relative
magnetic �eld noise is about 10−4. Further information about the coils, the current control
and the safety circuit can be found in [81, 83, 84].

Moreover, a cage of ribbon cables representing pairs of Helmholtz coils in each spatial
direction is placed around the MOT chamber (not shown in Fig. 2.2). With these cables we
create permanent magnetic o�set �elds which are used to compensate for the magnetic �eld of
the earth or other time independent stray �elds. A similar construction is set up around the
glass cell (not shown in Fig. 2.3). Here the currents are adjusted such, that a magnetic �eld
remains in the direction where the transfer of the atoms from the QUIC trap to the center of
the quadrupole coils takes place. It turned out that for the experiments in the glass cell the
stability of these o�set magnetic �elds is very crucial, since they have great in�uence on the
evaporative cooling and the spin preparation before the Feshbach ramping. Thus we use very
stable power supplies (ES 075-2 from Delta Elektronika B. V.) as current sources.

3Ultrastab 866, Danfysik A/S, Taastrup, Denmark.
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Figure 2.3: Overview of the coils surrounding the glass cell. The quadrupole coils generate the
magnetic �eld for the Feshbach ramping. Together with the Io�e coil they also
create the potential for the QUIC trap. In vertical direction we can produce an
inhomogeneous �eld by the levitation coil which is used for Stern-Gerlach separation
of di�erent spins before imaging and for levitation of the atoms during the transfer
back to the center of the quadrupole coils. During this transfer the atomic cloud
(red ellipse) is shifted by about 6 mm in axial direction, away from the Io�e coil.
Furthermore, we have two pairs of o�set coils [big o�set coils (red) and small o�set
coils (green)] in the setup. As a special feature, the big o�set coils can be operated
in Helmholtz and anti-Helmholtz con�guration. The �gure is adapted from Ref.[82].

2.3 Laser systems and frequency measurement

In our setup, a lot of di�erent laser systems are employed (see table 2.1). Most of them are
frequency-stabilized. The particular locking techniques have been chosen in accordance to the
intended applications of the lasers.

In total, the experiment is located on four optical tables. Three of them are used for the
generation and frequency stabilization of light, which is then transferred to the vacuum chamber
on the experimental table by many polarization maintaining single mode optical �bers. The
light is switched on and o� by AOMs (acousto optical modulators) and mechanical shutters4.
We do not have any lasers, AOMs or other shutters directly on the experimental table.

4Mainly SHT934 from Sunex Inc., Carlsbad, USA.
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laser type model used wavelength main application

grating-stabilized home built 780 nm absorption imaging,
diode laser reference laser

grating-stabilized home built 780 nm laser cooling
diode laser

grating-stabilized home built 780 nm repump laser
diode laser

grating-stabilized home built 780 nm puri�cation scheme
diode laser

tapered ampli�er Toptica 780 nm laser cooling
BOOSTA

grating-stabilized Toptica 993 nm STIRAP
diode laser DL pro

grating-stabilized Toptica 1017 nm STIRAP
diode laser DL 100 pro design

grating-stabilized Toptica 985− 1068 nm spectroscopy
diode laser DL 100 L

diode pumped InnoLight 1064 nm optical lattice
Nd:YAG Meph. MOPA 25 NE

diode pumped Coherent 532 nm pump laser for
Nd:YAG Verdi-V18 Ti:sapphire lasers

(frequency-doubled)

Ti:sapphire Coherent 830 nm optical lattice
ring laser 899-01 ring laser

Ti:sapphire Coherent 1017 nm spectroscopy
ring laser 899-01 ring laser

Er:�ber laser system Toptica 1563 nm frequency comb
(fs pulse source) FFS (center wavelength)

Table 2.1: Overview of all laser systems and their main applications. Please note, the ex-
periments presented in this thesis were predominantly performed using the optical
lattice at 1064 nm.

2.3.1 Lasers for atomic transitions at 780 nm

We have four lasers driving di�erent atomic transitions of 87Rb at around λ = 780 nm5. All
of them are home built grating-stabilized diode lasers (for details on the design see [86]). The

5An overview of the optical (and physical) properties of atomic 87Rb is given in Ref. [87].
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output power ranges between 50 and 80 mW depending on the laser diode. Each laser is
frequency-stabilized but di�erent techniques are used:

� Imaging laser: We employ this laser for absorption imaging of atomic clouds at the
end of each experimental cycle. It is locked to the fa = 2→ f ′a = 3 resonance of the D2

transition using a small 87Rb vapor cell. Here, fa denotes the total angular momentum
of the atom. We use modulation transfer spectroscopy [84, 88, 89] as locking technique.

� Cooling laser and puri�cation laser: The cooling laser provides the cooling light for
the MOT. As it has not enough power, it is used to seed a tapered ampli�er (TA) in
order to achieve high cooling rates. The speci�ed output power of the TA is 1.5 W. On
the experimental table we have about 50 mW left in each of the six MOT beams. The
puri�cation laser in combination with a microwave is applied to deterministically remove
single atoms after the molecule association. For these two lasers the locking scheme is
based on a beat with a reference frequency [90]. In both master/slave systems the imaging
laser serves as reference. Such beat locks have the great advantage that the frequency of
the slave laser can easily be shifted relative to the frequency of the master laser.

� Repump laser: At several steps of our experimental sequence, parasitic transitions can
occur. As an example I want to mention the MOT cooling cycle, which is not completely
closed. Hence, we have an additional laser that enables us to pump population back
to a level desired for the respective application. We use a 87Rb vapor cell and employ
a technique based on frequency modulation spectroscopy [91] in order to achieve the
mandatory frequency stabilization. The laser is locked to the fa = 1 → f ′a = 1, 2
crossover of the D2 transition [84]. Utilizing AOMs the light can be tuned to be resonant
either to fa = 1→ f ′a = 1 or fa = 1→ f ′a = 2.

The frequency stability of all the described laser systems is on the order of < 1 MHz. More
information about the applications of the single lasers will be given in chapter 3.

2.3.2 Optical lattice laser

In our setup, molecules are created and manipulated in a 3D optical lattice. After the transport
of the experiment to Ulm, we �rst worked at a wavelength of 830 nm like it was done in
Innsbruck. The light was provided by one of the Ti:sapphire lasers pumped by the Verdi-
V186 [84]. After appropriate adjustment of the ring resonator the system delivered 500 mW
of output power at 830 nm when pumped with 6 W. However, as will be discussed in chapter
4 this wavelength is unfavorable for trapping of molecules prepared, e.g., in the rovibrational
ground state of the lowest triplet potential. Hence we switched to 1064 nm and now use an
InnoLight7 Mephisto MOPA (master oscillator power ampli�er) system for the optical lattice.

6The Verdi-V18 was used to pump both Ti:sapphire lasers simultaneously. The whole system is from Coherent,
Inc., Santa Clara, USA.

7InnoLight GmbH, Hannover.
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Owing to the di�erent wavelength all the mirrors and lenses guiding the lattice beams on the
experimental table to the glass cell had to be replaced.

The MOPA has a spectral linewidth of 1 kHz/100 ms and delivers 25W of output power
which is divided into three beams directly after the laser. Each beam is switched on and o�
by an AOM and additionally by a mechanical shutter based on a loudspeaker that allows for
moving a nontransparent �ag into the beam path employing the voice coil [92]. High power
optical �bers8 are used to guide the three lattice beams to the experimental table. where they
�rst pass optical isolators to avoid damages of the �bers due to the retrore�ected beams. At
the position of the atoms the single beams have a waist (1/e2 radius) of about 130 µm and
the maximum available power per beam is 3.5 W. For each lattice direction we implemented
an intensity stabilization acting on the AOMs. More information about that will be given in
section 2.4. It is possible to tune the laser frequency by more than 30 GHz via the crystal
temperature. This can be advantageous in order to avoid or investigate molecular resonance
phenomena. However, the range between mode-hops is typically 6− 8 GHz.

As the MOPA system requires a cooling circuit, we implemented a water chiller9 that
keeps the water temperature permanently at 25◦C. So, in total we have two cooling water
cycles, one for the coils and one for the MOPA. In each of them a safety circuit is integrated.
A microcontroller10 compares the water �ow measured at two positions of the water cooling
cycle. If there is a leak in between, the di�erence exceeds a �xed threshold and the water
supply is stopped via magnetic valves. At the same time the MOPA laser, respectively the
current through the coils is switched o�.

2.3.3 Spectroscopy laser

The one-photon spectroscopy is performed with a DL 100L from Toptica11. This grating-
stabilized laser is tunable between 985 and 1068 nm which enables us to address di�erent
interesting molecular potentials. The laser delivers a few mW of optical power at the position
of the molecules depending on the chosen wavelength.

In order to perform precision spectroscopy, i.e., measure narrow linewidths the laser has
to be frequency-stabilized. For this reason, we implemented a wavelength meter lock (see
Sec. 2.3.6) generating a control signal which acts on the piezo tilting the internal grating. The
frequency stability is between ±2 and ±5 MHz limited by the actualization rate of the WS7.
Concerning spectroscopical measurements the wavelength meter lock has some nice features.
The frequency can be tuned over the whole mode-hop free range by simply changing the set
point. Furthermore, the stabilization is not restricted to a speci�c frequency range. Hence, it
is possible to lock a laser to any frequency provided that the WS7 allows for the measurement
of it.

8PMC-980-9,2-NA008-3-APC/EC-800-P from Schäfter+Kirchho� GmbH, Hamburg.
9P201-16675 from Termotek AG, Baden-Baden.

10Arduino Uno.
11Toptica Photonics AG, Gräfel�ng.
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2.3.4 STIRAP lasers

The STIRAP technique is well known as an e�cient method to transfer population coherently
from one state to another using a Raman transition. In our experiment the method is applied to
increase the binding energy of initially prepared weakly bound molecules by more than 7THz.
Two lasers are utilized to couple the initial and the �nal state in a λ-type three-level system.
During a counterintuitive pulse sequence the molecules are kept in a dark superposition state,
ending up in the desired level. A more detailed explanation will be given in section 3.9.

For an e�cient STIRAP transfer, the two involved lasers have to meet some requirements.
The coupling strengths determined by the Rabi frequencies have to be satisfactory. Since the
Rabi frequency scales with the square root of the light �eld intensity this demands su�cient
laser powers. In our setup, the STIRAP system is realized by two grating-stabilized diode
lasers from Toptica Photonics AG. One of them is operated at about 993.8 nm. It delivers
a few mW of optical power at the position of the molecules, which is quite su�cient for the
di�erent STIRAP transfers performed during my PhD. The other laser has a maximum output
power of 137 mW at the required wavelength of about 1017.5 nm yielding roughly 45 mW at
the location of the molecular sample. Concerning intensity, this laser is the bottleneck in our
system, i.e., the achievable coupling strength to some speci�c levels is too low [see Fig.3.18(b)].
However, for instance, the transfer into the rovibrational triplet ground state works quite well
with the available power.

Another prerequisite is the relative phase stability of the two laser beams during the
STIRAP sequence. To guarantee the relative phase stability, both lasers are locked to the
same optical resonator using a scheme developed by Pound, Drever and Hall (PDH) [93, 94].
For this purpose, we employ a cavity with a free spectral range of 1.5GHz and a Finesse F of
about 300 [95].

The resulting laser linewidths have been investigated by a self-heterodyne technique [96]. A
detailed discussion of this method including theory aspects can be found in [97] and references
therein. In brief, two beams of the same laser are delayed by a time τD from each other. They
are not correlated anymore if τD is longer than the coherence time of the light source. Thus
the frequency stability of the laser can be inferred from a beat of the two beams. In order
to realize the time delay we couple one of the beams into an optical �ber with a length of
12 km (see Fig. 2.4), leading to τD = 58 µs at λ ∼1000 nm [98]. So the resolution limit of the
interferometer concerning laser linewidths is ∆fmin = 1/τD ≈ 17 kHz (FWHM) with respect
to the given wavelength.

Figure 2.5 shows self-beat signals of the STIRAP lasers for two di�erent locking parameters
recorded with a spectrum analyzer12. The measurements in �slow lock� con�guration essentially
show the frequency �uctuations of the free running laser diodes on small timescales (. 100ms).
From �tting the data, we inferred laser linewidths of ∆f = 137 kHz (1017.5 nm) and ∆f =
146 kHz (993.8 nm). The �fast lock� is characterized by a shorter integration time and leads
to signi�cantly smaller linewidths. We deduced ∆f = 39 kHz for the laser at 1017.5 nm.
For the case of the STIRAP laser at 993.8 nm the linewidth is below the resolution limit of

12Model MS2718B from Anritsu Corporation, Atsugi, Japan.
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Figure 2.4: Self-heterodyne scheme for laser linewidth measurements. The laser light is divided
into two beams. One of them is guided through a 12 km long optical �ber, accu-
mulating a time delay τD with respect to the other one. Afterwards the two beams
are superimposed and the beat signal is measured using a fast photodiode and a
spectrum analyzer. We integrated an AOM in the setup in order to shift the center
frequency of the beat away from zero.

∆fmin = 17 kHz, as indicated by the periodic pattern in Fig. 2.5(c) that occurs, when the
two laser beams are correlated. Here, we attribute the achievement of a signi�cantly smaller
linewidth to the utilization of a much more elaborate PID controller13. In contrast to that, we
use a home built PID controller for the locking scheme at 1017.5 nm.

Another essential point is the absolute frequency stability of the lasers, which is mainly
a�ected by thermal drifts of the optical cavity. Since the timescale of such drifts is on the order
of minutes or hours, a slow locking scheme is quite su�cient to compensate for that. Thus,
we implemented a wavelength meter lock in our setup, as it represents a simple and reliable
technique. For this purpose the frequency of the laser at 1017.5 nm, which is already locked to
the optical resonator, is measured and compared to the desired value. The control signal then
acts on a piezo inside the cavity and changes the resonator length appropriately.

Besides the pivotal relative and absolute frequency stability the locking scheme has to be
�exible in terms of frequency tunability. In general, PDH locks are restricted to frequencies
which correspond to transmission modes of the optical resonator. However, we have several
opportunities to bridge the frequency intervals in between, if necessary. First, both lasers can
be shifted simultaneously by the wavelength meter lock controlling the optical resonator length.
Furthermore, two AOMs (single pass con�guration for the light at 1017.5 nm and double pass
con�guration for the light at 993.8 nm) allow for the adjustment of the frequencies over ranges
of tens of megahertz. So, all frequency combinations of the two lasers are accessible even if

13Fast Analog Linewidth Control (FALC 110) from Toptica Photonics AG, Gräfel�ng.
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Figure 2.5: Beat signals resulting from self-heterodyne measurements of the STIRAP lasers at
1017.5 nm (a) and 993.8 nm [(b) and (c)]. For each laser, scans corresponding to
two di�erent locking con�gurations [�slow-lock� (brown) and �fast lock� (blue)] are
shown. The frequency stabilities are inferred from �ts (green and red respectively)
assuming a Voigt-like pro�le of the laser linewidth. In (c) the shape of the beat
signal is di�erent from (a) and (b). Here, the periodic structure indicates that the
laser linewidth is smaller than the resolution limit of the interferometer.

they are frequency-stabilized.
I want to emphasize that the described scheme is much more convenient than the one

previously used, where the cavity was stabilized via a PDH lock to an additional laser, which
in turn was stabilized to an atomic 87Rb transition. This change as well as the replacement of
the Ti:sapphire laser by the diode laser at 1017.5 nm considerably improved the stability and
the repeatability of the STIRAP results.
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2.3.5 Frequency comb

Since the development of the frequency comb at the end of the 20th century14, this technique
has brought about a wide range of applications with tremendous impact especially in the �eld of
high precision spectroscopy. Until now, such laser systems have been established as ultrastable
frequency references in many quantum optics laboratories all around the world.

In principle, the spectrum of a frequency comb is characterized by narrowband spikes
which are arranged in an equidistant pattern. The center frequency ωn of the n-th tooth is
determined by ωn = nωr + ω0 with the repetition frequency ωr and the o�set frequency ω0.

An Er:�ber laser system (FFS) from Toptica Photonics AG is the key element of our setup.
It is an sub 100fs pulse source containing an internal ring resonator which generates a comb-like
spectrum with a center wavelength of 1550 nm and a bandwidth of about 80 nm (FWHM).
There are two output branches, each delivering ∼ 250 mW of light15. Subsequent to one of
them the light passes a frequency doubling crystal16 giving rise to a new comb with a center
wavelength of about 780nm, which is the regime of atomic 87Rb transitions. The other path is
equipped with a highly nonlinear �ber, which expands the frequency spectrum to a full octave
ranging from 1000− 2100 nm.

In order to use the Er:�ber laser system as a frequency reference, ωr and ω0 have to be
stabilized.

� Repetition frequency: The repetition frequency ωr is measured by a photodiode inside
the FFS. It can be tuned by changing the length L of the internal ring resonator. An
electric motor (coarse tuning) and an piezo serve as control elements for L. By means
of a digital phase detector, ωr is compared to the desired value. Depending on the
deviation a PID controller generates an output signal acting on the piezo. In our setup,
we use a quartz oscillator17 with an output frequency of 100MHz as frequency reference.
It is locked to a rubidium frequency standard18. Thus, the long term stability of the
atomic clock is transferred to the quartz oscillator, which itself is ultrastable on small
timescales. Within this scheme, the quality of the reference frequency is very crucial
since small �uctuations a�ect the mode stability of the comb dramatically. For example,
a deviation of 1 Hz in the quartz oscillator frequency shifts a single tooth at 1000 nm by
about 1 MHz.

� O�set frequency: The o�set frequency ω0 can be determined from a beat between the
octave-spanning frequency comb (1000−2100nm) and its second harmonic generated by
a frequency doubling crystal as described in [99] and references therein. In our setup, the
o�set frequency ω0 is controlled via the current of the laser diode pumping the erbium
doped �ber. The stabilization itself is done similar as for the case of ωr. A digital phase

14John L. Hall and Theodor W. Hänsch were awarded with the Nobel prize in 2005 for this achievement.
15Note, this value is obtained when measuring the time-averaged power.
16Tunable second harmonic generation (T-SHG) unit from Toptica Photonics AG.
17Model 501-16843 from Wenzel Associates, Inc., Austin, USA.
18Model FS725 from Stanford Research Systems, Inc., Sunnyvale, USA.
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detector compares the beat signal to the reference frequency provided by a synthesizer19

and a PID controller generates an output signal acting on the diode current. Here,
the stability of the reference is not so important compared to the corresponding scheme
for ωr, because �uctuations were transferred to the mode pro�le of the frequency comb
without ampli�cation. The lock works quite well as can be inferred from the resulting
beat signal linewidth of about 1 Hz. Possibly, the linewidth is even better, since 1 Hz is
also the resolution limit of the used spectrum analyzer. In this scheme ω0 can be tuned
in a locked regime simply by changing the output frequency of the synthesizer.

We tested our frequency comb setup by beating single modes with other reference lasers like the
Mephisto MOPA system, which has an intrinsic short term frequency stability of about 1 kHz.
The resulting linewidths are on the order of a few hundred kHz. Since the noise contributed
by ω0 is ≤1 Hz the �uctuations are mainly attributed to a jitter of the repetition frequency.
This jitter cannot be compensated for due to the limited bandwidth of the feedback control.

Owing to the instability of the frequency comb, we dropped the plan to stabilize both
STIRAP lasers directly to it using beat lock schemes. Nevertheless, the long term stability of
the comb is quite good and we decided to use it as a reference for the STIRAP cavity lock. For
this purpose, the laser at 1017.5 nm, already stabilized to the optical resonator was beat with
one mode of the comb. The measured drift of the beat note compared to a reference frequency
provided by a synthesizer was used to realize a slow lock for the cavity. With this setup we
were able to perform the STIRAP transfer of molecules. However, after we had implemented
the wavelength meter lock, we changed to the con�guration described in 2.3.4, since this is
much less complex.

A more detailed description of our frequency comb setup including a characterization of
all involved locking schemes can be found in [100]. The large jitter of the repetition frequency,
that limits the possible applications at the moment can possibly be reduced by improving the
current control electronics of the laser diodes.

2.3.6 Measurement of laser frequencies

The ability to measure laser frequencies quite accurately is of great importance in our exper-
iment, especially regarding high precision spectroscopy of molecules or STIRAP transfer. For
this purpose we have a WS7 wavelength meter from HighFinesse20. In general, if the laser
intensity is adequate, the WS7 can determine its frequency on a ms timescale. As we use
an eight port multi channel switch the system enables us to measure the frequencies of eight
di�erent lasers consecutively within tens of ms.

A very nice feature is the opportunity to implement a very reliable locking scheme making
use of the precise frequency measurements and the relatively fast actualization rates of the
WS7. The basic idea of such a wavelength meter lock is quite simple. One compares the
measured frequency to a desired one. Depending on the deviation from this set point a digital
PID controller generates an output signal which is fed back to the laser after conversion to an
19Model 33250A from Agilent Technologies, Inc., Santa Clara, USA.
20HighFinesse GmbH, Tübingen.
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analog voltage. The corresponding software was developed by Artjom Krükow and is written
in LabVIEW21. A limiting factor concerning the achievable frequency stability is given by the
actualization rate of the wavelength meter, since a control signal is only generated by the PID
when the frequency is measured. This is done in intervals of tens of ms. In the meantime
the laser is running freely and can drift. Owing to the multi channel switch it is possible to
stabilize eight lasers simultaneously. In our setup the wavelength meter locking technique is
applied to the spectroscopy laser and for stabilizing the cavity involved in the STIRAP system
(cf. Sec. 2.3.4). More applications are possible. For instance, the frequency of the MOPA laser
could easily be tuned using this locking scheme by setting the crystal temperature properly.

The absolute accuracy of the WS7 is speci�ed by the manufacturer to be 60 MHz. We
share the WS7 at our institute with the so called BaRbI experiment located at the laboratory
next door. One of their lasers is used as calibration reference for the wavelength meter. It
is locked to an atomic 87Rb transition yielding a laser frequency stability of <1 MHz. In
principle our software enables us to calibrate the WS7 in intervals of seconds and therefore
frequency measurements at di�erent times are comparable. It turned out, that the most severe
noise source is represented by the �bers guiding the light to the multi channel switch and the
wavemeter, respectively. The frequency measurement is a�ected (due to polarization e�ects),
if the �bers are mechanically stressed or the temperature changes. Whereas the former can be
avoided relatively easy, the latter is more challenging. During my PhD we spent a lot of time
�nding the optimal parameters for the air conditioning system in our laboratory. But it was
worth doing it, since we ended up with a stability of ± 0.1K with respect to the set temperature.
So, when looking at the laser used for calibration, we measure a drift of the frequency of about
±2 MHz over a timescale of hours. This order of magnitude is also con�rmed, due to the fact
that we are able to resolve molecular transition linewidths below 10 MHz as can be seen in
�gure 6.3, for example. Such scans typically take 1-2 hours. Note, the frequency stability of the
laser used for these measurements is already a few megahertz. Thus the accuracy for relative
frequency measurements within several hundred MHz is on the MHz level. Furthermore, we
check the positions of the same molecular levels from time to time and do not see jumps of
more than ±10 MHz. This demonstrates the high reproducibility of the wavemeter readings.
Spectroscopical measurements with 138Ba+ ions performed in the BaRbI project serve as cross
checks leading to the same results even in the UV-regime.

Another important quantity characterizing a wavelength meter is the achievable frequency
resolution. For the case of the WS7 the manufacturer speci�cation is 10 MHz. However,
measurements with frequency-stabilized lasers and AOMs show that it is possible to resolve
frequency shifts of 1 MHz, at least on timescales of minutes.

2.3.7 Geometrical arrangement of the laser beams in the glass cell

For convenience, I want to present an overview of the arrangement of all laser beams relevant
for the experiments in the glass cell. The corresponding beam geometry is schematically shown
in �gure 2.6.

21National Instruments Corporation, Austin, USA.
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Figure 2.6: Schematic of the laser beam geometry in the glass cell. The dimensions of the glass
cell are 26x26x63 mm. Here, a cross section along the short axes is shown. Arrows
illustrate all relevant laser beams for our experiments with ultracold molecules that
are indicated by the green circle. In addition, the propagation direction of the
microwave used in the puri�cation scheme (cf. section 3.8.3) is shown. Each of the
laser beams and the microwave irradiate the whole molecular sample, which is not
to scale. The quantization axis represented by the direction of the magnetic �eld
~B points antiparallel to the gravitational force.

2.4 Experiment control and data acquisition

In order to control all the laser beams, magnetic �elds, RF and microwave pulses, many di�erent
digital and analog signals are necessary. The deterministic interplay of these signals constitutes
the experimental sequence. Our control system guarantees the correct succession of all pulses
and thus represents a pivotal element of the apparatus. Here, it will be described very brie�y.
For further information I refer to Ref. [84].

Key element of the experiment control is an ADwin-Gold system22. However, the mea-
surement parameters are set by means of a graphic user interface written in LabVIEW. After
further processing of some of the data with MATLAB23, most of the input tables are transferred
to the ADwin-Gold system by means of a Python program24 (some parts are written in C).
After completely receiving all necessary parameters for the next experiment cycle, the internal

22Jäger Computergesteuerte Messtechnik GmbH, Lorsch.
23MathWorks, Natick, USA.
24In addition, this program also addresses some other devices, like a NI PCI-6534 card and various signal

generators.
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processor of the ADwin starts and controls the sequence independently. The experiment cycle
is synchronized with the 50Hz power line of the laboratory which improves the reproducibility
of the measurements. In principle, the ADwin provides 32 con�gurable digital input/output
ports, two A/D converters for analog input signals and eight analog outputs. Nevertheless, the
available number of output ports is insu�cient to control the whole experiment. Concerning
the digital channels this problem is solved by employing a �port-expander� (see Ref. [84]). Fur-
thermore arbitrary waveform generators are used to create analog signals. In our setup, the
required computation time limits the resolution of the ADwin system to 50 µs. For some pur-
poses during the experimental sequence a better time resolution is necessary. To control such
fast processes, we utilize a high-speed digital I/O card (PCI-6534 from National Instruments)
with a maximum clock rate of 20 MHz.

In general, the overall structure of the experiment control is quite complicated as it has
grown over the years. In order to simplify and improve it, we now have an ADwin-Pro II from
Jäger Computergesteuerte Messtechnik available. Since this is a modular system, the number
of digital and analog channels can be increased easily. At the moment, the ADwin-Pro II is
not completely implemented. However, it already controls some of the crucial steps within our
sequence, particularly the lattice beams and the STIRAP pulses. We also integrated an digital
intensity stabilization for each of the lattice beams. For this purpose, we measure the actual
laser beam powers with photo diodes25. In the following, I want to consider just one lattice
direction, since the basic scheme is the same for the two other ones. The analog signal of the
photo diode is fed into the ADwin-Pro II. Subsequently, the deviation from the desired value
is measured and depending on that, a digital PID generates an output signal which acts on
the RF input power of an AOM and thereby controls the intensity of the lattice beam. Using
this setup, we observe remaining intensity �uctuations of less than 0.3%.

At the end of each experiment cycle the measurement results are obtained by absorption
imaging (see [101], for example). From these images one can determine the relevant parameters
of the atomic cloud like the number of particles, density, size, position etc. Several cameras are
employed in our setup. Among them, the most important one is a Luca S26, which is used to
detect atomic signals in the glass cell. By using another two cameras27, we are able to perform
absorption imaging in each lattice direction. This is very convenient, especially for adjusting
laser beams to the position of the atomic cloud. One additional Guppy F-38B NIR is available
in order to take absorption images of the MOT. The camera software that analyzes the images
is programmed in MATLAB (except for the user interface of the Theta camera which is written
in LabVIEW).

25More precisely, the photo diodes are placed behind mirrors and they measure the low power which is trans-
mitted through the coating and the substrate.

26EMCCD camera from Andor Technology plc., Belfast, UK.
27S285 from THETA SYSTEM Elektronik GmbH, Gröbenzell and Guppy F-38B NIR from Allied Vision Tech-

nologies GmbH, Stadtroda.
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In our setup, we perform measurements with ultracold 87Rb2 molecules in precisely de�ned
quantum states. For this purpose, 87Rb atoms are trapped, laser cooled and associated to
dimers, which are investigated afterwards. One experiment cycle takes about 35 seconds and
is composed by several subsequences:

� Loading of atoms into a MOT with subsequent creation of an optical molasses.

� Spin preparation of atoms in state |fa = 1,mfa = −1〉, where mfa is the projection of fa
onto the quantization axis.

� Loading of the laser-cooled atoms into a purely magnetic trap (quadrupole trap) and
magnetic transport to the glass cell.

� Loading of the atoms into a QUIC trap.

� Evaporative cooling.

� Transfer of the ultracold atom cloud to the center of the quadrupole coils (Feshbach
coils).

� Loading of the ultracold atom cloud into a 3D optical lattice.

� Spin preparation of the atoms in state |fa = 1,mfa = +1〉.

� Association of atoms to molecules (dimers) using a magnetic Feshbach resonance.

� Puri�cation of the ensemble, ending up with a pure sample of molecules.

� STIRAP transfer of the weakly bound Feshbach molecules to deeply bound molecules.

� Experiments with deeply bound molecules.

� Reversal of the STIRAP transfer and dissociation of molecules.

� Stern-Gerlach separation of spins.

� Absorption imaging of the atom cloud.

In this chapter the experimental sequence is described, following chronologically the steps just
mentioned.
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3.1 MOT, optical molasses and spin preparation

The experimental procedure starts in the MOT chamber of the vacuum apparatus (see Fig.2.1)
with the laser cooling of 87Rb atoms. For this purpose, we use pairs of counterpropagating
beams in the three spatial directions, i.e., six beams in total with a power of about 50mW per
beam. The cooling light is about 20 MHz red detuned from the fa = 2 → f ′a = 3 transition
and superimposed by several mW of repumping light (fa = 1 → f ′a = 2) in order to close the
cooling cycle. In combination with a magnetic quadrupole �eld, this represents the creation of
a MOT. The 87Rb atoms are trapped directly from the background vapor. Subsequent to the
MOT loading we perform molasses cooling, i.e., the detuning of the cooling light is increased
and the magnetic �eld is switched o�. After that, we end up with 2 − 3 × 109 atoms at a
temperature of about 70µK. The next step is optical pumping. More precisely the preparation
of a spin-polarized ensemble of atoms in state |fa = 1,mfa = −1〉. Therefore, we switch on the
push coil (see Fig. 2.2) and generate a magnetic �eld of several gauss pointing in the direction
of the magnetic transport line, in order to de�ne the mandatory quantization axis. Then, a
sequence of several light pulses resonant to di�erent atomic transitions around 780 nm is used
to transfer as many atoms as possible to the desired state.

3.2 Magnetic transport

After the spin preparation we change to a pure magnetic trap con�guration. For this purpose,
the MOT coils are switched on again and the current is ramped up until the gradient of the
resulting quadrupole �eld reaches ∂Bz/∂z = 13 G/mm, which is an appropriate value for the
following transport. Owing to this procedure, the atomic sample is heated up to about 150µK.
The remaining number of atoms is measured to be ∼ 1 × 109 and their lifetime τ in the trap
is on the order of one second (depending on the adjustable pressure of the 87Rb vapor in the
MOT chamber). Then, the atoms are transferred to the glass cell by means of a magnetic
transport [85]. In total, a distance of 48 cm including a 120◦ angle has to be bridged (see
Fig. 2.2). By consecutively ramping the currents of neighboring quadrupole coils, the trapping
potential is shifted smoothly along the transport line, as described in section 2.2. The overall
transfer takes 1.4 s and necessitates current peaks of up to 120 A. In the glass cell, we end up
with ∼ 6× 108 atoms at a temperature of about 180− 200 µK.

3.3 QUIC trap

Subsequent to the magnetic transfer, the atoms are in a quadrupole trap, which is inappro-
priate in order to perform evaporative cooling down to temperatures typical for Bose-Einstein
condensation. Hence, we change to a QUIC trap created by the quadrupole coils and an ad-
ditional Io�e coil. First of all, the current of the quadrupole coils is increased such, that the
magnetic �eld gradient reaches ∂Bz/∂z = 30 G/mm. Afterwards, the Io�e coil is switched on
and the current is ramped up slowly (within ∼ 1 s) until it equals the current through the
quadrupole coils. In this �nal con�guration, the trap frequencies are on the order of 130Hz in
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3.3 QUIC trap

radial and 15 Hz in axial direction. Owing to the Io�e coil, the position of the atomic cloud is
shifted by about 6mm with respect to the quadrupole trap. This can be seen in the simulations
shown in �gure 3.1(a) and (b). Note, an additional o�set magnetic �eld in axial direction is
mandatory in order to create an appropriate potential. Otherwise, the atom cloud touches the
surface of the glass cell leading to atom losses from the trap. The identi�cation of this problem
took quite some time before we produced the �rst BECs within the rubidium project in Ulm.
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Figure 3.1: Contour plots of trapping potentials. Shown are the results of simulations for the
quadrupole trap (a), the QUIC trap (b) and the trap after the transport within the
glass cell (c) including all relevant coils and the gravitation. The positions in the
vertical direction z and the horizontal (axial) direction x are given with respect to
the center of the quadrupole trap. When the Io�e coil is switched on, the atomic
cloud is displaced by about 6mm along the x axis, as can be seen by comparing (a)
and (b). Before the Feshbach �eld is applied, the atoms are shifted back to zero
position [see (c)].
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As mentioned above, for the transformation of the traps, the current through the quadrupole
coils is increased. During this procedure, the atomic cloud is heated up to about 300µK. Such a
high temperature would lead to a huge loss of atoms when changing to the QUIC con�guration.
Therefore, we already start the evaporative cooling in the steep quadrupole trap. Before the
Io�e coil is switched on, the temperature of the remaining ∼ 1−2×108 atoms is about 100µK.
The transfer e�ciency of the atomic cloud is then almost 100%. Due to the low pressure inside
the glass cell, the lifetime τ of the atomic sample is enhanced compared to the values in the
MOT chamber. For example, regarding the steep quadrupole trap, we measure τ ∼ 50 s for
atoms at a temperature of 100 µK.

3.4 Evaporative cooling and Bose-Einstein condensation

In this section, I will �rst of all give some basic formulas concerning Bose-Einstein condensation
of a dilute gas in a harmonic trap. A more detailed description can be found, e.g., in Refs. [102,
103]. Afterwards, the experimental realization in our setup using radiofrequency evaporation
is presented.

3.4.1 Theoretical description of a BEC

Bose-Einstein condensation is a quantum statistical e�ect which occurs, when the phase-space
density nλ3

T reaches
nλ3

T = ζ(3/2) ≈ 2.612 . (3.1)

Here, n denotes the spatial atomic density and λT = (2π~2/mkBT )3/2 the thermal de Broglie
wavelength, with T being the temperature and m representing the mass of an atom. Moreover,
ζ(x) is the Riemann zeta function. The critical temperature Tc for the phase transition can be
written as

Tc =
~ω̄
kB

(
N

ζ(3)

)1/3

≈ 0.94
~ω̄
kB
N1/3 , (3.2)

where N is the total number of atoms and ω̄ = (ωxωyωz)
1/3 gives the geometric mean of the

trapping frequencies. Within mean-�eld theory, the macroscopic behavior of the condensate
con�ned in an external potential Vext (~r) can be described by the Gross-Pitaevskii equation

i~
∂

∂t
Φ (~r, t) =

(
−~2∇2

2m
+ Vext (~r) + g|Φ(~r, t)|2

)
Φ (~r, t) . (3.3)

The complex-valued classical �eld Φ (~r, t), often referred to as wave function, represents an order
parameter, which determines the condensate density, since n(~r, t) = |Φ(~r, t)|2. Furthermore,
the coupling constant g = 4π~2a/m characterizes the atom-atom interaction and thus is related
to the scattering length a. For deriving the time independent case, Φ (~r, t) is expressed as
φ(~r)exp (−iµt/~) using the chemical potential µ, where φ(~r) is real-valued. According to that,
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3.5 Transport of the atom cloud within the glass cell

the Gross-Pitaevskii equation reads

µφ(~r) =
(
−~2∇2

2m
+ Vext (~r) + gφ2(~r)

)
φ(~r) . (3.4)

This equation simpli�es drastically in the so called Thomas-Fermi regime, i.e., when the con-
tribution of the kinetic energy term is negligible compared to the interaction energy. With this
approximation, Eq. (3.4) can be written as

n(~r) = φ2(~r) =
µ− Vext(~r)

g
. (3.5)

Therefore, given a harmonic trapping potential, the spatial density is parabolic.

3.4.2 Experimental realization of a BEC

In order to produce a BEC, we perform radiofrequency evaporation, i.e., the atoms are irradi-
ated by an RF �eld whose frequency is lowered, which leads to a continuous loss of the hottest
atoms and thermalization of the remaining sample [104]. For further information on evapora-
tive cooling, I refer to the theoretical description given in Ref. [105]. Starting with 30 MHz,
we reduce the frequency to ∼ 1 MHz within 10 − 15 s using a sequence of linear and spline
functions. Figure 3.2 shows the phase transition from a cold thermal cloud to a pure BEC28 of
about 1 × 106 atoms with a temperature below 500 nK. Most of the measurements described
in this thesis were carried out with ultracold thermal atoms close to condensation as starting
point, since this con�guration leads to the maximum number of molecules.

3.5 Transport of the atom cloud within the glass cell

In the QUIC con�guration, the atoms are displaced by about 6 mm from the center of the
quadrupole coils, which create the �eld for the Feshbach association later on. As this �eld has
to be homogeneous over the dimension of the atomic cloud, it is necessary to transport the
atoms back to the center. Hence, the current through the quadrupole coils is decreased and the
big o�set coils (operated in anti-Helmholtz con�guration) are switched on (see also Fig. 2.3).
During the transfer, the current of the levitation coil is adjusted properly to compensate for
the gravitational force. This is necessary, since the trapping frequencies are lowered to ∼ 20Hz
in radial and ∼ 7 Hz in axial direction. Furthermore, we employ the last pair of coils of the
magnetic transport line for the exact positioning of the atomic sample. In total, the transfer
takes about 1 s. A simulation of the resulting trapping potential is shown in Fig. 3.1(c).

28One of the �rst BECs of the rubidium experiment in Ulm.
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(a) (b) (c)

Figure 3.2: Bose-Einstein condensation of 87Rb atoms observed by absorption imaging of the
atomic cloud after 15ms time of �ight. The peak height and the color, respectively,
represent the atomic density. From left to right the �nal value of the RF in the
evaporation sequence and thus the temperature is decreased, which gives rise to
the phase transition from a thermal cloud (a) to a pure BEC (c). The sharp peak
on top of the rather broad distribution in (b) indicates a large fraction of already
condensated atoms in the center of the trap surrounded by a cloud of thermal
atoms.

3.6 Optical lattice

The molecule formation process and the subsequent manipulations of the dimers are performed
within a 3D optical lattice that represents the essential tool for controlling the interparticle
separation. If the lattice depth is large enough, the molecules are well isolated from each
other, which is called a Mott insulator state. When the depth is lowered, tunneling becomes
possible and molecules can collide. By completely switching o� one (two) lattice beams, we are
able to realize quasi-1D (2D) systems. So, many di�erent interaction regimes and geometries
are accessible. In this chapter, I will �rst provide some basic formulas concerning optical
trapping of atoms and molecules. Afterwards, the realization of the optical lattice in our setup
is described and characteristic experiments like the di�raction of a BEC, the measurement of
the energy-band population and the observation of the super�uid to Mott insulator transition
are presented. An overview of this speci�c �eld of research can be found in [106].

3.6.1 Optical trapping of atoms and molecules

Here, I want to brie�y present the basic idea of optical trapping of particles following the dis-
cussion given in Ref. [107]. When an atom is exposed to a linearly polarized, oscillating electric
�eld ~E(t) = ε̂E0cos(ωt) with amplitude E0 and unit polarization vector ε̂, a dipole moment
~p(t) = α(ω) ~E(t) is induced, where α(ω) denotes the complex-valued, frequency-dependent dy-
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3.6 Optical lattice

namical polarizability. The corresponding dipole interaction potential is �xed by the real part
of the polarizability Re{α(ω)} and reads

U = −1
2
〈~p · ~E〉 = −1

4
Re{α(ω)}E2

0 . (3.6)

Please note, the angular brackets indicate the time average over the rapid oscillating terms.
Since I ∝ E2

0 , the dipole potential is directly linked to the intensity of the electric �eld. I
want to point out that U is attractive, when the sign of Re{α(ω)} is positive, and repulsive
otherwise. In contrast, the imaginary part Im{α(ω)} is related to the power Pabs absorbed by
the oscillator from the driving �eld, according to

Pabs = 〈~̇p · ~E〉 =
1
2
ωIm{α(ω)}E2

0 . (3.7)

Hence, the dynamical polarizability fully characterizes the response of the particle to the electric
�eld.

In principle, molecules can be treated in complete analogy. Nevertheless, the situation is in
general more complicated than for atoms, owing to the anisotropic geometric structure. This
is re�ected into a polarizability tensor ↔α(ω). In our setup, we work with nonpolar dimers and
the tensor can be simpli�ed considerably. However, an anisotropic polarizability still remains
dependent on the molecular state (see chapter 5).

3.6.2 Realization of the optical lattice

In our setup, the 3D optical lattice at λ = 1064.5 nm is formed by a superposition of three
linearly polarized standing light waves in the x, y, and z directions realized by retrore�ected
Gaussian beams. The corresponding intensity pro�le in one dimension reads

I(r, z) = 4ILe
− 2r2

d2(z) cos2(kLz) , (3.8)

where r2 = x2 + y2 and kL = 2π/λ denotes the wavenumber of the laser beam. The function

d(z) = d0

√
1 +

(
z

zR

)2

(3.9)

gives the 1/e2 beam radius depending on the distance z from the focus with the Rayleigh length
zR = πd2

0/λ. Furthermore, 4IL is the maximum intensity of the standing light wave, which is
related to the power P of the laser beam, since IL = 2Pπ−1d−2

0 . Inserting the intensity pro�le
of Eq. (3.8) in Eq. (3.6) yields

U(r, z) = U0e
− 2r2

d2(z) cos2(kLz) . (3.10)

This interaction potential represents an array of equidistant microtraps separated by the lattice
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constant a = λ/2 = 532.25 nm. Usually, the lattice depth U0 is given in units of recoil energies
ER = h2/(2mλ2), where h is Planck's constant and m is the mass of the trapped particle.

The polarizations of the three standing light waves in our setup are oriented orthogonal
to each other and the optical frequencies are slightly di�erent (on the order of 100 MHz) to
avoid interference e�ects. Thus, the potential of the 3D optical lattice is the sum of three
independent terms and reads

U3D = U0,xe
− 2(y2+z2)

d2(x) cos2(kLx) + U0,ye
− 2(x2+z2)

d2(y) cos2(kLy) + U0,xe
− 2(x2+y2)

d2(z) cos2(kLz) , (3.11)

which gives rise to a crystal-like structure. Correspondingly, a system of parallel tubes (pan-
cakes) is found for the 2D (1D) case.

3.6.3 Di�raction of a BEC by an optical lattice

This subsection is devoted to the sudden loading of a BEC into an optical lattice [108, 109].
More precisely, the BEC is exposed to an optical standing wave for a duration τ , where the light
pulse has a rectangular shape. The resulting di�raction patterns can be exploited to adjust
the individual lattice beams and to determine the corresponding potential depths. I will �rst
of all give a short theoretical description following Refs. [84, 109]. Afterwards, measurements
using either the laser wavelengths of 1064.5 nm or 830.4 nm are presented.

For simplicity, we consider an in�nite periodic potential in one dimension, expressed by
U(z) = U0cos(kLz). Since atom-atom interactions can be neglected on the timescales relevant
here, a single particle treatment is possible and the Hamilton operator reads H = − ~2

2m
∂2

∂z2
+U .

Then, solving the stationary Schrödinger equation results in an energy-band structure (cf.
Fig. 4.4, which shows calculations with respect to Rb2 molecules), in analogy to solid state
physics. Accordingly, the eigenstates |n, q〉 with eigenenergies En,q are called Bloch states.
Here, q denotes the quasimomentum and n is the band index. When expressing the Bloch
states in terms of the discrete plane-wave basis {|φp〉} with momenta p = q + 2l~kL (l ∈ Z),
one obtains

|n, q〉 =
∞∑

l=−∞
cn,q(l) |φp=q+2l~kL〉 . (3.12)

We now consider a BEC suddenly loaded into the optical lattice. The initial state of the BEC
is described by a plane wave |ψ(t = 0)〉 = |φq〉. When the optical potential is switched on, the
plane wave is projected onto the Bloch states and can be written as

|ψ(t = 0)〉 =
∞∑
n=0

|n, q〉 〈n, q|φq〉 =
∞∑
n=0

c∗n,q(0) |n, q〉 , (3.13)

using Eq. (3.12). Hence, the time evolution of the BEC in the optical lattice is given by

|ψ(t)〉 =
∞∑
n=0

c∗n,q(0)e−i
En,q

~ t |n, q〉 . (3.14)
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After a time τ the light is abruptly switched o� and the state |ψ(τ)〉 is projected onto the
measurement basis, i.e., onto plane waves again, yielding

|ψ(τ)〉 =
∞∑

l=−∞
bq(l) |φq+2l~kL〉 (3.15)

with coe�cients

bq(l) =
∞∑
n=0

c∗n,q(0)cn,q(l)e−i
En,q

~ τ . (3.16)

A free expansion in a time of �ight measurement results in the spatial separation of the single
plane-wave components and a di�raction pattern is observed. The population of the l-th max-
imum is determined by |bq(l)|2. Figure 3.3 shows typical absorption images of the di�raction
patterns obtained in a 1D and 2D optical lattice con�guration. The maxima |bq(l)|2 show
characteristic oscillations as a function of the pulse time τ , which can be used to determine
the lattice depth, in principle. However, we predominantly employed a di�erent method based
on lattice modulation spectroscopy (see chapters 4 and 5). This technique is more favorable,
when working with molecules in our setup.

(a)

(b)

Figure 3.3: Sudden loading of a stationary BEC (q = 0) into a 1D (a) and 2D (b) optical lattice,
respectively. The atoms are illuminated in the relevant direction(s) for a duration
of tens of µs by a light pulse with rectangular shape. After several ms time of �ight,
the absorption images clearly show a di�raction pattern indicating the plane-wave
decomposition of the state. For (a), the lattice wavelength was λ = 1064.5 nm,
while (b) corresponds to a measurement at 830.4 nm.
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3.6.4 Adiabatic mapping of the lattice energy-band population

We have seen, that several Bloch bands are populated, if the lattice is switched on all of a
sudden. Such a distribution of atoms is disadvantageous regarding the molecule formation and
the subsequent experiments described in this thesis. In fact, all the atoms are desired to reside
within the lowest Bloch band n = 0. This can be achieved by adiabatically ramping up the
lattice intensity, which is the case, when the criterion

|〈e, q|∂H/∂t|0, q〉| � |Ee,q − E0,q|2/~ (3.17)

is ful�lled [109]. Here, |n, q〉 denotes the �rst excitable state. Speci�cally, for q = 0, Eq. (3.17)
is satis�ed, if dU0/dt � 16E2

R/~, since |Ee,q − E0,q| ≥ 4ER for any U0. In this sense, an
adiabatic ramp at λ = 1064.5 nm to a typical �nal lattice depth of 12.5ER with respect to
87Rb atoms has to be signi�cantly longer than 60 µs.

If the lattice is turned o� adiabatically, the crystal momentum q is conserved and a Bloch
state |n, q〉 is mapped onto a free particle momentum in the corresponding Brillouin zone n (see,
e.g., [110]). Therefore, the population of the n-th energy band can be measured independently.
Figure 3.4 shows an absorption image of an atomic cloud adiabatically released from the 3D
optical lattice. The atoms in the lowest Bloch band form a cubic structure which corresponds
to the momentum interval −~kL ≤ p ≤ ~kL in each direction, representing the �rst Brillouin
zone.

2ħkL

2ħkL

Figure 3.4: Mapping of the Bloch state population onto the free particle momentum distri-
bution. The absorption image is taken after adiabatically ramping down the 3D
optical lattice at λ = 1064.5 nm with subsequent free expansion of the atomic
cloud. It shows an almost homogeneous �lling of the lowest Bloch band, whereas
no populations are found in excited bands.

3.6.5 Super�uid to Mott insulator transition

In the previous section, we have focused on the adiabatic loading of atoms into the 3D optical
lattice. Now, the in�uence of the potential depth will be discussed. More precisely, we consider
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3.7 Spin preparation

the changeover of a weakly interacting quantum gas into a strongly correlated many-body
system. This so-called super�uid to Mott insulator phase transition has been predicted in
Ref. [111] and experimentally observed with cold bosons in an optical lattice in a seminal work
of Greiner et al. [50]. For the theoretical description of such systems, atom-atom interactions
have to be taken into account, which leads to the famous Bose-Hubbard Hamiltonian [112]

Ĥ = −J
∑
〈i,j〉

â†i âj +
1
2
U
∑
i

n̂i(n̂i − 1) , (3.18)

when considering only occupations of the lowest Bloch band. The �rst term describes the
tunneling between adjacent lattice sites i and j, where J denotes the tunnel matrix element
and â†i (âi) represents the creation (annihilation) operator for a particle in the potential well i.
In contrast to that, the on-site interaction is expressed by the second term with the operator
n̂i = â†i âi counting the number of bosonic atoms per lattice site i. Here, U corresponds to the
repulsion strength of two atoms located in the same potential well. The �rst, so-called hopping
term causes delocalization of the atoms over the entire lattice, whereas the second term of the
Bose-Hubbard Hamiltonian gives rise to localization. Hence, the relation U/J , that can be
tuned via the lattice depth, determines the fundamental behavior of the atomic ensemble. In
the limit of U/J � 1, the system forms a super�uid phase characterized by an macroscopic wave
function. For U/J � 1, the atoms are prevented from tunneling to neighboring lattice sites,
which is referred to as the Mott insulator regime. Owing to the localization, no interference
pattern is observed anymore, when suddenly releasing the atoms from the lattice.

In order to observe the super�uid to Mott insulator phase transition, we adiabatically
load a BEC into the 3D optical lattice within 250 ms. Note, in contrast to the experiments
described in Sec. 3.6.4, adiabaticity here is related to much longer timescales, since the atoms
have to redistribute, when the lattice depth is changed. Typical absorption images are shown
in Fig. 3.5. For deep optical lattices, the localization of the atoms becomes evident due to the
disappearance of the di�raction pattern.

We perform the molecule formation at a potential depth of 12.5ER with respect to atoms,
which approximately corresponds to the threshold concerning the Mott insulator phase. In
this regime, atoms of di�erent lattice sites are su�ciently well isolated from each other and
collisions are strongly suppressed, which is advantageous for the conversion e�ciency to dimers
and the lifetime of the molecules.

3.7 Spin preparation

After adiabatically loading the BEC or cold thermal cloud of atoms in spin state |fa = 1,mfa =
−1〉 into the 3D optical lattice at λ = 1064.5 nm, the magnetic trap is slowly turned o�.
Then, the quantization axis is de�ned by the direction of the permanent o�set magnetic �eld
that stems from the cage of ribbon cables surrounding the glass cell. In order to utilize the
Feshbach resonance at B = 1007.4 G, we have to prepare the atoms in the high �eld seeking
state |fa = 1,mfa = +1〉. For this purpose, the big o�set coils (cf. �gure 2.3) are ramped
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(a) (b) (c) (d) (e)

Figure 3.5: Super�uid to Mott insulator phase transition observed with a 3D optical lattice
at 830.4 nm. (a) BEC before the lattice is switched on. (b) The lattice depth is
adiabatically increased to a �nal value of 5ER and switched o� abruptly. After
free expansion of the atoms the absorption image shows a di�raction pattern that
characterizes the super�uid phase. (c) If the lattice depth is increased to 15ER
the coherence is lost, which is a clear signature for the localization of the atoms.
(d) The lattice depth is ramped up to 15ER in analogy to (c) and subsequently
ramped down adiabatically to 5ER before it is switched o� suddenly. A revival of
the interference pattern can be seen, demonstrating the reversibility of the phase
transition. (e) After reaching 15ER the lattice is adiabatically ramped down to
zero.

up slowly. The corresponding magnetic �eld points in the opposite direction with respect to
the permanent �eld. Thus, the direction of the quantization axis is reversed. Now, the big
o�set coils are switched o� abruptly, so that the spins cannot follow. Thereby, the atomic state
changes from |fa = 1,mfa = −1〉 to |fa = 1,mfa = +1〉 (see also, e.g., [53, 113]). We achieve
a preparation e�ciency of almost 100%, which can be measured by time of �ight absorption
imaging, when performing a Stern-Gerlach separation of atomic spin states (cf. section 3.11).

3.8 Feshbach molecules

Feshbach resonances have become a major tool to produce ultracold molecules in recent years.
Since a comprehensive overview of the basic concept and the �eld can be found in [19, 20], I
will just give a brief, rather phenomenological description of the molecule formation mechanism
here, and then focus onto the experimental realization. At the end of this section, our puri�ca-
tion scheme based on an atom-selective microwave transition is presented. The implementation
of the Feshbach association and sample puri�cation techniques in our setup was accomplished
by the former PhD students Gregor Thalhammer and Klaus Winkler. Using these methods,
we are able to prepare pure ensembles of about 3× 104 ultracold Feshbach molecules showing
typical lifetimes on the order of ∼ 1 s in deep optical lattices at λ = 1064.5 nm.

3.8.1 Molecule formation via a Feshbach resonance

A Feshbach resonance is a scattering feature of two colliding atoms, which are coupled to a
bound molecular state. The situation is illustrated in �gure 3.6. We consider a pair of colliding
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Figure 3.6: Basic principle of a Feshbach resonance. It occurs, when the scattering state of
two colliding atoms in the open entrance channel resonantly couples to a bound
molecular state of a closed channel. Using a magnetic Feshbach resonance, the
energy di�erence ∆E can be tuned by means of an external magnetic �eld B.

atoms in the asymptotic limit of large internuclear distances. The corresponding potential
represents an energetically open channel sometimes referred to as entrance channel. When a
molecular bound state provided by an closed channel potential couples to the scattering state
of the atomic pair, it strongly in�uences the collision properties. Consequently, a Feshbach
resonance can be used to tune the scattering length, since the described coupling depends
on the energy di�erence ∆E of the two states. For example, if the magnetic moments with
respect to the open and closed channel are di�erent (∆µ 6= 0), the Zeeman shift allows for
the control of ∆E by means of an applied magnetic �eld B according to ∆E = ∆µ(B − B0).
Here, B0 represents the resonant �eld strength. Such a magnetic Feshbach resonance can be
characterized by the s-wave scattering length [20, 114]

a(B) = abg

(
1− ∆B

B −B0

)
, (3.19)

where abg denotes the background scattering length describing the nonresonant regime. The
resonance width ∆B is de�ned by the distance of the zero crossing of a(B) from the resonance
position. In analogy, given an optical Feshbach resonance, the coupling of the molecular bound
state to the scattering state of the atomic pair can be tuned by a light �eld [115-117]. However,
optical Feshbach resonances will not be discussed in more detail here, as they are not relevant
to this work.

For 87Rb atoms in the prepared spin state |f = 1,mf = +1〉, more than 40 Feshbach reso-
nances have been observed in the magnetic �eld range between 0.5G and 1260G [118]. Similar
to Refs. [30, 54], we use the broadest resonance at 1007.4G (∆B = 0.21G and abg = 100a0 [20],
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where a0 is the Bohr radius) in order to produce molecules. As already mentioned, in our setup,
the atoms and also the formed molecules are trapped in an optical lattice. Exemplarily, �gure
3.7 depicts the situation for the experimental parameters of Ref. [53], i.e., a potential depth of
35ER at a wavelength of 830 nm. Note, we are currently working with a 3D optical lattice at
1064.5nm. However, this does not change the basic characteristics. In principle, the location of
the Feshbach resonance slightly depends on the vibrational state v with respect to the spherical
harmonic trap. We only have to consider v = 0 owing to the preparation of the sample in the
lowest Bloch band in our setup. By adiabatically ramping down the magnetic �eld across the
Feshbach resonance, a pair of atoms forms a weakly bound molecule. For the case of a linear
sweep, the molecule creation probability P can be calculated using a Landau-Zener approach,
which yields [19, 53, 119]

P = 1− exp

{
−2
√

6~
ma3

ho

∣∣∣∣abg∆B
Ḃ

∣∣∣∣
}

, (3.20)

where Ḃ is the ramp speed and aho =
√

~/(mω0) represents the harmonic oscillator length.
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Figure 3.7: Feshbach association of ground state 87Rb atoms in a spherical harmonic trap
with an oscillator frequency of ωho = 2π × 39 kHz. The dashed lines indicate the
vibrational levels (v = 0, . . . , 6) of the harmonic trap (blue) and the bare Feshbach
resonance energy Eres(B) (red). Owing to the coupling, the dressed energy levels
(solid lines) show avoided crossings. Thus, a pair of atoms in the lowest vibrational
state can be associated to a weakly bound molecule by adiabatically ramping down
the magnetic �eld across the resonance at about B = 1007.4 G. The �gure is
adapted from Ref. [19].
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3.8.2 Creation of diatomic molecules in the experiment

In our setup, the quadrupole coils operated in Helmholtz con�guration are used in order to
generate the Feshbach �eld. Since it has been described in great detail in Refs. [53, 84], I
will just brie�y present the molecule formation procedure here. First of all, we quickly ramp
up the magnetic �eld to a value slightly above the Feshbach resonance at 1007.4 G, which has
essentially no e�ect on the atoms owing to the fast ramping speed. Afterwards, we adiabatically
cross the Feshbach resonance creating weakly bound molecules. I want to emphasize that, due
to our active stabilization, the magnetic �eld has a relative accuracy of about 10−4 (cf. section
2.2).

If a lattice site is �lled with three or more atoms, they are lost due to inelastic collisions,
when ramping over the Feshbach resonance. The conversion e�ciency for doubly occupied
lattice sites is more than 90% [53]. In order to get rid of remaining single atoms, we apply
a puri�cation scheme, which is described in section 3.8.3. However, starting with ∼ 4 × 105

atoms in the optical lattice, we typically end up with a pure ensemble of about 2.5 − 3 × 104

weakly bound molecules. Please note, there is no more than a single molecule per lattice site.
Since they cannot be directly observed by our standard absorption imaging, we detect the
atom signal after reversing the Feshbach ramping in order to obtain the number of dimers.
Figure 3.8 shows the dissociation of molecules evident by the reappearance of the atomic signal
after adiabatically crossing the Feshbach resonance at 1007.4 G again. For B < 1007.4 G only
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Figure 3.8: Dissociation of Feshbach molecules. After the production and puri�cation of the
molecule ensemble, the magnetic �eld is adiabatically increased. The normalized
number of atoms N/N0 is measured as a function of the �nal value of B. Here, N0

corresponds to the atom number in the high �eld asymptotic limit. The Feshbach
resonance at 1007.4 G is indicated by the blue vertical line.
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small atom numbers are detected, demonstrating the high e�ciency of our puri�cation scheme.
I want to point out that the actual atom numbers in this regime might even be lower than
the values inferred from the absorption images, since, in general, a �t to a vanishing signal
is problematic. Small �uctuations resulting from technical imperfections, i.e., artifacts of the
imaging can contribute and lead to an overestimation of the atom number. Originally, �gure
3.8 was measured as a function of the current through the quadrupole coils. Since, the position
of the Feshbach resonance is well known, the magnetic �eld can be calibrated. We found, that
B = 1007.4 G corresponds to a current of 79.59 A.

3.8.3 Puri�cation scheme

After the creation of weakly bound dimers, remaining single atoms have to be removed in
order to realize the preparation of a pure molecular sample. For this purpose, we apply a
puri�cation scheme that relies on a combined microwave and light pulse addressing only atoms
[53] (see also [27]). Subsequent to the adiabatic crossing of the Feshbach resonance the magnetic
�eld is set to B = 1000 G. Then, the atom-molecule sample is irradiated by a microwave at
9.111 GHz and resonant light driving the transitions illustrated in �gure 3.9. Thereby, single
atoms are removed from the 3D optical lattice with almost 100% e�ciency. Both pulses have
a rectangular shape, start at the same time and have durations of 2 ms (microwave) and
3 ms (light), respectively. We use a rectangular waveguide open to one side as antenna. The
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Figure 3.9: Hyper�ne and Zeeman structure of atomic 87Rb levels relevant for the puri�cation
scheme. (a) By applying a microwave at 9.111 GHz we resonantly drive the tran-
sition from |fa = 1,mfa = +1〉 to |fa = 2,mfa = +2〉 within the 5S1/2 manifold.
(b) The light pulse excites the atoms to the |fa = 3,mfa = +3〉 level of the 5P3/2

state removing the atoms from the lattice owing to the recoil momentum transfer
from the scattered photons [27].
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3.8 Feshbach molecules

microwave is generated by a synthesizer29 and ampli�ed30 to a power of 1 W. For the optical
transition, the light of the puri�cation laser is used. At B = 1000 G the resonance frequency
of the |fa = 2,mfa = +2〉↔|fa = 3,mfa = +3〉 transition is 1402MHz blue detuned compared
to the one at zero magnetic �eld. We account for this frequency di�erence in the beat locking
scheme described in section 2.3.1.

3.8.4 Lifetimes of Feshbach molecules in the optical lattice

In general, the ability to prepare long-lived molecular samples is advantageous for experimental
purposes. It is convenient, if intrinsic losses of particles are negligible on the timescales of the
measurements (typically several milliseconds). With respect to a 3D optical lattice, there
are mainly two e�ects which can lead to a decreased number of observed molecules: photon
scattering and inelastic collisions. First of all, the lattice light itself can induce transitions to
higher excited molecular levels. This can lead to direct losses from the trap due to heating
or dissociation processes, where the atoms gain kinetic energy. However, most likely, the
excited molecules decay to nonobservable states, i.e., they are possibly still trapped but escape
from detection. Since the photon scattering rate is proportional to the square of the electric
�eld amplitude [see equations (4.1) and (4.7)], low laser powers would be advantageous for the
lifetime of the molecules. Unfortunately, for low lattice depths, collisional losses come more and
more into play owing to increased tunneling of molecules to adjacent lattice sites. A theoretical
description of inelastic collisions is an involved topic and requires the precise knowledge of the
molecule distribution and the trap geometry. For the special case of a 1D Tonks-Girardeau gas,
experiments with 87Rb2 Feshbach molecules were performed, where an inhibition of particle loss
in the strong dissipation regime was observed, which represents a manifestation of the quantum
Zeno e�ect [61]. However, we have studied the collisional dynamics in various trap geometries
that are not directly comparable to those of Ref.[61]. As mentioned in the introduction (section
1.4) our results concerning this �eld of research will be presented in the forthcoming doctoral
thesis of Björn Drews. Therefore, I restrict the discussion here to a rather phenomenological
description of some basic features of the experimental data.

In our setup, the Feshbach association takes place at equal lattice depths of typically
12.5ER in each of the three directions, i.e., the atoms of di�erent potential wells are well
isolated from each other. Since the Feshbach dimers have twice the mass and their polarizability
is known to be two times the one of a single atom [120], the corresponding lattice depths for
the molecules are 50ER. For this case, tunneling to adjacent lattice sites is highly suppressed
and the main loss mechanism is given by laser induced photon scattering. Then, as can be
seen in �gure 3.10, the lifetime of a pure molecular sample can be modeled by an exponential
law. From the �t, we obtain a 1/e decay time of 1.08 s. Please note that due to technical
reasons we are limited to a holding time τh of about 900 ms in our measurements. When
looking at the experimental data for a lattice depth of 10ER, we see fast losses of molecules
within τh . 200 ms, which we mainly attribute to inelastic collisions owing to tunneling. On

29N5183A from Agilent Technologies, Inc., Santa Clara, USA.
30QPJ-09103030 from QuinStar Technology, Inc., Torrance, USA.
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Figure 3.10: Lifetimes of weakly bound Feshbach molecules in a 3D optical lattice. Within 1ms,
the initial lattice depth of 50ER is lowered simultaneously in each direction to the
value given in the legend. We measured the number N of remaining molecules
as a function of the holding time τh in the lattice, where τh = 0 represents the
moment, when the �nal depth is reached. The starting point of our measurements
is τh = 1 ms. Here, N0 = 15940 represents the number of molecules at τh = 0
obtained by an exponential �t (solid line) for the case, when the lattice is not
lowered at all. The corresponding 1/e decay time is 1.08 s. Typically, each data
point is the average of about 7 repetitions of the experiment except for the scan
at 5.0ER, where each data point represents the average of 21 repetitions.

longer timescales the decay is much slower. This is reasonable, as the density of molecules is
decreased and the collision partners have to tunnel over many lattice sites to �nd each other.
Consequently, for τh & 200ms, similarly to the case of 50ER, the losses are mainly determined
by laser induced photon scattering. However, the decay curve is not so steep since the laser
intensity is by a factor of �ve less. For even lower lattice depths, inelastic collisions are further
increased. In addition, molecules can simply drop out of the lattice, which sets another loss
mechanism. Consequently, a complete loss of dimers (within our maximum holding time) is
observed for lattice depths < 5.0ER.

Next, we want to study the situation, when one lattice beam is completely switched o�
giving rise to an array of parallel tubes in the trapping potential. The experimental data for
a high background lattice (50ER) corresponding to the remaining two directions is shown in
�gure 3.11(a). We observe a fast decay within about 5 ms, that we attribute to inelastic colli-
sions within the tubes. Remarkably, a signi�cant fraction of molecules exhibits a much longer
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Figure 3.11: Lifetimes of weakly bound Feshbach molecules in a 2D optical lattice. The ex-
perimental scheme is identical as for �gure 3.10, except that one lattice beam is
completely switched o�. We used the same normalization factor N0 = 15940, here.
(a) Both scans are obtained for �nal lattice depths of 36.7ER in the remaining
two directions and show the behavior for di�erent timescales. In (b), square plot
symbols represent our measurements for a shallow background lattice of 3.3ER.
This scan shows no signi�cant di�erence to the case, when all three lattice direc-
tions are set to 3.3ER (circles). Typically, each data point represents the average
of seven repetitions of the experiment.

lifetime, which can be understood as follows. When assuming two body reactions, inelastic
collisions can lead to a complete loss, if the tube is occupied by an even number of molecules.
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For the case of an odd number, always one molecule remains per tube. The decay of this �o�set
signal� is then mainly determined by laser induced transitions, i.e., photon scattering. How-
ever, for very low lattice depths, where tunneling between adjacent tubes is strongly increased,
we do not �nd any di�erence compared to the corresponding 3D con�guration as can be seen
in �gure 3.11(b).

3.8.5 Potential curves of Rb2 molecules and description of the Feshbach state

In order to manipulate and control ultracold molecules, detailed knowledge about their elec-
tronic energy structure is pivotal. Figure 3.12 shows potential curves of the 87Rb2 dimer. For
the experiments described in this thesis, the triplet ground state a3Σu is most relevant, since
the deeply bound molecules are prepared in this state. Furthermore, we have investigated the
(1)3Σg manifold and the spin-orbit coupled (1)1Σu − (1)3Πu complex spectroscopically31.

After the Feshbach association of atoms to weakly bound dimers, the magnetic �eld is
set to B = 1000 G, which represents the starting point of most of our experiments. Due
to the Zeeman shift and the molecule binding energy (∼ 20 MHz × h) the Feshbach state is
located 1.748 GHz× h below the |fa = 1,mf,a = +1〉+ |fb = 1,mf,b = +1〉 atomic asymptote
(5S1/2+5S1/2) at 0G, with fa and fb being the quantum numbers of the total angular momenta
of the single atoms. The situation is shown in �gure 3.13. I want to point out that the energy
corresponding to the given atomic asymptote is 8.543 GHz × h (calculated, using Eq. (16) of
Ref. [87]) less compared to the dissociation limit when hyper�ne interaction is ignored.

At the given magnetic �eld of B = 1000 G the Feshbach state has both, singlet as well
as triplet character, i.e., it is a mixture of X1Σg (16%) and a3Σu (84%) (E. Tiemann, private
communication). This comes about owing to spin-orbit interaction and is quite convenient
as regarding selection rules, transitions to many di�erent molecular quantum states can be
realized. Please note, for B = 1000 G Hund's coupling case (e) is most appropriate.

Now, we want to �rst consider the dominant triplet admixture. All vibrational levels
v = 36 to 40 of a3Σu are involved, while the main contributions correspond to v = 36 and 40
(cf. Fig. 3.13). These states correlate to

|v = 36, (fa = 2, fb = 2), f = 2, S = 1, R = 0, F = 2,mF = 2〉

and
|v = 40, (fa = 1, fb = 1), f = 2, S = 1, R = 0, F = 2,mF = 2〉

at low magnetic �elds (see also Refs. [122, 124]). Here, f denotes the sum of both atomic
angular momenta, S is the total electronic spin and R is the mechanical rotation of the atomic
pair. Furthermore, F is the total angular momentum andmF represents its projection onto the
quantization axis given by the direction of the magnetic �eld ~B. For v = 40, the total nuclear
spin I is a mixture of I = 1 and 3 with the latter component being dominant. In contrast to
that, the vibrational level v = 36 has I = 1.

The singlet fraction of the Feshbach state is composed by the vibrational levels v′ = 119

31Note, in a di�erent notation, (1)3Σg, (1)1Σu, and (1)3Πu correspond to c3Σg, A1Σu, and b3Πu, respectively.

46



3.8 Feshbach molecules

0 5 10 15 20 25 30 35
0.5

0

0.5

1

1.5

2

2.5

3
x 104

g

 

internuclear distance (a  0)

5S1/2+5S1/2

5S1/2+5P1/2

5S1/2+5P3/2

5S1/2+4D5/2

5S1/2+4D3/2

E/
(h

c)
 (c

m
-1

-
X ∑1

ua ∑3

u(1)3∏

u(1)1∑

g(2)1∑

g(1)3∑
g(1)1∏

u(1)1∏
u(2)3∑

g(1)3∏

∆(1)3
g

g(2)3∏

∆(1)1
g

g(3)1∑

u(2)3∏

u(2)3∑

g(2)3∑
∆(1)3

u
u(2)1∏∆(1)1

u

g(2)1∏

u(2)1∑

)

Figure 3.12: Potential energy curves of the 87Rb2 molecule taken from Ref. [121]. The red
curves represent the optimized singlet (triplet) ground state potentials of Refs.[122,
123]. Solid lines correspond to Σ potentials and dashed (dotted) lines to Π (∆)
potentials, respectively.

to 124 of X1Σg. Among them, the main contributions are related to v′ = 120 and 124. They
can be characterized by the quantum numbers S′ = R′ = 0 and f ′ = I ′ = F ′ = m′F = 2.

Unfortunately, the energy level structure of weakly bound Feshbach molecules is very
complicated and exhibits many avoided crossings. Thus, it is experimentally very di�cult
to work at 0 G, which would be nice for some purposes owing to the absence of the Zeeman
shift. A feasible solution for this problem is to bridge avoided crossings by adiabatic population
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Figure 3.13: Avoided crossing for weakly bound 87Rb2 molecules. The plot shows the level
structure as a function of the magnetic �eld B in the vicinity of the Feshbach
resonance at 1007.4 G, which is indicated by the green arrow. After the molecule
formation, the magnetic �eld is set to 1000 G, where the molecular state (red
circle) is a mixture of di�erent singlet as well as triplet vibrational levels. The
triplet character is dominant with the main contributions corresponding to v = 36
and v = 40 of a3Σu. Here, the energy reference is given by the |fa = 1,mf,a =
+1〉+ |fb = 1,mf,b = +1〉 atomic asymptote at B = 0 G.

transfer as demonstrated in Ref.[125]. However, this technique will not be described here, since
all the measurements concerning weakly bound molecules reported in the present thesis were
performed at 1000 G. For the case of the relevant lowest rotational states within the v = 0
manifold of a3Σu, the magnetic �eld can be tuned over signi�cantly larger ranges without
encountering any avoided crossings owing to the less complicated energy level structure.

3.8.6 Repulsively bound atom pairs

In future, working with repulsively bound atom pairs might become interesting. Therefore, I
want to brie�y present the experimental realization of such an exotic state in our setup using
the periodic potential of the optical lattice. Even for repulsive interactions, two atoms form
a bound state, if there is no possibility to release the energy in a dissociation process. As
the energy band-structure of an optical lattice shows forbidden areas, where no dissipation
channels are provided, such systems are ideal testbeds to investigate this e�ect.

We have created repulsively bound atom pairs following the method described in Ref.[126].
Regarding a quasi-1D geometry (the lattice depth in one direction is signi�cantly lower than
in the other two directions) a clear signature of this phenomenon is a bare-like structure of the
quasimomentum distribution obtained in a time of �ight measurement after releasing the atoms
from the lattice. Consequently, for the 2D con�guration one observes a maximum in each of
the corners of the �rst Brillouin zone (cf. Fig. 3.14). Further information about repulsively
bound atom pairs can be found in [82, 126].
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3.9 STIRAP transfer to the vibrational ground state of the lowest triplet potential

Figure 3.14: Time of �ight absorption image of the atomic distribution after release from an op-
tical lattice. The anisotropic distribution within the �rst Brillouin zone indicates
the successful preparation of repulsively bound atom pairs in a 2D con�guration.

3.9 STIRAP transfer to the vibrational ground state of the

lowest triplet potential

So far, I have described the preparation of very weakly bound molecules. Of course, in the
context of ultracold physics and chemistry molecules with high binding energies are also very
interesting. The STIRAP technique, �rst demonstrated in the group of Klaas Bergmann [37],
is an e�cient method to coherently transfer population from one state to another. Two laser
�elds are used to keep the molecules in a dark superposition state during the transfer, which
strongly suppresses losses due to spontaneous light scattering. Starting with Feshbach dimers,
the STIRAP technique has been applied in our setup to prepare lower lying vibrational levels
[127] or even the rovibrational ground state [44] of the a3Σ+

u potential with respect to Rb2.
In this thesis, I report on the preparation and investigation of several well-de�ned molecular
quantum states within the v = 0 manifold, including di�erent rotational levels (R = 0 and 2)
and states with di�erent nuclear spin (I = 1 and 3).

This section is devoted to a description of the creation of deeply bound molecular ensem-
bles. For this purpose, I will �rst of all introduce the λ-type three-level system used for STIRAP
in our setup. Afterwards, two-photon dark state spectroscopy is presented, since this technique
allows for the determination of the relevant transition frequencies. Finally, the experimental
pulse sequence is discussed and measured data concerning the successful preparation of various
�nal states are shown. For a theoretical treatment of the STIRAP process, which will not be
given in the present work, I refer, e.g., to [38].

3.9.1 STIRAP level scheme and dark state spectroscopy

The STIRAP technique makes use of a stimulated Raman transition involving two light �elds,
which have to be phase stable relative to each other. Figure 3.15(a) shows the potential energy
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Figure 3.15: STIRAP scheme. (a) Potential energy curves and vibrational levels involved in the
STIRAP transfer. The two lasers 1 and 2 induce couplings with Rabi frequencies
Ω1 and Ω2, respectively. Here, the (1)3Σ+

g (a3Σ+
u ) potential curve is taken from

[121] ([122, 123]). Please note the di�erent scaling of the energy. (b) Relevant
levels for STIRAP transfers to di�erent states of the vibrational ground state
manifold (v = 0) of a3Σ+

u . Pairs of arrows (α), (β), and (γ) represent the two
laser frequencies used to address well-de�ned �nal states with quantum numbers
R = 0 or R = 2 and I = 1 or I = 3. The energy reference is given by the atomic
asymptote including the hyper�ne splitting as described in section 3.8.5.
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curves and vibrational levels relevant for the STIRAP scheme in our setup. Owing to the large
binding energy di�erence of more than 7 THz × h between the Feshbach state and the v = 0
level manifold, we have to employ two di�erent lasers 1 and 2, that are stabilized to the same
cavity in order to guarantee phase stability for su�ciently long timescales (cf. section 2.3.4).
Both lasers are resonant to the same intermediate level, sometimes referred to as virtual level,
since it is ideally not populated at all during the process. The preparation of any �nal state of
v = 0 described in the present work is performed using an intermediate level with 1g character
located in the v′ = 13 manifold of the excited (1)3Σ+

g potential.
In principle, a population transfer is possible, if the dipole selection rules allow for a

coupling of the intermediate level to both, the initial and the �nal state. For example, in
our setup, the two laser beams are oriented parallel to each other (cf. Fig. 2.6) and their
polarizations are such that only π transitions can be induced. Hence, we solely are able to
address �nal states with mF = 2, where mF is the projection of the total angular momentum
F onto the quantization axis. Figure 3.15(b) depicts the three-level systems used for the
preparation of di�erent a3Σ+

u states with v = 0. Note, only the quantum numbers for the
vibration v, the rotation R and the nuclear spin I are given here, for simplicity. Furthermore,
in order to achieve high e�ciencies, the coupling strengths, i.e., the Rabi frequencies Ω1 and
Ω2 have to be su�ciently large. Therefore high laser intensities IL are bene�cial, as Ω ∝

√
IL.

The STIRAP technique necessitates precise knowledge of the relevant transition frequen-
cies. By performing one-photon spectroscopy of the excited (1)3Σ+

g potential starting with
Feshbach molecules, we have been able to pin down the positions of several possible interme-
diate states. As already mentioned in section 1.4, these results will be presented elsewhere.
However, contrary to [124] we have identi�ed levels with a nuclear spin of I ′ = 1, which allows
us to access �nal states with I = 1 via STIRAP. The transition frequency from the intermediate
level to the deeply bound state can be measured using two-photon dark state spectroscopy as
described in Ref. [122], again starting with Feshbach molecules. For this purpose, laser 1 is kept
on resonance to the intermediate state while laser 2 is scanned. This Raman-type spectroscopy
method relies on the Autler-Townes splitting. In brief, the excitation of molecules by laser 1
constantly induces losses owing to leakage of dimers from the trap or decay to nonobservable
molecular states. When laser 2 approaches the resonance, the intermediate level evolves into a
dressed state which is not resonant to laser 1 anymore and losses are strongly suppressed. A
more detailed description can be found in [128, 129].

As an example, �gure 3.16 shows a dark resonance obtained for the rovibrational ground
state of the a3Σ+

u potential. In our sequence, we use rectangular laser pulses for the two-photon
spectroscopy. Laser 1 is switched on 0.5 ms after laser 2. The pulse duration is 2 ms for laser
2 and 1 ms with respect to laser 1. Concerning the employed dark state spectroscopy scheme,
it is very crucial to adjust the light intensities appropriately. If the coupling strength of laser
1 is too large, losses are dominant and no resonance can be observed. This problem is related
to the utilization of rectangular pulses. It could, to some extent, be overcome by ramping the
lasers similar to the sequence that will be discussed in the context of the STIRAP transfer (see
Fig. 3.17). However, using relatively long rectangular pulses turned out to be convenient for
searching dark resonances as they are easy to implement and the resulting transition linewidths
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Figure 3.16: Dark resonance. The data points are obtained by two-photon spectroscopy of the
rovibrational ground state of the a3Σ+

u potential. We measured the fraction N/N0

of molecules as a function of the detuning δ of laser 2. Here, N0 represents the
number of dimers at δ = 0 obtained from a Lorentzian �t (solid curve).

are su�ciently large.

3.9.2 Experimental realization of the STIRAP transfer

The STIRAP transfer of Feshbach molecules to the vibrational ground state of the lowest
triplet potential is based on a counterintuitive pulse sequence as shown in �gure 3.17. After
performing experiments with the deeply bound dimers, we have to reverse the STIRAP and
subsequently dissociate the molecules, since only atoms can be detected in our setup. The
corresponding pulse sequence is given by the mirror image of the ground state transfer. I want
to note that during the time, when only laser 1 is turned on, remaining Feshbach molecules
are excited and escape detection owing to loss from the trap or decay to nonobservable states.
In this sense, the sample is puri�ed as a consequence of the STIRAP pulse sequence.

Figure 3.18 shows measurements demonstrating the successful preparation of di�erent well-
de�ned molecular levels within the v = 0 manifold of the a3Σ+

u potential. For the case of
the rovibrational ground state (R = 0, I = 3), the far-o�-resonance signal approaches zero,
indicating that all molecules corresponding to the detected atoms must have been in the deeply
bound state. In contrast, with respect to (R = 2, I = 1) we observe a signi�cant fraction of
molecules remaining in the Feshbach state. As depicted in Fig. 3.15(b), we use a di�erent
intermediate level for the transfer to (R = 2, I = 1). Unfortunately, the coupling of the
Feshbach state to this level is very low. Hence, the intensity of laser 1 is not su�cient to
completely remove all remaining weakly bound molecules within the given irradiation time,
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Figure 3.17: Round trip STIRAP pulse sequence. The graph shows the power of the two in-
volved laser beams measured by a photo diode. First of all, the Feshbach molecules
are illuminated by laser 2. Then laser 2 is ramped down while laser 1 is ramped
up, and the molecules are transferred to a well-de�ned level of the vibrational
ground state of the a3Σ+

u potential. The second pulse sequence is applied in order
to reverse the �rst STIRAP process (see text). Experiments with deeply bound
dimers are performed in the time gap between the two molecular state transfers.
This time gap can be varied, but the maximum duration is limited to ∼ 1 s for
technical reasons. I want to note that the intensity of laser 1 is about �ve times
larger than the one of laser 2, which yields appropriate Rabi frequencies, e.g., for
addressing the rovibrational ground state.

which causes the o�set visible in Fig.3.18(b). Please note, this problem can simply be overcome
by increasing the pulse lengths of laser 1. I want to point out that for the transfer to state
(R = 2, I = 3) the same intermediate level is employed as for (R = 0, I = 3). Consequently,
when applying the pulse sequence of Fig.3.17, we also obtain a pure ensemble of (R = 2, I = 3)
molecules.

In our setup, the linewidths of the STIRAP resonances are typically on the order of sev-
eral hundreds of kHz. The data can be simulated using a three-level model based on a master
equation approach (see, e.g., Refs. [128, 129]). However, we are mainly interested in the reso-
nance frequency, which is related to the maximum number of deeply bound molecules. Thus,
for convenience, we usually �t a Lorentzian to the experimental data since the resulting accu-
racy is satisfactory32. The maximum in �gure 3.18(a) corresponds to 1.5 × 104 dimers in the

32In analogy, the master equation approach would be more appropriate also for the two-photon dark state
spectroscopy.
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Figure 3.18: STIRAP resonances at a magnetic �eld of B = 1000 G. We performed the popu-
lation transfers to the levels R = 0, I = 3 (a) and R = 2, I = 1 (b) of the a3Σ+

u

vibrational ground state v = 0 and back to the Feshbach state according to the
sequence depicted in Fig. 3.17. Afterwards, the relative number N/N0 of dimers
was measured as a function of the detuning δ of laser 2, while laser 1 was kept on
resonance. Here, N0 represents the maximum number of molecules obtained from
Lorentzian �ts (black solid lines). The red square plot symbols in (b) show the
observed results, when the second pulse of laser 2 is not applied. This signal and
therefore also the o�set of the black solid line correspond to remaining Feshbach
molecules, which are not transferred at all. Contrary to that, the resonance visible
in (a) is characteristic for a pure ensemble of deeply bound dimers.
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rovibrational ground state of the a3Σ+
u potential. This represents about 60% of the number of

molecules initially prepared in the Feshbach state. Owing to that, the single STIRAP e�ciency
is almost 80%, when assuming equal e�ciencies for both transfers.

Table 3.1 lists the measured transition frequencies concerning STIRAP transfers to various
precisely de�ned �nal levels of the a3Σ+

u vibrational ground state manifold. As we are able to
fully resolve the rotational, hyper�ne, and Zeeman substructure in the vicinity of the relevant
levels, any desired �nal state can unambiguously be populated. Finally, I want to emphasize
that the STIRAP transfer entails spin polarization of the molecules, which gives rise to char-
acteristic alignment of the molecular axis. This will be described in great detail in chapter
5.

�nal molecular state (a3Σ+
u , v = 0) νL1 [THz] νL2 [THz] ∆ν [THz]

R = 0, I = 3 294.62443 301.66248 7.03805

R = 2, I = 3 294.62443 301.66054 7.03611

R = 2, I = 1 294.63048 301.66287 7.03239

Table 3.1: STIRAP transition frequencies νL1 and νL2 of the two lasers used for the transfers
to di�erent �nal molecular states within the v = 0 manifold of the lowest triplet
potential at a magnetic �eld of B = 1000 G. In addition, the frequency di�erence
∆ν = νL2−νL1 is provided. Note, ∆E = h∆ν represents the gain in binding energy
with respect to the weakly bound Feshbach molecules. The energy reference is given
by the atomic asymptote including the hyper�ne splitting as described in section
3.8.5.

3.10 Magnetic �eld ramping

Here, I will �rst brie�y describe the magnetic �eld ramping sequence which is applied in our
setup in order to create and investigate ultracold molecules. Contrary to Feshbach dimers, for
many levels of the v = 0 manifold, the magnetic �eld can be tuned over a large range without
encountering avoided crossings. However, we have found that still population transfer between
molecular states can occur when B is changed. The underlying mechanism is related to the
optical lattice and will be discussed in the second part of this section.

3.10.1 Ramping sequence

For our studies of molecules in well-de�ned levels of the vibrational ground state of the lowest
triplet potential, we generally use the magnetic �eld ramping sequence shown in �gure 3.19.
After the STIRAP transfer, the strength of B and the optical lattice depths can be adjusted as
intended for the measurements. The experiments with the vibrational ground state molecules,
e.g., spectroscopy, the determination of dynamical polarizabilities or investigations of molecular
collisions are carried out during the holding time τh.
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Figure 3.19: Magnetic �eld ramping sequence. Shown is the magnetic �eld of the quadrupole
coils as a function of the time. The Feshbach resonance (FR) at B = 1007.4 G is
illustrated by the red dashed line. After producing a pure sample of weakly bound
molecules the STIRAP transfer (i) takes place at B = 999.9G. Then, the strength
of the magnetic �eld can be changed, e.g., to B = 0 G. Subsequent to that, the
lattice depths in each direction are set to the desired values by independently
ramping the powers of the lattice beams (ii). During the holding time τh, which
can be varied, experiments with the vibrational ground state molecules can be
performed. Since we are not able to detect the molecules directly, the whole
sequence has to be reversed. Therefore the lattice is ramped up again (iii), the
magnetic �eld is set to B = 999.9 G and the deeply bound dimers are transferred
to the Feshbach state via STIRAP (iv). After dissociating the molecules, the
magnetic �eld is switched o� and the atoms are detected by means of absorption
imaging.

3.10.2 State transfer induced by decreasing molecular level spacings

When ramping down the magnetic �eld, di�erent molecular levels can approach the state
initially prepared at B = 1000 G. For example, �gure 3.20(a) shows the energies of the
hyper�ne levels mF = 2 and mF = 1 corresponding to the rovibrational ground state of the
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Figure 3.20: Transfer of rovibrational ground state molecules initially prepared in statemF = 2
to the hyper�ne level mF = 1. The green dashed lines represent the resonant �eld
Bres, where the transition occurs. (a) Energies of the two molecular hyper�ne
levels as a function of B resulting from coupled channel calculations provided by
E. Tiemann. Here, zero energy corresponds to −7.03583 THz× h with respect to
the Feshbach state at 1000 G. Blue and purple arrows sketch the state transfer,
when B is decreased. (b) Preparation of molecules in state mF = 1 by ramping
the magnetic �eld after the STIRAP process as shown in the inset (see also text).
We measured the number N of molecules as a function of B, which was varied at
the position indicated by the black arrow. Shown are data obtained either with
(red circles) or without (black squares) applying an optical puri�cation scheme
(cf. pink rectangular pulse in the inset). The value N0 corresponds to the low
�eld asymptotic behavior of the black square plot symbols.
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a3Σ+
u potential (i.e., v = 0, S = 0, R = 0, F = 2, I = 3) as a function of B. By lowering

the magnetic �eld, the energy di�erence between the two levels decreases. If it matches the
relative detuning of two lattice beams a transfer from the initial state mF = 2 to mF = 1 can
occur, provided that the polarizations of these lattice beams allow to drive such a transition.
Please note, the three standing light waves of the rectangular optical lattice are o�set by about
100 MHz relative to each other in order to avoid interference e�ects. In general, the more
complex the molecular level structure is, the more parasitic transitions are possible, leading to
a loss in the detected number of dimers at the end of the experiment cycle. I want to recall
that, as a consequence of the selectivity of the STIRAP transfer, molecules in a di�erent state
than the initially prepared one cannot be observed. Therefore, it is reasonable to choose fast
ramping speeds to shorten the coupling times to other molecular levels. Indeed, for the case
of the rovibrational ground state, using an appropriate sequence, we are able to decrease the
magnetic �eld down to B = 0 G without obtaining any losses.

On the other hand, the magnetic �eld ramp can be adjusted such, that a transition is
driven deterministically. Thus, it is possible to prepare molecular states that are not accessible
in our STIRAP scheme owing to selection rules. To make this more clear, we again consider the
situation for the rovibrational ground state [cf. �gure 3.20(a)]. If the magnetic �eld is ramped
slowly across the resonant value Bres, where the two levels mF = 2 and mF = 1 are coupled,
the main fraction of molecules can be transferred to the mF = 1 state, when starting with
mF = 2. This can be seen from the data points shown in �gure 3.20(b), which are obtained by
carrying out the magnetic �eld sequence illustrated in the inset. First of all, B is switched o�
as fast as possible, which does not a�ect the molecular state. Subsequently, the magnetic �eld
is set to a value slightly below Bres. Then, B is ramped up slowly over the resonance and the
molecular quantum state changes to mF = 1 owing to the two-photon process induced by the
lattice beams. Afterwards, the magnetic �eld is increased further to a value, where the levels
mF = 1 and mF = 2 are well separated from each other, in order to apply a puri�cation pulse.
For this purpose, we use light that resonantly drives the transition from mF = 2 to an excited
state in the (1)3Σ+

g potential, leading to a decay of these molecules to nonobservable states. If
Bres is slowly crossed for the second time, a revival of molecules in state mF = 2 occurs. This
demonstrates, that indeed, the dimers have been in a di�erent molecular state. Consequently,
�gure 3.20(b) shows the successful preparation of an almost pure ensemble of molecules with
mF = 1 in the rovibrational ground state of the a3Σ+

u potential.

3.11 Stern-Gerlach separation of atomic spins and absorption

imaging

In order to detect atoms, we perform standard time of �ight absorption imaging as described
in Ref. [101]. After free expansion, the atom cloud is illuminated by light of the imaging laser.
The light is resonant or slightly detuned (several MHz) with respect to the fa = 2 → f ′a = 3
transition (cf. section 2.3.1). Owing to the absorption of photons the atom cloud casts a
shadow, which is imaged by a CCD camera. From these images, parameters like the atom
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number, density, temperature etc. can be determined. The technique is more e�cient, if, in
addition, the atoms are illuminated by light of the repump laser. It transfers the atoms back
to the initial state and therefore the number of scattered photons during the imaging process
is increased.

In most experiments, we apply a magnetic �eld gradient after the trap is switched o�, in
order to perform a Stern-Gerlach separation of the present mfa states. For this purpose, the
levitation coil is used. The corresponding inhomogeneous magnetic �eld leads to a splitting of
the atom cloud along the direction of gravitation as the magnetic moment depends on mfa .
For example, �gure 3.21 is taken after irradiating the atoms by a microwave pulse driving the
transition |fa = 1,mfa = +1〉↔|fa = 2,mfa = +2〉 in the puri�cation scheme. The small
atomic fractions in |fa = 1,mfa = 0〉 and |fa = 1,mfa = −1〉 indicate the high preparation
e�ciency concerning the initial state |fa = 1,mfa = +1〉. However, for this image, it was
intentionally not perfect in order to show all relevant spin states. Generally, the Stern-Gerlach
separation is an important tool to check several steps of the overall sequence. Therefore, it is
also performed when working with pure ensembles of molecules for monitoring reasons. Once,
at this stage, atoms are detected in states di�erent from |fa = 1,mfa = +1〉, the experimental
parameters have to be adjusted accordingly.

f = 2
m

a
= +2f a

f = 1
m

a
= 0f a

f = 1
m

a
= +1f a

f = 1
m

a
= -1f a

Figure 3.21: Stern-Gerlach separation of di�erent spin states. Shown is a time of �ight absorp-
tion image taken after applying the microwave pulse of the puri�cation scheme.
The individual atom clouds are assigned to the corresponding quantum numbers
(fa, mfa).
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We study, both theoretically and experimentally, the dynamical polarizability α(ω) of Rb2

molecules in the rovibrational ground state of a3Σ+
u . Taking all relevant excited molecular

bound states into account, we compute the complex-valued polarizability α(ω) for wave num-
bers up to 20000 cm−1. Our calculations are compared to experimental results at 1064.5 nm
(∼ 9400 cm−1) as well as at 830.4 nm (∼ 12000 cm−1). Here, we discuss the measurements
at 1064.5 nm. The ultracold Rb2 molecules are trapped in the lowest Bloch band of a 3D
optical lattice. Their polarizability is determined by lattice modulation spectroscopy which
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measures the potential depth for a given light intensity. Moreover, we investigate the decay of
molecules in the optical lattice, where lifetimes of more than 2 s are observed. In addition, the
dynamical polarizability for the X1Σ+

g state is calculated. We provide simple analytical expres-
sions that reproduce the numerical results for α(ω) for all vibrational levels of a3Σ+

u as well as
X1Σ+

g . Precise knowledge of the molecular polarizability is essential for designing experiments
with ultracold molecules as lifetimes and lattice depths are key parameters. Speci�cally the
wavelength at ∼ 1064 nm is of interest, since here, ultrastable high power lasers are available.

4.1 Introduction

Owing to the extraordinary control over the internal and external degrees of freedom, ultracold
molecules trapped in an optical lattice represent a system with many prospects for studies in
ultracold physics and chemistry [64, 66], the realization of molecular condensates [68], preci-
sion measurements of fundamental constants [71-74] and quantum computation [77, 78] and
simulation [75]. In the recent years, several groups have realized the preparation of optically
trapped vibrational ground state (v = 0) molecules in either the lowest lying singlet or triplet
potential [39-42, 44]. Experiments with these molecules, e.g. ultracold collisions, are typically
carried out in optical lattices or optical dipole traps [59, 60, 130]. In these environments,
precise knowledge of the dynamical polarizability of molecules is important for well controlled
experiments.

The Rb2 molecule is one of the few ultracold molecular species currently available, with
which benchmark experiments for nonpolar molecules can be carried out. Here, we investigate
the dynamical polarizability α(ω) of a Rb2 triplet molecule in the lowest rovibrational level of
a3Σ+

u . A similar analysis for Cs2 regarding the electronic ground state X1Σ+
g was previously

carried out by Vexiau et al. [120]. In addition to calculations of the frequency dependent
dynamical polarizability α(ω), we present measurements of the real part Re{α(ω)} at a wave-
length of λ = 1064.5nm. The experiments are performed with molecules trapped in the lowest
Bloch band of a cubic 3D optical lattice which consists of three standing light waves with
polarizations orthogonal to each other. By carrying out modulation spectroscopy on one of the
standing light waves, we map out the energy band-structure for various light intensities. From
these measurements Re{α(ω)} is determined. Our experimental �ndings at λ = 1064.5nm and
also those at 830.4 nm [44] agree well with the calculations. In addition, we experimentally
investigate the decay time of the deeply bound molecules in a 3D optical lattice at 1064.5 nm
for various lattice depths. Here, lifetimes of more than 2 s are observed. Furthermore, we
present numerical results for the dynamical polarizabilities of the rovibronic ground state, i.e.,
the lowest rovibrational level of the X1Σ+

g potential. For convenient application of our results,
we provide a simple analytical expression and the corresponding e�ective parameters which
can be used to reproduce the dynamical polarizabilities for all vibrational levels of both, the
lowest singlet as well as triplet state outside the resonant wavelength regions.

This article is organized as follows. In section 4.2, we give a brief, general introduction
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4.2 Interaction of a diatomic molecule with light

to the dynamical polarizability α(ω) of a homonuclear diatomic molecule. Sections 4.3 to
4.6 describe the calculations and measurements related to the polarizability of 87Rb2 in the
rovibrational ground state of a3Σ+

u , along with a comparison of our results to reference values
from literature. In section 4.7 we present calculations of the polarizability for the rovibrational
ground state ofX1Σ+

g . Afterwards, section 4.8 provides a simple expression which parametrizes
the polarizability for all vibrational levels of the lowest singlet as well as triplet state. Tables
with the corresponding parameters can be found in the Supplemental Material [131] and in
Appendix A.1, respectively.

4.2 Interaction of a diatomic molecule with light

When a nonpolar molecule is subject to a linearly polarized electric �eld ~E = ε̂E0cos(ωt) with
amplitude E0 and unit polarization vector ε̂, a dipole moment ~p = ↔

α(ω) ~E is induced. In
general, ↔α(ω) is a tensor (see, e.g., [46]). For the sake of simplicity, we restrict ourselves to
Hund's case (b) molecules in the lowest rotational level N = 0 of the nuclei, for which only the
scalar isotropic polarizability α(ω) is relevant (see, e.g., [44, 46]). Here, ~N = ~L + ~R, where ~L
denotes the total electronic orbital angular momentum and ~R is the mechanical rotation of the
atomic pair. The complex dynamical polarizability characterizes the response of a molecule
to the electric �eld expressed by photon scattering and the ac Stark shift of molecular levels.
This shift is directly linked to the dipole interaction potential

U = −〈~p · ~E〉/2 = −1
4
Re{α(ω)}E2

0 (4.1)

and therefore to the real part of the polarizability Re{α(ω)} (see, e.g., [107]). In Eq. (4.1), the
angled brackets 〈. . . 〉 indicate time averaging. We note, that the dipole potential is attractive,
when the sign of Re{α(ω)} is positive and repulsive otherwise. The imaginary part of the
polarizability Im{α(ω)} is related to the power Pabs absorbed by the oscillator from the driving
�eld, since

Pabs = 〈~̇p · ~E〉 =
1
2
ω Im{α(ω)}E2

0 . (4.2)

We calculate the dynamical polarizability α(ω) following the method described in Ref. [120].
The generic expression of the polarizability for a diatomic molecule in a state |i〉 is

α(ω) =
2
~
∑
f

ωif − i
γf

2(
ωif − i

γf

2

)2 − ω2

∣∣∣〈f |~d · ε̂|i〉∣∣∣2 . (4.3)

Here, the angled brackets refer to the spatial integration over all internal coordinates of the
system. The summation covers all the accessible dipole transitions with frequency ωif and
transition electric dipole moment~d from the initial state |i〉 to �nal states |f〉 with line width
γf .
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4.3 Calculation of α(ω)α(ω)α(ω) for a3Σ+
u molecules

4.3.1 Relevant transitions

If the molecule is initially in a vibrational level va of the a3Σ+
u state, all rovibrational levels

(including the continuum) of the electronic potentials with 3Σ+
g and 3Πg symmetry need to be

accounted for in Eq. (4.3). As N = 0 in the initial a3Σ+
u state, only transitions towards �nal

levels with total angular momentum J = 0, 1, 2 must be considered. Here, ~J = ~S + ~N , where
~S is the total electronic spin. Therefore, when considering a diatomic molecule it is usual to
de�ne two contributions to the isotropic polarizability α: the parallel polarizability α‖ along

the molecular axis Ẑ, which is related to dZ , and the perpendicular polarizability α⊥, which
is related to dX = dY . In general, α‖ involves

3Σ+ → 3Σ+ transitions and α⊥ is related to
3Σ+ → 3Π transitions. One can show that α = (α‖ + 2α⊥)/3 (see, e.g., Refs. [46, 120]).

The expression given by Eq. (4.3) deals only with the transitions involving the two valence
electrons of Rb2. Following Ref. [132], the contribution to the polarizability of the two Rb+

cores, hereafter referred to as αc, must be taken into account, and is added to the results of
Eq. (4.3). More details about this quantity are discussed in section 4.11.1.

The �rst step of the calculations is to collect a set of accurate molecular potential energy
curves (PECs) and transition electric dipole moments (TEDMs). The a3Σ+

u PEC is taken
from the spectroscopic study of Ref. [133]. For the excited molecular states and the related
TEDMs from the a3Σ+

u state, we use the same data as Refs. [121, 134], which we report in the
Supplemental Material [131], for convenience. The PECs are displayed in Fig. 4.1(a), while the
TEDMs are drawn in Fig. 4.10 (see section 4.11.2). These data are obtained by the quantum
chemistry approach described in details in Ref. [135]. Brie�y the Rb2 molecule is considered as
two valence electrons moving in the �eld of the two ionic Rb+ cores, which are represented by
a large e�ective core potential (ECP) including a core polarization potential (CPP) [136, 137].
A full con�guration interaction (FCI) is then performed on the two valence electrons, using a
large Gaussian basis set [138], with the CIPSI quantum chemistry code developed at Université
Paul Sabatier in Toulouse. It is worth mentioning that partial spectroscopic information is
available on the 13Σ+

g [124], the 13Πg [139] state, and on the 23Πg state [133], but no complete
PEC has been extracted in these studies. As discussed for instance in Refs. [121, 139], the
computed PECs are suitable to reproduce the observed data provided that they are slightly
shifted in frequency (in terms of ω/(2πc), by at most 100 cm−1). We will estimate in section
4.5 the limited in�uence of such shifts on the results reported in the present work. Finally,
the vibrational wave functions of levels |i〉 and |f〉 for the summation are obtained using the
Mapped Fourier Grid Hamiltonian representation [140, 141].

4.3.2 Results

The real and imaginary parts of the dynamical polarizability αva=0(ω) of a molecule in the
vibrational ground state of the a3Σ+

u potential are displayed in Fig. 4.1(b) and (c) as functions
of the trapping laser frequency. The polarizabilities are expressed in atomic units (a.u.), which
can be converted into SI units according to 1 a.u. = 4πε0a

3
0 = 1.649 × 10−41Jm2V−2, where
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Figure 4.1: (a) 3Σ+
g (solid blue lines) and 3Πg (dashed red lines) potential curves of Rb2 [121,

134]. The a3Σ+
u potential is drawn in black. In (b) and (c) the real and imaginary

parts of the dynamical polarizability αva=0 of Rb2 molecules in the rovibrational
ground level (va = 0, R = 0) of the a3Σ+

u molecular state are shown as a function
of ω/(2πc). The two wavelengths used in the experiments are indicated by dashed
horizontal lines. Furthermore, the red dashed vertical line in (b) represents zero
polarizability.

a0 denotes the Bohr radius and ε0 is the vacuum permittivity. Note, for some applications,
e.g., considerations related to the ac Stark shift, units of HzW−1cm2 (1 a.u. corresponds to
4.6883572 × 102 HzW−1cm2) are advantageous. The sum in Eq. (4.3) has been truncated to
include only the vibrational levels of the four lowest 3Σ+

g states and the three lowest 3Πg

states. Furthermore, electric-dipole-forbidden transitions are not considered in the sum, as
they would appear as very weak and narrow resonances in the polarizability. The associated
molecular data are collected in the Supplemental Material [131]. For simplicity, the natural
lifetime τf = (γf )−1 has been �xed to 10 ns (γf ≈ 2π × 15 MHz) for all the excited molecular
levels.

Strongly oscillating patterns in both Re{αva=0(ω)} and Im{αva=0(ω)} [see Figs.4.1(b) and
(c), respectively] correspond to frequency ranges of strong absorption which should be disre-
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garded for trapping purpose. The real part smoothly increases from the static polarizability
αva=0(ω = 0) = 698.5 a.u. up to the bottom of the 13Σ+

g potential well, reaching 3147 a.u. at
the wavelength of the trapping laser used in the present experiment (1064.5 nm). In the same
region the imaginary part increases from about 10−5 a.u. at ω = 0 to 10−3 a.u. at the trapping
laser frequency which leads to a correspondingly larger photon scattering rate.

It is di�cult to provide a well-de�ned error bar on the theoretical values of the dynami-
cal polarizabilities as their accuracy depends on the considered wavelength. Various causes of
global inaccuracies have been analyzed in depth in Ref. [142]. First, the choice of a constant
radiative lifetime for all excited levels in Eq. (4.3) in�uences only the strongly oscillating re-
gions of the polarizability, changing the amplitude of the resonances. We checked that this
approximation has no e�ect in the smoothly varying regions which are relevant for trapping
experiments. We veri�ed also that adding a couple of upper electronic states in the sum of
Eq. (4.3) contributes to the polarizability for less than 1%. Moreover, the �rst excited Σ and Π
states contribute together for more than 90% to the polarizability. Usually, these are the most
well known states either because accurate spectroscopic results are available, or because they
are well-determined by quantum chemistry calculations. The accuracy of TEDMs is tedious
to analyze as their experimental determination relies on line intensities which are di�cult to
measure accurately. However, one argument in favor of the accuracy of the TEDMs results
when comparing the values obtained from di�erent methods. For instance, in Refs. [143, 144],
with respect to various alkali-metal dimers, the TEDMs computed by two di�erent methods
are found to agree within 2%. Finally, an indication for the accuracy of the present work is pro-
vided by the measurement of the dynamical polarizability for the v = 0, J = 0 level of the Cs2
electronic ground state at 1064.5 nm, which is quite far away from the lowest resonant region
[120]. The experimentally determined value with respect to λ = 1064.5nm is 2.42(15)×αCs (E.
Kirilov and H.-C. Nägerl, private communication), where αCs is the dynamical polarizability
of the Cs atom. This is in remarkable agreement with the computed value of 2.48× αCs [120].

4.4 Measurement of Re{α(ω)}{α(ω)}{α(ω)} for a3Σ+
u

4.4.1 Experimental setup and measurement scheme

The experiments presented in this work are carried out with a pure sample of about 1.5× 104

87Rb2 molecules prepared in the rovibrational ground state of the a3Σ+
u potential and trapped

in a 3D optical lattice. There is no more than a single molecule per lattice site and the
temperature of the sample is about 1 µK. As described in detail in Refs. [44, 46, 53], the
molecules are prepared as follows. An ultracold thermal cloud of spin-polarized 87Rb atoms
(fa = 1, mfa = 1) is adiabatically loaded into the lowest Bloch band of a 3D optical lattice
at a wavelength of λ = 1064.5 nm. The lattice is formed by a superposition of three linearly
polarized standing light waves with polarizations orthogonal to each other, see Fig.4.2(a). The
three lattice beams are derived from the same laser source with a linewidth of a few kHz and
have relative intensity �uctuations of less than 10−3. In order to avoid interference e�ects, the
frequencies of the standing waves are o�set by about 100 MHz relative to each other. At the
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(b)

(a)

Figure 4.2: (a) Experimental scheme. Three retrore�ected laser beams with polarizations or-
thogonal to each other form a 3D optical lattice. A trapped cloud of Rb2 molecules
is sketched in the intersection of the laser beams. The optical lattice is located
between two Helmholtz coils which create a magnetic �eld ~B. In our setup, the
direction of ~B represents the quantization axis. (b) Illustration of amplitude (left)
and phase (right) modulation spectroscopy.

location of the atomic sample the beam waists (1/e2 radii) are about 130µm and the maximum
available power per beam is about 3.5W. By slowly crossing the magnetic Feshbach resonance
at 1007.4 G we produce weakly bound diatomic molecules. After a puri�cation step which
removes remaining atoms, a STIRAP (stimulated Raman adiabatic passage) is performed at
1000 G, transferring the dimers into the rovibrational ground state (va = 0, N = 0, mN = 0)
of the a3Σ+

u potential. Here, mN is the projection of N on the quantization axis de�ned by the
direction of the magnetic �eld ~B [cf. Fig. 4.2(a)]. The molecule has positive total parity, total
electronic spin S = 1, total nuclear spin I = 3 and is further characterized by the quantum
number f = 2 (~f = ~S + ~I). Moreover, the total angular momentum is given by F = 2
(~F = ~f + ~J) and its projection is mF = 2. Henceforth, we simply refer to these molecules as
�va = 0 molecules�.

According to Eq. (4.1), Re{α(ω)} = 4|U |/E2
0 , i.e., the real part of the dynamical polar-
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izability can be determined by measurements of the potential depth |U | and the electric �eld
amplitude E0 of an optical trap. For the case of a cubic 3D optical lattice with orthogonal
polarizations, the trapping potential is given by V (x, y, z) =

∑
β=x,y,z Vβ(β) where the

Vβ(β) = −|U |β cos2 (kβ + φβ) (4.4)

represent the contributions of the standing waves of directions β = x, y, z with k = 2π/λ being
the wave number of the lattice beams. We now only consider the part of the lattice in the
vertical z direction since this axis is the only one relevant for the measurements of the potential
depth in the present work. Therefore, we de�ne Vz(z) ≡ V (z), |U |z ≡ |U | and φz ≡ φ. The
phase φ is a function of the laser wavelength λ because the standing light wave is created by
retrore�ecting the laser beam from a �xed mirror at position zm. It is given by φ = 4πzm/λ
at z = 0.

4.4.2 Lattice modulation spectroscopy

In order to obtain |U |, we carry out lattice modulation spectroscopy (see, e.g., [40, 109, 145,
146]). For this, we either modulate |U | by periodically changing the intensity of the stand-
ing light wave (amplitude modulation) or we modulate the phase φ by periodically changing
the laser wavelength λ (phase modulation). Resonant amplitude (phase) modulation drives
transitions from the lowest Bloch band (n = 0), in which the molecules have been initially
prepared, to even (odd)-numbered excited lattice bands [see Fig. 4.2(b)]. This can cause either
direct loss from the trap owing to heating (see, e.g., [145]) or molecules in higher lattice bands
collide with each other and those of the lowest Bloch band, respectively, resulting in decay
to nonobservable states. In consequence, resonant excitation leads to a decreased molecular
signal in our measurements.

For amplitude modulation spectroscopy, we modulate the intensity of the lattice laser beam
sinusoidally by a few percent. When performing phase modulation spectroscopy, we modulate
the laser frequency by a few MHz corresponding to a phase di�erence on the order of a few
10−2 rad as zm ∼ 0.4m. The modulation duration is typically on the order of 1ms. At the end
of each experimental cycle (which takes about 40 s), the remaining number N of molecules is
measured. We only �nd molecules in the lowest Bloch band, not in higher bands. In order to
determine the molecule number, we reverse the STIRAP and dissociate the resulting Feshbach
dimers by sweeping over the Feshbach resonance. Then, the generated atoms are detected
via absorption imaging. By comparing the resonant transition frequencies observed in the
modulation spectra to the energy band-structure of the sinusoidal lattice, the lattice depth |U |
is deduced. This will be explained in detail further below.

Figure 4.3 shows measured excitation spectra of Feshbach (a) and va = 0 (b,c) molecules,
obtained via amplitude or phase modulation spectroscopy. A single data point typically consists
of 5 to 30 repetitions of the experiment (For a given spectrum the number of repetitions is
constant). Fig.4.3(a) as well as (b) exhibit a prominent resonance after amplitude modulation.
This resonance is related to a transition from the lowest Bloch band (n = 0) to the second
excited lattice band (n = 2). Spectrum (a) for Feshbach molecules in addition shows a broad
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Figure 4.3: Amplitude [(a) and (b)] and phase (c) modulation spectra of weakly bound Fes-
hbach molecules (a) and molecules in the rovibrational ground state of the a3Σ+

u

potential [(b) and (c)]. We measure the fraction of remaining molecules N/N0 as a
function of the modulation frequency ν. The statistical error of each data point is
in the range of ±(0.05− 0.15). Here, the numbers N0 are given by the asymptotic
limits of Lorentzian �ts (solid blue lines). The resulting center frequencies of the
resonances are illustrated as black vertical lines, while the red dashed lines indicate
the corresponding uncertainties. We note, that the mean intensity of the lattice
beam used for modulation in (b) is 30% less than in (a) and (c).
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shoulder at around 50 kHz which we attribute to a resonant transition from n = 0 to n = 4.
Due to the large width of this resonance the uncertainty in the determination of its center
frequency is relatively large. Spectrum (b) in Fig. 4.3 also features a second resonance dip, but
here it is located at about half the frequency of the prominent one. This resonance dip can
be assigned to a transition from the lowest Bloch band to the second excited band, involving
two identical �quanta� with frequency ν. It is known (see, e.g., [145]) that such subharmonic
resonances exist. To be consistent, a similar sub-harmonic resonance dip should be present in
Fig.4.3(a) at about 15kHz (as indicated by the vertical, dashed arrow). Indeed, at that position
the data points seem to be systematically below the �t curve with respect to the prominent
peak. However, the corresponding signal (if at all) is very weak, partially due to its position
at the steep �ank of the prominent resonance.

Now, we turn to Fig.4.3(c), which shows an excitation spectrum after phase modulation for
va = 0 molecules. We observe two resonances of similar strength, both of which we attribute
to the transition from n = 0 to n = 1. The dip at lower frequency is again a subharmonic
resonance. Surprisingly, it is stronger than the harmonic one at about 25kHz. We attribute this
to a purely technical issue, as the strength of the phase modulation varied with the frequency
in our setup. However, we have veri�ed the assignment of the resonances by comparison to the
corresponding amplitude modulation spectra.

We calculate the Bloch bands by diagonalizing the Hamilton operator for the lattice in 1D
(neglecting gravitation),

H = − ~2

2m
∂2

∂z2
+ V (z) , (4.5)

which is particularly simple in momentum space (see, e.g., [147]). Here, m is the mass of
a molecule, i.e., twice the mass of a 87Rb atom. Figure 4.4 shows the calculated energy
eigenvalues as a function of the lattice depth. The energies are given in terms of the recoil energy
ER = h2/(2mλ2), with h being Planck's constant. As we do not specify the quasimomentum,
the energy eigenvalues form bands which are broad for low lattice depths. However, the bands
n = 0 to n = 2 are quite narrow for lattice depths above ∼ 40 ER. This is the regime where
we take most of our measurements. Having measured the resonant excitation frequencies after
modulation we could in principle use Fig. 4.4 to read o� the corresponding lattice depth |U |.
We re�ne this method and at the same time check for consistency as follows.

In the experiment we control the lattice depth |U | via the laser beam power P that can
be measured using photodiodes. The square to the electrical �eld E2

0 is proportional to P .
Consequently |U | ∝ P , i.e., the precise value of |U | is known up to a calibration factor (which
depends linearly on the dynamical polarizability). Thus, given a molecular state, we should be
able to adjust the calibration factor such that all data obtained for various powers P match
the band structure calculation. The measured data points in Fig. 4.4 clearly show that this
works quite well, both for deeply bound molecules (red) and Feshbach molecules (blue). In
this procedure we do not account for the transitions from n = 0 to n = 4 owing to the large
uncertainties of the corresponding resonances in the excitation spectra. Nevertheless, these
data points are shown in the plot for comparison.

In addition to |U |, the electrical �eld amplitude E0 of the optical lattice has to be deter-
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Figure 4.4: Energy band-structure with zero energy corresponding to the center of the lowest
Bloch band. Solid lines are calculations for a single lattice direction, where the
numbers 1. to 8. give the band index n. The data points are obtained excitation
energies for λ = 1064.5 nm, stemming from amplitude (circles) or phase (squares)
modulation spectroscopy. Red (blue) plot symbols indicate measurements for triplet
rovibrational ground state (Feshbach) molecules. Here, the experimental results
are shown after independently �tting the data for each molecular species to the
band-structure calculation. By doing so, we determine the individual calibration
factors and therefore the lattice depths |U | (see also text). The horizontal error
bars represent the resulting uncertainties of |U |, whereas the vertical error bars are
given by the uncertainties of the Lorentzian �ts in the modulation spectra.

mined in order to infer the dynamical polarizability α(ω) [see Eq. (4.1)]. We can circumvent
this by referencing the measurements on the lattice depth |U | for the molecules in the rovibra-
tional ground state of the a3Σ+

u potential to similar measurements with Feshbach molecules,
of which the polarizability αFesh(ω) is known to be twice the one of a Rb atom αRb(ω) in the
electronic ground state [120]. According to Eq. (4.1) the lattice depths |Uva=0| and |UFesh| for
the va = 0 and Feshbach molecules are related by

|Uva=0|
|UFesh|

=
Re(αva=0)
Re(αFesh)

(4.6)

for a given lattice beam intensity, i.e., a given E0.
From our experiments at λ = 1064.5 nm we obtain Re{αva=0} = (2.5± 0.1)× Re{αFesh},

whereas Re{αva=0} = (0.1 ± 0.02) × Re{αFesh} was found at λ = 830.4 nm [44]. Using our
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calculated atomic values of 685.8 a.u (1064.5 nm) and 2995.9 a.u (830.4 nm) yields molecu-
lar polarizabilities Re{αva=0} of 3430 ± 140 a.u (1064.5 nm) and 600 ± 120 a.u (830.4 nm),
respectively.

4.5 Comparison of results

Table 4.1 shows our measured and calculated polarizabilities along with results of other refer-
ences. First, it should be noted that our theoretical atomic polarizabilities (including only the
5s − 5p and 5s − 6p transition frequencies from the NIST database [148] at 828.4 nm and at
1060.1 nm are in good agreement with the ones of Refs. [149, 150] which consider the 5s− 5p
transition frequency from the NIST database, and ab initio values for the frequencies up to
the 5s− 8p transitions.

We �nd good agreement between our theoretical (3147 a.u.) and experimental (3430 ±
140 a.u.) results for the molecular polarizability Re{αva=0} at 1064.5 nm (see table 4.1). In
contrast, the agreement for the polarizability at 830.4 nm of our former measurements [44]
(600 ± 120 a.u.) with the present calculations (875.8 a.u.) is somewhat poor. In view of this
discrepancy we want to estimate the in�uence of slight shifts of the potential energy curves
on the calculations. The potential well depths of the 13Σ+

g and the 13Πg states used in the

Species λ (nm) Re{α} (a.u.) Ref.
87Rb 828.4 3132± 3 [149]
87Rb 828.4 3131.4 tw theo
87Rb 830.4 2995.9 tw theo
87Rb2 830.4 875.8 tw theo
87Rb2 830.4 600± 120 [44], using αRb = 2995.9 a.u.
87Rb 1060.1 692.7 tw theo
87Rb 1060.1 693.5± 0.9 [150]
87Rb 1064.5 685.8 tw theo
87Rb2 1064.5 3147 tw theo
87Rb2 1064.5 3430± 140 tw exp, using αRb = 685.8 a.u.
87Rb2 1064.5 3200± 500 [153]
87Rb ∞ 318.6± 0.6 [155]
87Rb ∞ 317.9 tw theo
87Rb2 ∞ 698.5 tw theo
87Rb2 ∞ 677.5 [151]

Table 4.1: Measured and calculated polarizabilities Re{α} in a.u. for 87Rb atoms and 87Rb2

molecules in the rovibrational ground state of a3Σ+
u . Here, the abbreviations �tw

exp (theo)� mean �this work, experimental (theoretical)�.
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computation are smaller by 72 cm−1 and 51 cm−1 with respect to the experimental determina-
tions of Refs. [124] and [139], respectively. Such shifts would lead to a change in the calculated
polarizability of about 10% for the particular wavelengths of 830.4 nm and 1064.5 nm. This
sets a range for the uncertainty of the calculated polarizability that arises from the uncertainty
of the PECs. Furthermore, in terms of the experiments, we note that in Ref. [44] a di�erent
method to determine the dynamical polarizability was used. The polarizability was inferred
from the oscillating dynamics of molecular wave packets that occurred when v = 0 molecules
were suddenly loaded into several Bloch bands of the optical lattice. This leaves potentially
room for a systematic discrepancy between the two measurements. With respect to the static
polarizability, i.e., ω = 0, the calculations presented in this work give 698.5 a.u. (cf. table 4.1)
for the va = 0 molecules. This value actually agrees well with the one previously reported in
Ref. [151], 677.5 a.u., as it was not including the contribution of αc ≡ 2 × α(Rb+) = 18.2 a.u.
[152].

Figure 4.5 is a zoom into Fig. 4.1(b) showing the calculated real part of the dynamical
polarizability of a va = 0 molecule (solid black lines). In addition, Re{α(ω)} for a Feshbach
molecule is plotted (dashed red lines), which is given by twice the atomic polarizability. The two
wavelengths used in our experiments (830.4 nm and 1064.5 nm) are indicated as vertical green
dashed lines. Outside the resonant and therefore lossy regions in Fig.4.5 (vertical black bands)
the two polarizability curves never cross. Thus, there is no so-called �magic� wavelength, where
the ac Stark shift of the two molecular states caused by the trapping light is equal. Such state-
insensitive trapping conditions can be bene�cial, e.g., when converting Feshbach molecules to

Figure 4.5: Real parts of the dynamical polarizabilities of triplet rovibrational ground state
molecules (solid black lines) and Feshbach molecules (dashed red lines). The cir-
cles represent the experimental results given in table 4.1 with the corresponding
wavelengths indicated by green dashed vertical lines.
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deeply bound states. Speci�cally, in Ref. [44], owing to the large di�erence of the dynamical
polarizabilities at λ = 830.4nm, the STIRAP transfer of Rb2 from the Feshbach level to va = 0
populated several lattice bands.

We have again studied this issue in this work and �nd that population of higher lattice
bands can be suppressed even in the absence of a magic wavelength when working with deep
lattices. At λ = 1064.5 nm there is still a factor of 2.5 di�erence in polarizability between
Feshbach and va = 0 molecules. For an initial (�nal) lattice depth of 50 ER (125 ER) at
1064.5 nm a calculation of the wave function overlap for the Bloch states shows that still 97%
of the population stays in the lowest Bloch band after the STIRAP. In addition, we are able
to energetically resolve the lattice bands during STIRAP as n = 0 and n = 2 are separated
by about 40 kHz at |U | = 125 ER (cf. Fig. 4.4). This strongly increases the selectivity of
the transition (see, e.g., [156]). Indeed, in our experiments we do not observe any signi�cant
population of higher bands.

As can be seen in Fig.4.5, the absolute dynamical polarizability of the triplet rovibrational
ground state molecules at 1064.5 nm is about four times larger than at 830.4 nm. This is
convenient since it results in a four times deeper interaction potential at the same laser intensity.
For longer wavelengths than 1064.5 nm, Fig. 4.5 reveals, that the dynamical polarizabilities of
va = 0 molecules and Feshbach molecules approach each other. Hence working at even longer
wavelengths than 1064.5 nm might be advantageous for some applications.

4.6 Lifetime of the molecules

According to Eq. (4.2), the imaginary part of the dynamical polarizability, Im{α}, is linked to
the light power absorbed by a molecule, Pabs, which in turn can be expressed in terms of the
photon scattering rate Γsc = ~−1ω−1Pabs [107]. Using this and Eq. (4.1), Γsc can be written as

Γsc = −2U
~

Im{α(ω)}
Re{α(ω)}

. (4.7)

For a 3D optical lattice with equal lattice depths |U | in each direction the scattering rate is given
by Γ3D

sc = 3Γsc. As an example, we consider the case of |U | = 50ER at λ = 1064.5nm. Then, the
corresponding values for the polarizability obtained in the present work, Im (α) = 0.96×10−3a.u
and Re{α} = 3430 a.u., yield Γsc = 0.18 s−1. Note, this calculation only accounts for an ideal
optical lattice. As there is always background light that does not contribute to the lattice,
the estimated value for the scattering rate represents just a lower bound. Once a photon
is absorbed, the molecule is excited and typically decays to a nonobservable state. Assuming
excitation to be the only loss-mechanism a lifetime τ = 1.9s of the va = 0 molecules is expected
in a 50 ER deep 3D optical lattice at 1064.5 nm.

We experimentally investigate the lifetimes of the molecules in the rovibrational ground
state of a3Σ+

u by varying the holding time th in the lattice. Figure 4.6 shows lifetime measure-
ments of va = 0 molecules for various potential depths |U |, which are adjusted to be equal in
each direction. Applying an exponential �t, we obtain a 1/e decay time τ of more than 2 s for

74



4.7 Polarizability of X1Σ +
g molecules

Figure 4.6: Decay of triplet rovibrational ground state molecules trapped in a 3D optical lattice
at 1064.5nm with equal potential depths |U | in each direction. Shown is the fraction
of remaining molecules N/N0 as a function of the holding time th in the lattice.
Square plot symbols (red circles) correspond to a lattice depth of 125ER (58ER).
Each data set typically consists of 10 to 15 repetitions of the experiment, where the
statistical error of a data point is on the order of ±0.1. Solid lines are exponential
�ts to the data. Here, N0 is given by the values of these �ts at th = 0 s. In
general, the absolute molecule numbers N0 are about 1.5× 104. The inset depicts
the resulting 1/e decay times for various lattice depths.

both our measurements at |U | = 33 ER and |U | = 58 ER.
In order to estimate possible loss induced by inelastic molecular collisions, we calculate the

tunneling rates Γtu between adjacent lattice sites within the lowest Bloch band (n = 0). When
considering a lattice depth of 33ER (58ER) one obtains Γtu = 2.37s−1 (Γtu = 0.09s−1). In our
setup at most 20% of the lattice sites are occupied in the region of highest molecule density.
Thus, for |U | = 33 ER decay due to collisions cannot be neglected, whereas for |U | = 58 ER
and beyond the only relevant loss mechanism is photon scattering. For such deep lattices,
the lifetime τ scales directly inversely with the lattice depth |U |. We con�rm this for the
measurements at |U1| = 58ER and |U2| = 125ER, since the ratio of the lifetimes τ1/τ2 = 2.20
is close to |U2|/|U1| = 2.16.

4.7 Polarizability of X1Σ+
g molecules

As the agreement between calculations and measurements for the triplet molecules is in general
good, we also provide calculations for the singlet ground state of 87Rb2. Using the same
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approach as above (see also [120]), we compute the dynamical polarizability αvX=0(ω), i.e.,
with respect to the vX = 0, J = N = 0 level. The X1Σ+

g PEC has been derived from
spectroscopic data of Ref. [122]. The A1Σ+

u and the b3Πu PECs and the related spin-orbit
coupling between those two states are taken from Ref. [157]. The PECs for all the other states
and for the TEDMs are taken from the computations reported in Refs. [121, 134]. Again, the
sum in Eq. (4.3) has been truncated to include only the levels of the four lowest 1Σ+

u states
and the three lowest 1Πu states. The natural lifetime of the excited levels has been �xed at
10 ns. Results are presented in Fig. 4.7, showing that two magic wavelengths can be identi�ed
at 990.1 nm and 1047.2 nm. The latter is located close to the region of strong absorption
resonances and consequently, from the imaginary part [cf. Fig. 4.7(b)], the photon scattering
rate at 1047.2 nm is expected to be about four times larger than at 990.1 nm.

4.8 Parametrization of the polarizability

4.8.1 Rovibrational ground state of a3Σ+
u

In general, using �gures (e.g., Figs. 4.1 and 4.7) to read o� the dynamical polarizabilities at
speci�c wavelengths is cumbersome. Therefore, we provide here a simple analytical �tfunction
and parameters that allow for reproducing the numerical results with respect to nonresonant
wavelength regimes. In the infrared and optical domain we are studying, the main contribu-
tions to the polarizability of the X (a) state outside of resonances come from the transitions
towards the �rst excited 1(3)Σ+ state and the �rst 1(3)Π state. Thus we attempt to model the
polarizability by reducing those transitions to a single e�ective transition towards each of the
two di�erent symmetries. The approximate real part of the polarizability is expressed as

αeff(ω) =
2ωΣ

~(ω2
Σ − ω2)

d2
Σ +

2ωΠ

~(ω2
Π − ω2)

d2
Π + αc (4.8)

with ωΣ (resp. ωΠ) the e�ective transition frequencies and dΣ (resp. dΠ) the corresponding
e�ective dipole moments. We have isolated in this expression the core polarizability αc as its
frequency dependence is much weaker than the one of the terms coming from valence electron
excitation (see section 4.11.1). The imaginary part of the polarizability is neglected since the
model is designed for the ranges outside the resonant regions.

We extract the e�ective parameters from a �t to the full numerical results using Eq. (4.8).
The results with respect to the a3Σ+

u and X1Σ+
g rovibrational ground state are shown in

Fig. 4.8. For the triplet case, data points with frequencies close to resonances, i.e., from
ω/(2πc) = 9527 cm−1 to 11018 cm−1 and above 13173 cm−1, are excluded from the �t. We
obtain ωΣ/(2πc) = 10112.33 cm−1, dΣ = 2.792881 a.u., ωΠ/(2πc) = 13481.32 cm−1 and
dΠ = 3.211023 a.u. Note, in terms of dipole moments, atomic units can be converted into
SI units according to 1 a.u. = ea0 = 8.478× 10−30 Ams. Using these parameters, the e�ective
polarizability reproduces the numerical results in the �tted region to within a relative root
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Figure 4.7: Real part (a) and imaginary part (b) of the dynamical polarizability of 87Rb2 X
1Σ+

g

molecules in their vX = 0, N = 0 level. In (a), for comparison, also the numer-
ical results corresponding to 2Re{αRb} are shown (red dashed line), representing
the real part of the dynamical polarizability of Feshbach molecules. Two magic
wavelengths, where both polarizabilities are equal, are obtained and indicated by
vertical dashed lines.

mean square value (rRMS) of around 1% [see Fig. 4.8(a)]. The rRMS value is de�ned by

rRMS =

√√√√ M∑
i=1

1
M

(
αeff(ωi)− α(ωi)

α(ωi)

)2

(4.9)

with α(ωi) being the numerical values, and αeff(ωi) the �tted ones. Here, M is the number of
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Figure 4.8: Analytical �ts of the dynamical polarizabilities of the a3Σ+
u molecule in va = 0,

N = 0 (a), and of the X1Σ+
g molecule in vX = 0, N = 0 (b). Frequency ranges

excluded from the �ts are indicated as shaded areas. At the scale of the �gure, the
original curves and the �tted curves are indistinguishable.

considered values ωi, which depends on the vibrational level as the resonant frequency regions
excluded from the �t vary. We point out that if we take the transition dipole moment dZ (resp.
dX = dY ) at the equilibrium distance of the a3Σ+

u state and multiply it by the appropriate
Hönl-London factor (1/

√
3 for Σ+ − Σ+ transition and

√
2/3 for Σ+ − Π transition), we get

the value 2.767 a.u. (resp. 3.142 a.u.), very close to the e�ective dipole moment found above.
Moreover, the e�ective transition frequencies correspond roughly to the average frequencies of
transitions with favorable Franck-Condon factor.

4.8.2 Rovibrational ground state of X1Σ+
g

A similar �t can be performed for the dynamical polarizability of X1Σ+
g molecules in the

(vX = 0, N = 0) level [Fig.4.8(b)]. Frequency domains from ω/(2πc) = 9432cm−1 to 9960cm−1,
from 10613 cm−1 to 12890 cm−1 and above 14736 cm−1, corresponding to resonances towards
the b3Πu, A1Σ+

u and B1Πu excited states, respectively, were excluded from the �t. We omitted
to account for levels of the b3Πu state as they have a very small singlet character. Then, the
�t to the numerically calculated dynamical polarizability yields ωΣ/(2πc) = 11450.31 cm−1,
dΣ = 2.647731 a.u., ωΠ/(2πc) = 15019.57 cm−1 and dΠ = 2.965774 a.u. Again, we point out
that the e�ective transition dipole moments obtained are very close to the electronic transition
dipole moments taken at equilibrium distance multiplied by the Hönl-London factors, i.e.,
2.613 a.u. and 2.959 a.u., respectively. Here, the rRMS of the �t is 0.5%.
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4.8.3 Excited vibrational states

Both, the frequency domains with good Franck-Condon factors and transition dipole moments
depend signi�cantly on the initial vibrational level. This is re�ected in the variation of the
e�ective parameters when we perform an individual �t for each vibrational level (with N = 0)
of the a3Σ+

u (va = 0 to 40) and X1Σ+
g (vX = 0 to 124) states. The corresponding parameters,

which can be used to reproduce the dynamical polarizabilities in the nonresonant frequency
domains, are reported in the Supplemental Material [131] and Appendix A.1. Figure 4.9 shows
the resulting rRMS values as a function of the vibrational level with respect to the lowest
triplet and singlet state.

Using the ansatz of Eq. (4.8) gives a poor result for most excited vibrational levels of the
a3Σ+

u potential with an rRMS exceeding 4% in the range of va = 2 to 27. This behavior
is related to the fact that Franck-Condon factors mainly depend on the amplitude of the
excited wave function around both the inner and the outer classical turning points of the
initial vibrational level studied. The shape of the a3Σ+

u potential is quite di�erent compared to
the relevant excited states. Consequently, the inner turning point region of a given vibrational
level va will induce couplings to levels of excited molecular states with energies strongly di�erent
from those related to couplings induced by the outer turning point region. This e�ect mainly
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Figure 4.9: Relative root mean square (rRMS) values of the analytical �ts to the numerically
calculated dynamical polarizabilities. Blue closed (red open) circles correspond to
�t results obtained with the �two-e�ective-transitions� ansatz for the vibrational
levels va of a3Σ+

u (vX of X1Σ+
g ), whereas the black closed squares stem from �ts

including a third e�ective transition to represent the dynamical polarizabilities
with respect to va, which signi�cantly increases the accuracy (see text). The rRMS
values for vX > 40 do not exceed 0.1% (not shown here).
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occurs for the excited 3Σ+
g potential wells as they are deep. Instead, the depth of the 3Πg

potential is not su�cient to create such a variation.
Thus we added one more transition term to the ansatz of Eq. (4.8) in order to account

for both the inner and outer part of the a3Σ+
u -

3Σ+
g transitions in the model. This reduced

signi�cantly the rRMS of the e�ective polarizabilities of the va levels (see Fig. 4.9). We want
to emphasize that such an interpretation gives a reasonable physical picture for most levels.
However, for some levels like the deeply bound ones or those close to the dissociation limits,
the three-e�ective-transition model is somewhat arti�cial and the e�ective parameters should
be taken only as numerical parameters needed to easily obtain the corresponding polarizability.

4.9 Conclusion

We have studied the dynamical polarizability of the 87Rb2 molecule in the rovibrational ground
state of the a3Σ+

u potential. Calculations of both, the real and imaginary part are provided and
we measured Re{α(ω)} at λ = 1064.5nm. Our experimental and theoretical �ndings show good
agreement. From our computed value of Im{α(ω)} at this wavelength, we expect trapping times
of the molecules on the order of seconds for lattice depths around 50ER, which was con�rmed
by our observations. We also have investigated theoretically the dynamical polarizability of
the singlet ground state X1Σ+

g . These results are interesting for future STIRAP transfer of
Rb2 to the corresponding rovibronic ground state. Furthermore, we have introduced a simple
analytical expression to parametrize the dynamical polarizabilities for all levels of both, a3Σ+

u

andX1Σ+
g states. By �tting this expression to the numerical results, we have extracted e�ective

parameters, which can be used to reproduce Re{α(ω)} of a given vibrational state with high
�delity. The precise knowledge of the dynamical polarizability enables accurate control of
optical dipole potentials and therefore is of importance for future experiments with deeply
bound Rb2 molecules.
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4.11 Additional information on the core polarizability and the

transition electric dipole moments

4.11.1 Polarizability of the Rb+ core

As the two ionic Rb+ cores are only weakly perturbing each other, we consider the molecular
core polarizability as twice the atomic Rb+ polarizability. First, we calculate the atomic
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Figure 4.10: Computed transition electric dipole moments (TEDMs) for the main transitions
from the a3Σ+

u and the X1Σ+
g states to the states correlated to the 5s+5p dissoci-

ation limit (a), the 5s+4d dissociation limit (b), the 5s+6s dissociation limit (c),
and the 5s + 6p dissociation limit (d). The individual curves can be assigned to
the corresponding transitions as indicated on top of the graph using the numbers
i and j. At large distances the TEDMs converge towards d5s−nl which is equal to
the atomic TEDMs multiplied by

√
2 (see text).

polarizabilities at imaginary frequencies αRb(iω) [158], which includes only the contribution
of the valence electron. We subtract them from the values of Ref. [132], where the resulting
di�erences represent the contribution of the core electrons, and thus the Rb+ polarizability.
Following Ref. [132] this estimate assumes that the in�uence of the valence electrons on the
core polarizability is negligible.

We use an ansatz similar to the one of Eq. (4.8) to model the core polarizability with
two e�ective transitions. This yields the e�ective frequencies ω/(2πc) = 165912 cm−1 and
362918 cm−1, and the e�ective dipole moments 2.72799 a.u. and 1.40119 a.u. We note that
these two transition frequencies are on the order of magnitude of the main transition in Rb+

and Rb2+, respectively. The core polarizability is a small contribution slowly varying from
17.9 a.u. at vanishing frequency up to 18.1 a.u. in the optical domain relevant here. For the
static case, we can compare the result or our calculations to the value of 18.2 a.u. reported in
Ref. [152] and �nd good agreement.
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4.11.2 Transition electric dipole moments

For the sake of completeness we show in �gure 4.10 the transition electric dipole moments
included in the calculations of the dynamical polarizabilities as functions of the internuclear
distances. The corresponding numerical values are given in the Supplemental Material [131].
Some of the data with respect to the lowest transitions have already been reported in Refs.[121,
134]. The largest TEDMs in the range of the PECs concern the �rst excited Σ+ and Π potentials
[see Fig. 4.10(a)]. At large distances the molecular excited electronic wave functions become
close to the form [φ5s(1)φnl(2)±φ5s(2)φnl(1)]/

√
2 and therefore the TEDMs converge towards

d5s−nl, which is equal to the atomic TEDMs multiplied by
√

2. We �nd d5s−5p = 4.23 a.u. and
d5s−6p = 0.347 a.u., in excellent agreement with the values extracted from the NIST database
[148] (4.226a.u. and 0.3531a.u.), obtained by averaging the TEDMs corresponding to 5s−np1/2

and 5s − np3/2 for n = 5 and 6, respectively. This con�rms the good quality of the present
representations of the atomic electronic wave functions.
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We present a novel method for probing the alignment of the molecular axis of an ultracold,
nonpolar dimer. These results are obtained using diatomic 87Rb2 molecules in the vibrational
ground state of the lowest triplet potential a3Σ+

u trapped in a 3D optical lattice. We measure
the molecular polarizabilities, which are directly linked to the alignment, along each of the x, y,
and z directions of the lab coordinate system. By preparing the molecules in various, precisely
de�ned rotational quantum states we can control the degree of alignment of the molecular axis
with high precision over a large range. Furthermore, we derive the dynamical polarizabilities
for a laser wavelength of 1064.5 nm parallel and orthogonal to the molecular axis of the dimer,
α‖ = (8.9± 0.9)× 103 a.u. and α⊥ = (0.9± 0.4)× 103 a.u., respectively. Our �ndings highlight
that the depth of an optical lattice strongly depends on the rotational state of the molecule
which has to be considered in collision experiments. The present work paves the way for
reaction studies between aligned molecules in the ultracold temperature regime.

5.1 Introduction

In molecular physics and chemistry, control over alignment or orientation of the molecular axis
in the laboratory frame is often essential for understanding reaction processes and molecular
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structures (see, e.g., Refs. [159-163]). Currently, such experiments are typically carried out
with molecular beams in a pulsed fashion, where the alignment or orientation is achieved by
state selection with hexapole �elds, optical preparation techniques, or exposure to strong ac
or dc electric or magnetic �elds (see, e.g., Refs. [159, 164-167]). In general, the alignment of
the molecular axis is measured via photodissociation, where the angular dependence of the
fragments with respect to the laser polarization is measured.

A di�erent approach entails working with optically trapped, ultracold molecular ensembles
[66]. Such systems allow for extraordinary control over the internal and external degrees of
freedom including the tailoring of the trapping potential and the preparation of molecules in
precisely de�ned quantum states. Here, novel experimental regimes can be reached featuring
ultralow-energy collisions and possible interaction times up to many seconds. Further prospects
are reaction studies in reduced dimensions and selective investigations of few-body collisions
by controlling the number of aligned particles per trapping site. Hence, ultracold molecules
will strongly complement the research with molecular beams.

In terms of orientation, the �rst experiments with ultracold molecules were performed in
2011 where polar KRb molecules were exposed to a dc electric �eld [62]. Afterwards, their
anisotropic polarizability was investigated in a 1D optical lattice of which the polarization was
rotated [168].

In this Letter, we demonstrate a novel method to determine the alignment of the molec-
ular axis. This method can be readily implemented in typical ultracold-molecule setups. It
relies on the fact that the axis alignment is directly re�ected in an anisotropy of the molecular
polarizability. The molecules are trapped in a cubic 3D optical lattice with orthogonal polar-
izations. For each lattice beam, we measure the potential depth for a given light intensity from
which we infer the dynamical polarizabilities in the three directions of space and therefore the
alignment of the molecular axis. As an application, we brie�y show how this technique can be
used to spectroscopically investigate unknown molecular states.

Our experiments are performed with ultracold Rb2 molecules in the vibrational ground
state of the a3Σ+

u potential. The molecular ensemble is held in a 3D optical lattice at 1064.5nm
with trapping times of several seconds. There is no more than a single molecule per lattice
site. We are able to prepare a variety of precisely de�ned molecular energy eigenstates, where
the rotational, Zeeman, and hyper�ne structure is fully resolved. Consequently, hyper�ne
depolarization [169, 170] plays no role. The Rb2 molecules are 100% spin polarized. The
spin polarization directly determines the molecular axis alignment, which is the quantity that
we measure in our experiment. Although no forced alignment via electric or magnetic �elds is
employed, sizeable degrees of alignment of the molecular axis are readily achieved. Furthermore,
the alignment persists as long as a quantization axis is de�ned, in our case by an external
magnetic �eld.

5.2 Theoretical description

When a nonpolar molecule is exposed to a linearly polarized, oscillating electric �eld ~E(t) =
ε̂E0 cos(ωt) with amplitude E0 and unit polarization vector ε̂, a dipole potential U = −ε̂ ·
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(↔αε̂)E2
0/4 is induced. In a Cartesian coordinate system of which one axis is pointing along the

molecular axis the polarizability tensor ↔α of a dimer is diagonal and its components have two
values α‖ and α⊥ for the directions parallel and perpendicular to the molecular axis. U can then
be written as U = −(α‖E2

‖ + α⊥E
2
⊥)/4 where E‖ and E⊥ are the corresponding components

of the electric �eld amplitude. We describe the orientation of the molecular axis by a unit
vector ~A = (Ax, Ay, Az) = (sinθcosφ, sinθsinφ, cosθ), see Fig. 5.1(a). Using E2

‖ = (ε̂ · ~A)2E2
0

and E2
⊥ = E2

0 − E2
‖ the potential becomes U = −

[
α‖(ε̂ · ~A)2 + α⊥[1− (ε̂ · ~A)2]

]
E2

0/4. In a

quantum mechanical treatment (ε̂ · ~A)2 is replaced by its expectation value 〈(ε̂ · ~A)2〉. Using
electric �elds with amplitudes E0,i and polarizations ε̂i that point in each of the directions
(i = x, y, z) of the lab coordinate system we measure the molecular polarizabilities

α(i) =
4|Ui|
E2

0,i

, (5.1)

where
α(i) = 〈A2

i 〉α‖ + (1− 〈A2
i 〉)α⊥ . (5.2)

The quantity 〈A2
i 〉 de�nes the degree of alignment of the molecular axis with respect to the

direction ε̂i. For nonaligned molecules, all 〈A2
i 〉 are equal to 1/3. Clearly, by measuring the

polarizability α(i) we can directly determine 〈A2
i 〉 once α‖ and α⊥ are known.

For the a3Σ+
u state of Rb2 the dynamics of the molecular axis are well described by the wave

function of a quantum rotor, of which the Hamiltonian is essentially given by ~R2 with ~R being
the operator for nuclear rotation33. Especially for magnetic �elds larger than 100G, we can in
general safely ignore coupling of ~R to any other spins or angular momenta. Therefore R and
its projection mR onto the quantization axis in the z direction are the only relevant quantum
numbers to describe the angular distribution of the molecular axis, turning the Rb2 molecule
into a simple and fundamental system to study alignment. Consequently, the eigenstates of
the axial motion are the spherical harmonics YR,mR

(θ, φ) ≡ |R,mR〉. The degree of alignment
of the molecular axis with respect to the x, y, and z directions can be calculated as

〈A2
i 〉 =

ˆ
|YR,mR

|2A2
i sin(θ)dθdφ . (5.3)

Figure 5.1(b) shows polar plots of |YR,mR
|2 corresponding to relevant rotational states. For

|R = 0,mR = 0〉 the axis direction is isotropic in space, indicating a nonaligned molecule. In
contrast, the axis direction is anisotropic for |2, 0〉 and |2,±2〉, which is directly re�ected in
degrees of alignment di�erent from 1/3.

33Interestingly, J ( ~J = ~R + ~S) is in general not a good quantum number for Rb2 in state a3Σ+
u because the

electron spin ~S is only weakly coupled to ~R via second-order spin-orbit interaction but strongly to the
nuclear spin ~I via hyper�ne interaction [122]. Thus f (~f = ~S + ~I) is good. The weak spin-orbit interaction
tends to couple ~f and ~R to form the total angular momentum ~F , but already a small Zeeman interaction
due to a B �eld of a few tens of gauss leads again to decoupling, especially for deeply bound molecules.

85



5 Probing the Axis Alignment of an Ultracold Spin-Polarized Rb2 Molecule

Figure 5.1: (a) Schematic of the experiment. Three laser beams with linear polarizations ε̂i
orthogonal to each other form a 3D optical lattice. The axis of a diatomic molecule
is given by ~A. The magnetic �eld ~B points in the z direction and represents the
quantization axis. (b) Polar plots of |YR,mR

(θ, φ)|2 for states |R,mR〉 = |0, 0〉, |2, 0〉,
|2,±2〉.

5.3 Experimental setup

Our experimental setup and the molecule preparation has been described in detail in Ref. [44].
In brief, an ultracold thermal ensemble of spin-polarized 87Rb atoms (fa = 1,mfa = 1) is loaded
into a 3D optical lattice and converted into Feshbach molecules at a magnetic �eld of B =
1007.4G. Each Feshbach molecule is nonrotating and has magnetic quantum number mF = 2
of total angular momentum ~F . The total nuclear spin is a superposition of components I =
1, 2, 3. Using an optical two-photon process [stimulated Raman adiabatic passage (STIRAP)]
at B = 1000G, we transfer the molecules to the vibrational ground state of the a3Σ+

u potential,
ending up with a pure ensemble of 1.5× 104 molecules at a temperature of about 1 µK. As we
use π-polarized light, mF = 2 does not change. The intermediate STIRAP level is located in
the c3Σ+

g potential, has quantum number I = 3, and is a mixture of di�erent R. Concerning
the �nal level we choose to populate either one of the well-de�ned states |R,mR〉 = |0, 0〉 or
|2, 0〉, which are separated by about 1.9GHz (see Ref. [122]) by setting the relative detuning of
the STIRAP lasers. Both levels have quantum numbers I = 3 and f = 2 (~f = ~S + ~I), where
~S denotes the total electronic spin. Compared to molecular beam setups, the STIRAP pulse

86



5.4 Determination of the molecular polarizabilities

in ultracold atoms or molecules experiments is orders of magnitude longer (typically tens of
microseconds). It therefore can usually resolve any molecular substructure and unambiguously
populate any quantum state as long as the selection rules allow for it.

The molecules reside within the lowest Bloch band of the optical lattice, which consists of a
superposition of three linearly polarized standing light waves in the x, y, and z directions with
polarizations orthogonal to each other, see Fig. 5.1(a). Each lattice beam has a wavelength of
λ = 1064.5 nm, a linewidth of a few kilohertz, and relative intensity �uctuations of less than
10−3. In order to avoid interference e�ects, the frequencies of the standing waves are o�set by
about 100 MHz relative to each other. At the location of the atomic sample, the waists (1/e2

radii) of the lattice beams are about 130 µm and the maximum available power per beam is
about 3.5 W.

5.4 Determination of the molecular polarizabilities

We now independently determine the three molecular polarizabilities α(i)(i = x, y, z), which,
according to Eq. (5.2), are directly linked to the degrees of molecular alignment 〈A2

i 〉. Using
Eq. (5.1), we need a measurement of both the lattice depth Ui and the �eld amplitude E0,i. In
order to measure Ui we consider a lattice beam with polarization ε̂i (see Fig. 5.1). We perform
modulation spectroscopy [40, 109] in which the intensity of this lattice beam is sinusoidally
modulated by a few percent for a time of 10 modulation periods. A resonant modulation
frequency drives transitions from the lowest Bloch band to the second excited band [see inset
in Fig. 5.2(c)] giving rise to losses. At the end of each experimental cycle, the fraction N/N0 of
molecules remaining is measured. For this purpose, the atom signal is detected via absorption
imaging after reversing the STIRAP and dissociating the molecules using a magnetic �eld
sweep across the Feshbach resonance. By comparing the resonant transition frequency to a
band-structure calculation of the sinusoidal lattice, the lattice depth U is determined.

Figure 5.2 shows excitation spectra after modulation for vibrational ground state molecules
in states |0, 0〉 and |2, 0〉 as well as for weakly bound Feshbach molecules at a magnetic �eld of
B = 1000G. For each measurement, we determine the center of the excitation resonance using
a Lorentzian �t. For technical reasons the modulation strength varied between the three lattice
directions (6%, 5%, and 2% peak-to-peak intensity modulation for ε̂x, ε̂y, and ε̂z, respectively),
leading to di�erent depths of the resonances. We have checked that this variation does not a�ect
the resonance positions. As the light �eld amplitudes E0,i for the three lattice directions are
similar, we observe that for nonrotating molecules in |0, 0〉 [Fig. 5.2(a)], the resonant excitation
frequencies in the three di�erent modulation directions are also very similar. For the case of
|2, 0〉 [Fig. 5.2(b)], however, the lattice depth for ε̂z polarization is much higher than for ε̂x and
ε̂y, indicating an alignment of molecules along the z direction.

In order to precisely determine the electric �eld amplitudes E0,i we perform lattice modula-
tion measurements with weakly bound Feshbach molecules for the same experimental parame-
ters as for deeply bound molecules [Fig.5.2(c)]. In this way, the polarizability can be determined

independently of the exact beam parameters. We use α(i)
Rb+Rb = 4|Ui|/E2

0,i and the fact that
the polarizability of Feshbach molecules, αRb+Rb, is isotropic and known to be twice the atomic
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Figure 5.2: Modulation spectroscopy. The general scheme is sketched in the inset in (c) illus-
trating the resonant modulation of the lattice depth in one direction. The data
show resonances for molecules in states |0, 0〉 (a) and |2, 0〉 (b), as well as for Fesh-
bach molecules |FM〉 (c) at B = 1000 G. We measured the fraction of remaining
molecules N/N0 as a function of the modulation frequency ν for the three di�er-
ent lattice directions. Here, ε̂x, ε̂y, and ε̂z indicate the electric �eld of which the
amplitude has been modulated [cf. Fig. 5.1(a)]. Each data point is the average of
between �ve and 25 repetitions of the experiment (for a given molecular state and
direction i the number of repetitions is constant). The statistical error of each data
point is typically ±(0.05− 0.15). Solid lines correspond to Lorentzian �ts.

polarizability αRb = (693.5 ± 0.9) a.u. [149]. Here, 1 a.u. = 4πε0a
3
0 = 1.649 × 10−41 Jm2V−2,

where a0 denotes the Bohr radius and ε0 is the vacuum permittivity. As can be seen from
the obtained excitation resonances [Fig. 5.2(c)], the absolute lattice depth and thus the electric
�eld amplitude slightly varies in the three directions. Of course, according to Eq. (5.1), this
variation drops out when determining the polarizabilities of the deeply bound molecules.

Figure 5.3 shows measured polarizabilities α(i) of molecules initially prepared in state |0, 0〉
or |2, 0〉 at B = 1000 G. After production we adiabatically lower the magnetic �eld from B =
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Figure 5.3: Polarizabilities α(i)(i = x, y, z) of the Rb2 triplet molecules for the rotational states
|R = 0,mR = 0〉 (squares), |2, 0〉 (circles), and an unknown state |2, ?〉 (triangles)
for di�erent magnetic �elds B = 1000 G, 700 G, 400 G, and about 10 G. For
better visibility overlapping data points are shifted slightly with respect to each
other in the horizontal direction. The error bars are given by the uncertainty of
the Lorentzian �ts in the amplitude modulation spectra (cf. Fig. 5.2). Horizontal
lines indicate the mean values of the measured polarizabilities for the states |0, 0〉
and |2, 0〉.

1000G to 700G, 400G, and about 10G. At each B �eld we measure α(i) in all three directions.
As already seen in Fig. 5.2(a) the nonrotating state |0, 0〉 exhibits an isotropic polarizability
α(i). This isotropy is re�ected in the spherical symmetry of the rotational wave function for the
molecular axis, Y0,0, which is simply a constant. Correspondingly, the calculated expectation
value 〈A2

i 〉 is 1/3 for all directions. Thus, Eq. (5.2) simpli�es to the useful relation 3α(i) =
α‖ + 2α⊥.

Next, we study α(i) for state |2, 0〉 down to B = 400G. As already observed in Fig. 5.2(b)
there is a clear anisotropy of α(i). The polarizabilities in the x and y directions are identical,
but di�er from the one in the z direction. We check for the consistency of the measurements.
From Eq.(5.2) and 〈A2

x〉+〈A2
y〉+〈A2

z〉 = 1 follows
∑

i α
(i) = α‖+2α⊥, which should be equal to

3α(i) of state |0, 0〉. Our experimental data ful�ll this relation to within 1%. The fact that the
polarizability α(i) is independent of B both for |0, 0〉 and |2, 0〉 highlights that the alignment
of the molecular axis is not forced by the magnetic �eld. It merely sets the direction of the
quantization axis, stabilizing the spin polarization of the molecules.

We can use the measurements of α(i) for state |2, 0〉 = Y2,0(θ, φ) to determine α‖ and
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α⊥ from Eq. (5.2). Using Eq. (5.3) we calculate 〈A2
x〉 = 〈A2

y〉 = 0.2381 and 〈A2
z〉 = 0.5238

[cf. Fig. 5.1(b)]. We obtain a set of two independent equations (the equations for the x
and y directions are nominally identical), which can be uniquely solved, resulting in α‖ =
(8.9± 0.9)× 103 a.u. and α⊥ = (0.9± 0.4)× 103 a.u. These values are in good agreement with
ab initio calculations, which give α‖ = (7.5 ± 1.2) × 103 a.u. and α⊥ = (1.0 ± 0.1) × 103 a.u.
(M. Tomza and R. Moszy«ski (private communication), [154]). The large di�erence of α‖ and
α⊥ can be explained as mainly arising from the di�erent lattice laser detuning with respect to
the relevant electronic transitions34.

5.5 Using the method to gain information about unknown

quantum states

The novel method to probe the alignment of the molecular axis can be used to gain information
about unknown quantum states and therefore has possible future applications in spectroscopy.
As an example, we now look at the data points (triangles) at 10 G. Although these data are
also obtained by �rst preparing state |2, 0〉 at 1000 G and subsequently ramping down the
B �eld, they look quite di�erent from the ones at 400, 700, or 1000 G discussed previously.
All polarizabilities change considerably and α(z) is now smaller than α(x) and α(y), but the
sum rule

∑
i α

(i) = α‖ + 2α⊥ still holds. Apparently the molecular quantum state undergoes
a drastic change at low B �elds when sweeping the magnetic �eld. Since α‖ and α⊥ are
known, we can directly extract the degrees of alignment from the measured polarizabilities
α(i) according to Eq. (5.2). From a simultaneous �t, assuming 〈A2

x〉 = 〈A2
y〉 and using the

normalization 〈A2
x〉 + 〈A2

y〉 + 〈A2
z〉 = 1, we obtain 〈A2

x,y〉 = 0.42 and 〈A2
z〉 = 0.16. Coupled

channel calculations show that in the direct vicinity of the initial state |2, 0〉 (f = 2, I = 3,
S = 1) only rotational levels with R = 2 are present (E. Tiemann, private communication).
The measured values closely match the calculated degrees of alignment 〈A2

x,y〉 = 0.4286 and
〈A2

z〉 = 0.1429 of the states |2,±2〉, whereas no agreement is found for |2,±1〉 (〈A2
x,y〉 = 0.2857

and 〈A2
z〉 = 0.4286). How the change in the molecular quantum state comes about is currently

still an open question and necessitates further investigation.

5.6 Conclusion

In conclusion, we have studied the axis alignment of trapped, ultracold, nonpolar molecules in
two predetermined rotational quantum states. For this purpose, we introduced a novel method
that relies on the measurement of the polarizability of the molecules along the three spatial axes.
Furthermore, we have demonstrated how to apply this method to spectroscopically investigate
unknown molecular quantum states.

We have veri�ed that sizeable alignment or antialignment (i.e., 〈A2
i 〉 < 1/3) of the

34See Supplemental Material of [46] given in section 5.8 and at http://link.aps.org/supplemental/10.1103/
PhysRevLett.113.233004, respectively, which includes potential energy curves from Ref. [121], for a quali-
tative explanation of the large di�erence of the molecular polarizabilities α‖ and α⊥.
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molecular axis can be achieved with spin polarized samples even without any alignment forces.
We determined the dynamic polarizabilities α‖ = (8.9± 0.9)× 103 a.u. and α⊥ = (0.9± 0.4)×
103a.u. for the Rb2 vibrational ground state of the a3Σ+

u potential at a wavelength of 1064.5nm.
The fact that α‖ and α⊥ are so di�erent implies that the lattice depth strongly depends on the
rotational level. This can be used for �ltering, i.e., state selection of molecules. The ability to
prepare well-de�ned rotational states and the successful probing of their alignment paves the
way for collisional studies of stereochemical processes. Indeed, we are currently investigating
collisions between aligned molecules in a quasi-1D geometry.
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5.8 Supplemental Material

Owing to selection rules for π- and σ-transitions, α‖ (α⊥) is linked to Σ−Σ (Σ−Π) transitions.
As can be seen from Fig. 5.4, the detuning of our lattice laser from the Franck-Condon point
on the d3Πg potential curve is about 6 times larger than from that of the c3Σ+

g potential curve,
explaining the large di�erence of α‖ and α⊥ to �rst order.

c

d

Figure 5.4: Detunings δΣ and δΠ of the lattice laser at λ = 1064.5nm from the two most relevant
transitions, a3Σ+

u − c3Σ+
g and a3Σ+

u − d3Πg, that determine the polarizabilities α‖
and α⊥, respectively. The energy reference is given by the asymptote of the a3Σ+

u

potential. The potential curves are taken from [121].
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5.9 Additional information concerning small magnetic �elds

As described in section 5.5, for the rotationally excited state R = 2, we observe a change of
the molecular quantum number mR when decreasing the magnetic �eld to a low value of about
10 G. In view of the question how this comes about, I want to discuss two aspects in the
following, albeit a �nal statement is not possible at the moment.

First of all, I want to point out a technical issue concerning the ramping of the magnetic
�eld down to very low values. In our setup, B is generated by the two quadrupole coils (cf.
Fig. 2.3) operated in Helmholtz con�guration and points antiparallel to the gravitational force.
By adjusting the current IQC through these coils appropriately, B is set to the desired value.
Unfortunately, we also have a permanent o�set magnetic �eld of several gauss, which approx-
imately points orthogonal to the �eld of the quadrupole coils (see also section 2.2). Hence,
the quantization axis changes by about 90◦, when IQC approaches zero. However, the used
ramping speed is so low, that all angular momenta of the molecule should adiabatically follow
the magnetic �eld direction, i.e., they should not change their relative orientation with respect
to the quantization axis. Therefore, one has to relabel the lattice directions for comparing
results obtained with high and low magnetic �elds. Nevertheless, it seems to be unlikely that
the described e�ect leads to the observed change of the quantum number mR.

As the necessity of the o�set magnetic �eld is related to the QUIC trap and the spin
preparation (see sections 2.2 and 3.3), it could be turned o� once the atoms are associated to
Feshbach molecules. Thus, this rather technical problem might in principle be overcome by
programming the power supplies responsible for the o�set �eld accordingly. At the moment,
these power supplies are not externally controlled, yet. However, an appropriate connection to
the experiment control would be one of the next steps.

Second, I want to consider the quantum number mR at low magnetic �elds from a theo-
retical point of view particularly for the rotationally excited state R = 2 (f = 2, I = 3) of the
v = 0 manifold of the a3Σ+

u potential. We performed calculations based on the model described
in Ref. [122]. Figures 5.5 and 5.6 show the energies of all hyper�ne levels as a function of B for
low magnetic �elds, together with the corresponding expectation values 〈mR〉 and 〈F 〉. Please
note that one can clearly distinguish between di�erent mF states as mF represents a good
quantum number for all relevant magnetic �elds. The two �gures reveal several features:

� In general, the hyper�ne levels approach or even cross each other if the magnetic �eld is
decreased. At B = 0 G the total hyper�ne structure is within about 100 MHz× h.

� For B . 100G, mR is mixed up and consequently not a good quantum number anymore.

� In contrast, at vanishing magnetic �elds, F represents a good quantum number, which
is not the case for signi�cant values of B.

After the STIRAP transfer that takes place at B = 1000 G, the molecules have mF = 2
and mR = 0. This state is indicated by the red curves in Fig. 5.5(a). If we follow the energy
level down to low values of B, we �nd that the expectation value 〈mR〉 should change from
〈mR〉 = 0 to 1. But, the measured degrees of alignment at about B = 10 G show the best
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Figure 5.5: Hyper�ne levels of the rotationally excited state R = 2 within the v = 0 manifold
of the a3Σ+

u potential corresponding to mF = 2, 3, 4 (a) and mF = −2, −3, −4 (b).
Shown are the energy level structure (upper panel), the expectation values 〈mR〉
(middle panel) and the expectation values 〈F 〉 (lower panel) for low magnetic �elds
B. The energy is given relative to the position of the red curve of (a) at B = 0 G.
This level is characterized by mR = 0 for high magnetic �elds and represents the
state in which we initially prepare our molecules. The calculations are based on
the model described in Ref. [122].
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agreement with the calculated values for states characterized by mR = ±2 (see discussion in
section 5.5). According to Figs. 5.5 and 5.6, only the energy levels corresponding to (〈F 〉 = 4,
mF = 4) and (〈F 〉 = −4, mF = −4) clearly exhibit either mR = +2 or −2 for such low
values of B. Therefore, also the quantum number mF would have to undergo a change as the
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dimers are initially prepared in mF = 2. In section 3.10.2, we have discussed that by means of
the lattice beams, transfers of molecules between energy levels are possible when ramping the
magnetic �eld. However, a �rm statement about the �nal state of R = 2 at about B = 10 G
and the route towards it is not possible at the moment and necessitates further investigation.
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We study the combination of hyper�ne and Zeeman structure in the spin-orbit coupled A1Σ+
u −

b3Πu complex of 87Rb2. For this purpose, absorption spectroscopy at a magnetic �eld around
B = 1000 G is carried out. We drive optical dipole transitions from the lowest rotational
state of an ultracold Feshbach molecule to various vibrational levels with 0+ symmetry of
the A − b complex. In contrast to previous measurements with rotationally excited alkali-
dimers, we do not observe equal spacings of the hyper�ne levels. In addition, the spectra
vary substantially for di�erent vibrational quantum numbers, and exhibit large splittings of up
to 160 MHz, unexpected for 0+ states. The level structure is explained to be a result of the
repulsion between the states 0+ and 0− of b3Πu, coupled via hyper�ne and Zeeman interactions.
In general, 0− and 0+ have a spin-orbit induced energy spacing ∆, that is di�erent for the
individual vibrational states. From each measured spectrum we are able to extract ∆, which
otherwise is not easily accessible in conventional spectroscopy schemes. We obtain values of ∆
in the range of ±100GHz which can be described by coupled channel calculations if a spin-orbit
coupling is introduced that is di�erent for 0− and 0+ of b3Πu.
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6.1 Introduction

The strongly spin-orbit coupled A1Σ+
u − b3Πu complex of alkali-metal dimers has been studied

in great detail in recent years, stimulated by the fruitful combination of high-resolution spec-
troscopy and numerical close-coupled calculations. Various homonuclear (Rb2 [157, 171, 172],
Cs2 [173, 174], Na2 [175, 176], K2 [177-180], Li2 [181, 182]) and heteronuclear (NaRb [183, 184],
RbCs [185-187], KRb [188], NaCs [189], KCs [190-192], NaK [193-195]) species have been in-
vestigated and modeled. Potential energy curves as well as r-dependent spin-orbit-coupling
functions were extracted, where r is the internuclear separation. Concerning the hyper�ne
structure of the A− b state, however, only little experimental data is available so far.

For thermal and thus rotationally excited samples of Na2 and K2 hyper�ne structures with
line splittings up to hundreds of MHz, characterized by nearly equidistant separations of the
energy levels were observed [176, 180]. Such hyper�ne structures of the Ω = 0 components
of the A − b complex come about owing to the molecular rotation that mixes di�erent Ω
components. For the case of low rotational angular momentum J , line splittings of at most a
few MHz are expected. Indications of such small hyper�ne splittings for J = 1 RbCs molecules
in state Ω = 0 were reported in Ref. [185], but a detailed analysis was not given.

In this work, we investigate the combined hyper�ne and Zeeman pattern of the A − b
complex for Rb2 molecules with J = 1 observed by exciting an appropriate Feshbach molecular
state [see level scheme in Fig.6.1(a)]. Particularly for states, where the main component exhibits
b3Πu 0+ symmetry, we measure large level spacings of up to 160 MHz. Furthermore, the line
pattern is not equally spaced and the overall structure changes strongly from one vibrational
level to another. Consequently, our spectra are dominated by a mechanism di�erent from
the one discussed previously in the context of fast rotating molecules. In fact, we �nd that
the observed energy level structures corresponding to vibrational states of b3Πu 0+ arise from
second order hyper�ne and Zeeman interaction coupling the 0+ and 0− components of b3Πu.
More precisely, these two interactions work together in a cooperative way enhancing the e�ect.
By �tting a relatively simple model to our data we extract the initially unknown frequency
spacing ∆ between 0− and 0+ for each vibrational level. This is an important result of our
work because the state b3Πu 0− is not directly accessible in spectroscopy schemes starting from
any singlet or triplet ground state molecular level. Our derived values for ∆ systematically
deviate by about 90 GHz from predictions of close-coupled channel calculations. We interpret
this as a di�erence in the spin-orbit coupling function for 0− and 0+.

This article is organized as follows. In section 6.2, we give an overview of the experimental
setup and the spectroscopy scheme. Then, section 6.3 describes the relevant molecular energy
states needed for the presentation of our experimental results in section 6.4. In section 6.5
we introduce a simple model that fully explains the characteristics of the observed spectra.
Our model calculations are discussed in section 6.6 along with the interpretation of the data
and the determination of ∆ for the investigated vibrational states of b3Πu. Finally, in section
6.7 we describe the extension of the potential scheme needed for modeling the observations by
coupled channel calculations.
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Figure 6.1: (a) Spectroscopy scheme. Weakly bound Feshbach molecules are irradiated by
a laser pulse and excited to molecular levels of the A1Σ+

u − b3Πu manifold from
where they spontaneously decay to nonobserved states. The potential (2)3Σ+

u is
included because it couples to 0− of b3Πu (see text). Furthermore, the inset shows
the level structure in the vicinity of the Feshbach resonance (FR). At a magnetic
�eld of B = 999.9 G the Feshbach state (indicated by the black circle) is located
1.748GHz×h below the |fa = 1,mfa = 1〉+|fb = 1,mfb

= 1〉 dissociation threshold
at 0G. In (b), the vibrational levels vA and vb within the A1Σ+

u −b3Πu 0+ complex
that are relevant for our measurements are depicted. All potential curves are taken
from [121], while the energies of vA and vb correspond to the calculated values given
in [196] (see also tables 6.1 and 6.2).
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6.2 Experimental setup

We carry out our experiments with a pure sample of about N0 = 3 × 104 weakly bound
87Rb2 Feshbach molecules which have both X1Σ+

g and a3Σ+
u character. The setup and the

molecule preparation scheme are described in detail in Refs. [53, 124]. Therefore, they are
just brie�y presented here. Initially a BEC or ultracold thermal cloud of spin-polarized 87Rb
atoms with total angular momentum f = 1, mf = 1 is loaded into a rectangular, 3D optical
lattice at a wavelength of λ = 1064.5 nm, which is formed by a superposition of three linearly
polarized standing light waves with polarizations orthogonal to each other. By slowly crossing
the magnetic Feshbach resonance (FR) at 1007.4 G from high to low �elds, pairs of atoms
in doubly occupied lattice sites are converted into weakly bound molecules. Afterwards, the
magnetic �eld is set to 999.9±0.1G, where we perform the spectroscopy. In order to get rid of
remaining atoms, a combined microwave and light pulse is applied which removes them from
the lattice. We end up with a pure ensemble of molecules that resides in the lowest Bloch band
of the optical lattice with no more than a single dimer per lattice site. The lattice depth for
the molecules with respect to each of the standing light waves of the optical lattice is about
64ER where ER = h2/(2mλ2) represents the recoil energy. Here, m denotes the mass of the
molecule and h is Planck's constant. Since at these lattice depths the tunneling rate is very
low, intermolecular collisions are strongly suppressed, and we measure lifetimes on the order
of 1 s.

Figure 6.1(a) shows the spectroscopy scheme. The Feshbach molecule ensemble is irradi-
ated by a rectangular light pulse for a duration τ of typically a few ms. At the location of the
molecular sample the beam waist is about 1.1 mm. For the observed spectra, we used laser
powers of tens or hundreds of µW. The light propagates orthogonally to the quantization axis
which is de�ned by the applied magnetic �eld that points in vertical direction. By using a
half-wave plate we can choose the light being polarized either in the horizontal plane or in the
vertical axis giving rise to σ transitions (i.e., σ+ and σ−) or π transitions. Molecules, that are
resonantly excited from the Feshbach state to a level of the A− b complex, are in general lost
due to subsequent fast decay to nonobserved states. We measure the remaining fraction N/N0

of Feshbach dimers. For this purpose, we dissociate the molecules by ramping back over the
Feshbach resonance and detect the corresponding atom number via absorption imaging.

The spectroscopy is performed at wavelengths between 1042 and 1068 nm (corresponding
to about 9360 − 9600 cm−1) using a grating-stabilized cw diode laser that has a short-term
linewidth of ∼ 100kHz. This laser is frequency-stabilized to a Fizeau interferometer wavemeter
(High Finesse WS7), with an update rate of about 10Hz. As the laser frequency drifts between
updates, we obtain a frequency stability of ±(2 − 5)MHz. The wavemeter is calibrated to an
atomic 87Rb reference signal at 780nm in intervals of minutes. It has a speci�ed absolute accu-
racy of 60 MHz, but the accuracy is on the MHz level for di�erence frequency determinations
within several hundred MHz. Furthermore, over a period of several months we checked the
frequency readings of the wavemeter for the same molecular transitions and did not �nd devi-
ations of more than ±10 MHz. This demonstrates the good reproducibility of the wavemeter
readings in connection with the calibration mentioned above.
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6.3 Relevant states

6.3.1 Feshbach molecules

The Rb2 Feshbach molecules in our experiment are weakly bound dimers with both singlet
and triplet character, i.e., the selected state is a mixture of X1Σ+

g and a3Σ+
u ([122, 124]).

However, only the X1Σ+
g component allows to drive transitions to the A− b complex because

for an electric dipole transition the u/g symmetry has to change and the A− b complex has u
symmetry. According to coupled channel calculations, at a magnetic �eld of 999.9G the singlet
component, mainly characterized by S = L = R = 0, I = 2, mI = 2, F = 2, contributes 16%
to the Feshbach state which has the exact quantum numbers mF = 2 and parity +. Here, S,
L, R, I and F (~F = ~R+ ~L+ ~S + ~I) denote the quantum numbers of the total electronic spin,
the total orbital angular momentum, the rotation of the atom pair, the total nuclear spin, and
the total molecular angular momentum, respectively. Furthermore, mI and mF represent the
corresponding projections onto the quantization axis. Consequently, the singlet component of
the Feshbach molecules has J = 0 ( ~J = ~R+ ~L+ ~S).

The inset of Fig. 6.1(a) shows the molecular level structure in the vicinity of the Feshbach
resonance. Throughout the present work, all excitation energies are given with respect to the
|fa = 1,mfa = 1〉 + |fb = 1,mfb

= 1〉 atomic dissociation limit at 0 G. Note, its energy is
8.543 GHz × h below the atomic dissociation limit when hyper�ne interaction is ignored. At
a magnetic �eld of 999.9 G the Feshbach state is located at −1.748 GHz × h. Here, the main
contribution is determined by the Zeeman shift of the atom pair |fa = 1,mfa = 1〉 + |fb =
1,mfb

= 1〉. The molecular binding energy is only about 20 MHz × h with respect to this
threshold.

6.3.2 A1Σ+
u − b3Πu complex

Spin-orbit interaction leads to a mixing of the states A1Σ+
u and b3Πu forming the A−b complex.

In a simple approach this mixing comes about in two steps. First, due to spin-orbit coupling the
state b3Πu splits up into three components, Ω = 0, 1, 2. The quantum number Ω denotes the
projection of the sum of all electronic angular momenta onto the internuclear axis and equals
the projection of the molecular angular momentum J on the same axis. For Rb2 the relative
separation of the three terms is about 80 cm−1, as mainly determined by the atomic spin-
orbit splitting of Rb in its 52P state. At this stage, the b3Πu, Ω = 0 state has two degenerate
components, 0+ and 0−. Second, spin-orbit coupling mixes A1Σ+

u (i.e., 0+ symmetry) and b3Πu

0+, whereas the b3Πu 0− component couples to (2)3Σ+
u 0− [see Fig. 6.1(a)]. As a consequence

of the repulsive interactions 0+ and 0− of b3Πu are separated from each other, which is referred
to as Λ-type splitting [197]. This e�ect is crucial for the interpretation of the observations of
the present work.

The vibrational levels of the A − b states relevant to our measurements are illustrated in
Fig. 6.1(b). The levels with dominant triplet (singlet) character are indicated by vibrational
quantum numbers vb (vA). Moreover, tables 6.1 and 6.2 list the numerical values for the term
energies and the b state admixtures calculated by Drozdova et al. [157] and taken from [196].
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vA pb [%] Ecalc/(hc) [cm−1] Eexp/(hc) [cm−1] ε [10−3 cm−1] δ [MHz]

66 15.60 9388.005 9387.9967 8.3 −2
67 28.50 9423.589 9423.5794 9.6
68 23.21 9454.571 9454.5652 5.8
69 7.66 9491.049 9491.0451 3.9 −2
70 10.82 9525.742 9525.7346 7.4
72 39.36 9594.454 9594.4485 5.5 −22

Table 6.1: Comparison of calculated (Ecalc) and measured (Eexp) level energies for various
vibrational levels vA of the A1Σ+

u state with J = 1. All level energies Eexp are ob-
served with π-polarized light. The column ε = (Ecalc−Eexp)/hc gives the di�erence
of the measured and predicted values. Furthermore, the parameter pb denotes the
admixture of the b3Πu potential and δ represents the measured frequency di�erence
between the σ and the π resonance. For the case of vA = 67, 68 and 70 we only
performed spectroscopy using π-polarized light and therefore δ was not determined.
The values for pb and Ecalc are taken from [196].

vb pb [%] Ecalc/(hc) [cm−1] Eexp/(hc) [cm−1] ε [10−3 cm−1] ∆ [GHz]

73 82.70 9368.758 9368.7480 10.0 81.8+10.6
−8.5

74 69.59 9412.519 9412.5122 6.8 104.5+23.9
−16.4

75 73.80 9460.874 9460.8718 2.2 −19.7+0.6
−0.6

76 88.37 9503.516 9503.5040 12.0 40.0+2.2
−2.0

78 58.25 9591.479 9591.4721 6.9 36.4+3.4
−2.9

Table 6.2: Comparison of calculated (Ecalc) and measured (Eexp) level energies for various
vibrational levels vb of the b3Πu 0+ state with J = 1, analogous to table 6.1. The
parameter ∆ is the splitting of the 0± components as determined by �tting our
theoretical model to the measured spectra (see section 6.6).

The calculation is based on a two-potential approach considering A1Σ+
u and b3Πu (Ω = 0+, 1, 2).

The mixing is described by the parameter pb, which represents the probability of �nding the
vibrational level in the electronic state b. Consequently, for the A state the corresponding
parameter is given by pA = 1 − pb. All other admixtures like ∆Ω = 1 are negligible in our
cases. Our spectroscopy scheme addresses only the A component of a vibrational level of the
A − b manifold. Moreover, only states with angular momentum J = 1 and negative parity
can be observed, because the electronic singlet component of the Feshbach molecule has the
quantum number J = 0 and positive total parity.
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6.4 Experimental observations

6.4.1 Spectra of A levels

We �rst discuss the data for levels with mainly A1Σ+
u character. Six di�erent vibrational states

(vA = 66 to 70 and 72) have been investigated. The obtained spectra for vA = 66 to 70 look
very similar. Figure 6.2(a) shows the recording for vA = 66 as an example. Two resonance
dips are visible, one being the π transition (∆mF = 0), while the other one is the σ transition

v = 72A

v = 66A

2, 1

3, 1

1, 1

2, 2

3, 2

3, 3

Figure 6.2: Loss resonances for excitation of molecules from the Feshbach state to vibrational
levels vA = 66 (a) and vA = 72 (b) of the A1Σ+

u potential obtained with π-polarized
light (black squares) and σ-polarized light (red circles). Shown is the fraction N/N0

of remaining Feshbach dimers dependent on the detuning δ, where δ = 0 is at the
resonance frequency of the strong π transition. The corresponding o�set energies
are listed in table 6.1. Solid lines are �ts of the function e−KL to the data (see
section 6.4.1). For a given vibrational quantum number vA the measurements with
π- and σ-polarized light are performed using the same laser intensities and pulse
lengths. Colored vertical lines in part (b) indicate the frequency positions of the
levels |F ′,m′F 〉 resulting from our model calculations (see section 6.6).
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(∆mF = ±1). Within the measurement uncertainty of a few MHz both resonances are located
on top of each other and Zeeman or hyper�ne splitting is not observed. We determine the
transition frequencies from �ts to the data using the function e−KL, where the amplitude K
is a free �tting parameter and L represents a Lorentzian. Typically, the obtained transition
linewidths (FWHM) are on the order of 10− 20 MHz.

In table 6.1 the absolute energies of states vA derived from the π resonances are summarized
and compared to theoretical predictions. The admixing parameter pb and Ecalc are taken from
Ref. [196]. Since the calculations were originally given with respect to the potential minimum
of X1Σ+

g , for the comparison to our experimental results, we added the electronic term energy
TXe = −3993.5928(30) cm−1/(hc) of X1Σ+

g [122] and the hyper�ne shift of +8.543GHz× h/c,
where c is the speed of light. The overall agreement between the theoretical and experimental
data is within the uncertainty of the theoretical predictions of 0.01cm−1/(hc) (corresponding to
300MHz×h). Noticeably, the calculated values are systematically higher by several 10−3 cm−1

compared to our measurements. Besides a possible systematic uncertainty within the theoret-
ical model, these deviations can also arise from the limited accuracy of our wavemeter and the
uncertainty of the energy TXe .

In contrast to the states vA = 66 and 69, where both, the π and the σ transition occur at
the same frequency within the measurement uncertainty, vA = 72 shows a signi�cant splitting
[cf. Fig. 6.2(b)]. This is due to the fact that the admixing of the b state is relatively large
(pb ≈ 40%, see table 6.1) and a b3Πu 0− level is located energetically close-by. The level
vA = 72 signi�cantly exhibits the characteristics of b3Πu 0+, which will be discussed in the
following sections.

6.4.2 Spectra of b levels

Our spectroscopic data on states with mainly triplet character, i.e., pb > 50%, are shown in
Fig. 6.3. For all investigated vibrational quantum numbers vb = 73 to 76 and 78 we only
clearly observe a single resonance dip when using π-polarized light. Contrary to that, the
scans related to σ polarization reveal 2 or 3 resonance features of which some might have an
unresolved substructure. In each spectrum, the σ transitions are well separated from the π
transition. We therefore choose the π resonance as a local reference to which we assign the
frequency δ = 0 in the �gures.

At �rst sight the spectra for vb = 73 to 76 and 78 might look somewhat irregular. For
di�erent vibrational levels vb the number of transitions, their splittings, and their relative
intensities vary. In addition, the splittings for a given vb are not equidistant as mentioned
earlier for high J . However, closer inspection reveals that all these spectra are characterized
by a similar pattern. To show this, we arrange the spectra in the order vb = 74, 73, 78 and 76
[Fig. 6.3(a)-(d)] corresponding to their respective splitting magnitude. In each spectrum the σ
lines are located at δ > 0. There is always one weak resonance next to the π transition and
one strong resonance feature at larger δ. For vb = 76, where the total splitting is very large,
the resonance dip at δ ∼ 90 MHz seems to split up into two or more lines. Due to the limited
resolution of about 5MHz in our experiment we cannot clearly resolve the individual resonance
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1, 1 Fig. 6.3: Loss spectra for excitation
of molecules from the Fesh-
bach state to vibrational
levels vb = 74 (a), vb =
73 (b), vb = 78 (c), vb =
76 (d), and vb = 75
(e) of the b3Πu potential
obtained with π-polarized
light (black squares) and
σ-polarized light (red cir-
cles). All parameter de-
notations, the �t function
and the meanings of the ver-
tical lines are identical to
those of Fig. 6.2. The o�-
set energies corresponding
to the transitions at δ = 0
are given in table 6.2. For
vb = 73 and 74 the intensity
and pulse length of the σ-
polarized light was the same
as for π polarization. The
spectra of vb = 78 (vb = 75)
were measured with di�er-
ent pulse lengths τ , where
the ratio was τσ/τπ = 5/3
(τσ/τπ = 2/1). Concern-
ing vb = 76, data of two
scans with σ-polarized light
are shown (magenta and
red). Whereas the ma-
genta data points were ob-
tained using the same pulse
area as for π polarization,
it was by a factor of eight
larger when measuring the
red data points.
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lines, but the observed �uctuations in the number of molecules are a clear indication of an
internal structure of this resonance dip.

In contrast, the spectrum of vb = 75 [Fig. 6.3(e)] is inverted compared to the spectra
discussed before and exhibits three σ resonances, all of them at δ < 0. As it is spread over an
even larger frequency range of about 160MHz, the resonance dips at −160MHz and −130MHz
are clearly separated from each other. The o�set energies for the observed lines at δ = 0
are listed in table 6.2 and are compared to the theoretical predictions of Ref. [196]. Again,
the agreement is within the theoretical uncertainty. However, we note that the measured
π transitions contain shifts due to hyper�ne and Zeeman interaction. These shifts of up to
190 MHz (see section 6.6) would need to be subtracted for a proper comparison of the data
with the calculations of Ref. [157].

6.5 Simple model of the molecule

In principle, hyper�ne and Zeeman interaction within the 3Π state of diatomic molecules has
been theoretically investigated in depth (see, e.g., the 4th-order perturbation approach of
[198]). However, properly applying such theoretical (and often complex) approaches to inter-
pret measured spectra can still be a challenge because of the large number of parameters for
representing the di�erent orders. Therefore, we have developed a simple model which neglects
some fundamental properties of a molecule. Nevertheless, it should be adequate to explain
semi-quantitatively the Zeeman and hyper�ne structure observed in our spectra.

In our model, the Rb2 molecule is treated as a rigid rotor with �xed internuclear separation.
Consequently, there is no vibrational degree of freedom. However, the positions of the nuclei
can be interchanged. This is necessary in order to construct fully antisymmetric wave functions
for the system of the two nuclei and the two valence electrons owing to the particles' fermionic
character. Essentially, we consider the molecule as if it was composed of two unperturbed
neutral atoms, of which, however, the angular momenta ~L and ~J are strongly coupled to the
rigid rotator axis. In each of the atoms the orbital angular momentum Li of the local electron i
is a good quantum number. Thus, molecules belonging to the atom pair 5S1/2+5P1/2 have both
a p-orbital with Li = 1 and a s-orbital with Li = 0, and the total orbital angular momentum
is L = 1 (~L = ~L1 + ~L2). Therefore, the two valence electrons can never be found in the
same orbital. Coupling the electrons to the rotator axis (which corresponds to the internuclear
axis) forms the electronic states 2S+1Λu/g of the molecule. For simplicity, in the following
discussion we restrict the model to those electronic states that are most relevant to describe
our observations, i.e., states with u-symmetry and Ω = 0. These are b3Πu (0+ as well as 0−),
A1Σ+

u and (2)3Σ+
u (see section 6.3.2).

The molecule is described by the Hamiltonian

H = HDiag +HSO +HR +HHF +HZ , (6.1)

which, in addition to a diagonal energy matrix, contains spin-orbit coupling, nuclear rotation,
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hyper�ne and Zeeman interaction. The diagonal energy matrix

HDiag =
∑

Λ,S,0±

EΛ,S,0± P (2S+1Λu 0±) (6.2)

sets the initial values for the energies EΛ,S,0± of the electronic levels 2S+1Λu 0± before the
remaining terms of the Hamiltonian are turned on. Here, P (2S+1Λu 0±) denotes the projector
onto the respective state. In order to describe the hyper�ne and Zeeman structure for a given
vibrational level v′ (with symmetry 2S′+1Λ′u′ 0±), the in�uence of all surrounding vibronic levels
for each symmetry is mimicked by a single, e�ective energy value EΛ,S,0± . As an example, let
us assume that we want to describe the hyper�ne and Zeeman structure of the vibrational level
vb = 75 of the b state. As can be seen in Fig. 6.1(b), vb = 75 is surrounded by several vA
levels in its proximity, with vA = 67, 68 and 69 being the closest ones. All these vA levels are
replaced by a single e�ective vibrational level with energy EΣ,0,0+ in our model.

The second term of Eq. (6.1) is the spin-orbit interaction

HSO = CSO( ~S1 · ~L1 + ~S2 · ~L2) , (6.3)

which couples spin ~Si and orbital angular momentum ~Li of electron i. Here, CSO denotes the
spin-orbit parameter being the corresponding atomic value divided by two because we have only
50% probability for each electron to be in the p-orbital. From the atomic �ne structure in 87Rb
(see, e.g., [87]) one obtains CSO =

[
E(52P3/2)− E(52P1/2)

]
/(3~2) = 2374GHz×h/~2. We use

this value of CSO for the spin-orbit interaction between (2)3Σ+
u and b3Πu 0−. These states are

separated by about 5000cm−1 [cf. Fig.6.1(a)]. The corresponding level repulsion shifts the b3Πu

0− component to lower energies by several tens of GHz × h compared to the situation, when
spin-orbit interaction is ignored. For the spin-orbit coupling between A1Σ+

u and b3Πu 0+, we
additionally take into account the overlap integral of the relevant vibrational wave functions,
which is typically ∼ 0.1 for states of the considered frequency range (9360 − 9600 cm−1).
The spin-orbit interaction is responsible for the frequency splitting ∆ between the 0− and 0+

components of b3Πu and the mixing of the A and b state which is expressed in terms of the
admixing parameter pb. It turns out that ∆ and pb are the two quantities, which essentially
determine the hyper�ne and Zeeman structure of a vibrational state. By �ne tuning ∆ and
pb in our model we can describe the observed spectra. For practical purposes, we vary neither
CSO nor the value of the overlap integral (= 0.1), instead we use the term energies of the
relevant uncoupled states in HDiag. Concretely, we adjust pb by setting the separation between
A1Σ+

u and b3Πu, while the size of ∆ is adjusted by shifting the term energy of the 0− level
relative to the 0+ level.

The third term of Eq. (6.1),
HR = Bv ~R

2 , (6.4)

describes the rotation of the atom pair. According to the calculations of Drozdova et al. [196],
the rotational constant Bv is about 0.54 GHz × h/~2 for the A − b states with dominant b
character and vibrational quantum numbers vb ∼ 70 − 80 of 87Rb2. The quantum number
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of angular momentum ~R appearing in the atom pair basis determines the total parity of the
molecular state according to −(−1)R. But R is not a good quantum number for the molecular
eigenstates since ~R2 does not commute with HDiag.

Next, we consider the hyper�ne interaction HHF. As mentioned in [173], the Fermi contact
term is in general su�cient to characterize the hyper�ne interaction of alkali-metal dimers. We
use

HHF = bF(~S · ~I) , (6.5)

with ~S = ~S1+ ~S2 and ~I = ~I1+~I2. According to Ref.[173], the e�ective Fermi contact parameter
bF for an atom pair (s+p) is bF ∼ AHF,atom/4, where AHF,atom = 3.417GHz×h/~2 denotes the
atomic hyper�ne parameter for the 5S1/2 level of

87Rb [199]. We note that Eq. (6.5) is formally
identical to the atomic hyper�ne interaction of a ground state electron (i.e., s orbital) with its
local nuclear spin Ii. The factor 1/4 normalizes the interaction because at any instant in time
only one of the two electrons (i.e., the s electron) interacts with only one of the two nuclei. By
using the ansatz of Eq. (6.5) we neglect the nondiagonal part of the hyper�ne interaction with
respect to S and I and thus there is no mixing of u/g symmetry. However, this approximation
should be valid as the energy spacing between possibly coupled u/g states is signi�cantly larger
than the 0−/0+ spacing considered in this work.

The last term of Eq.(6.1) characterizes the Zeeman interaction in a homogeneous magnetic
�eld of strength B in z direction

HZ = µB[gL Lz + gS Sz + gI Iz]B , (6.6)

with µB being Bohr's magneton. Here, we consider the Zeeman interaction due to the orbital
angular momenta of the electrons, the electronic spins as well as the nuclear spins, where
gL = 1, gS = 2.002319 and gI = −0.000995 for 87Rb [199] are the corresponding g-factors.

The matrix elements are calculated in an uncoupled atom pair basis, being a properly
antisymmetrized product of eigenstates of all needed angular momenta and their projection on
the space-�xed axis z, and the nuclear positions at both ends of the rotator axis. Table 6.3
gives an overview of the range of quantum numbers for the Ω = 0 states of b3Πu, which are
needed to setup the matrix. The total molecular angular momentum J ( ~J = ~R + ~L + ~S, i.e.,
without nuclear spins) is a fairly good quantum number, because the hyper�ne and Zeeman
interaction is small compared to the other interactions.

6.6 Model calculations and interpretation of measured data

In the following we use the model introduced in the previous section to calculate the Zeeman
and hyper�ne structure for an A − b bound state as a function of the frequency splitting
∆ = [E(0−, J = 0)− E(0+, J = 1)]/h of the 0± components of b3Πu

35, the degree of mixture
pb between the A and b states, as well as the magnetic �eld B. We de�ne ∆ to be the

35The di�erent J values are required for obtaining the same parity for the mixed states. In addition to J = 0,
also the level J = 2 of 0− will couple to J = 1 of 0+. The rotational energy splitting between J = 0 and 2
of 0− is determined by Eq. (6.4).
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0+ 0−

J I +/− R I +/− R

0 1, 3 + 1 0, 2 − 0, 2

1 0, 2 − 0, 2 1, 3 + 1, 3

2 1, 3 + 1, 3 0, 2 − 0, 2, 4

3 0, 2 − 2, 4 1, 3 + 1, 3, 5

4 1, 3 + 3, 5 0, 2 − 2, 4, 6
...

...
...

...
...

...
...

Table 6.3: Overview of the range of quantum numbers for states 0+ and 0− of b3Πu with
low angular momentum J . The +/− columns provide the total parity whereas I
represents the total nuclear spin and R is the atom pair rotation. Note that the
quantum numbers I and parity alternate with J . This behavior is also found for the
even and odd values of R. Furthermore, the molecular rotation increases with J .

splitting between 0± after diagonalization of the Hamiltonian H of Eq. (6.1). In order to keep
the discussion simple, we restrict ourselves to the range of quantum numbers and parameters
directly related to our experiments. As explained in section 6.3.2, starting from Feshbach
molecules we can only optically excite A − b bound levels through the A1Σ+

u 0+ component
with angular momentum J = 1 and negative parity. Furthermore, we want to point out that
the eigenstates of the Hamiltonian of Eq.(6.1) are eigenstates of the total nuclear spin I. Thus,
we can restrict ourselves to bound states with I = 2, being equal to the value of the singlet
component of the Feshbach state applying the electric dipole selection rule ∆I = 0.

The diagonal Zeeman and hyper�ne interactions of the states 0± are negligible compared
to our measurement uncertainty. However, both the Zeeman interaction HZ and the hyper�ne
interaction HHF couple 0+ and 0− within b3Πu. In particular, (J = 1, I = 2) of 0+ couples
to (J = 0, I = 2) and (J = 2, I = 2) of 0− (see table 6.3). This leads to mixing, i.e., to
the creation of eigenstates with a net electronic magnetic moment and thus to Zeeman and
hyper�ne splittings. Interestingly, hyper�ne and Zeeman interaction amplify the line splittings
in a cooperative way because they have matrix elements for the coupling between 0+ and 0−

similar in magnitude and equal in sign. Hence, if Zeeman and hyper�ne interaction are of the
same strength their combined e�ect increases the line spacings not only by a factor of two but
by a factor of four. Our experiments are indeed close to this regime for the selected magnetic
�eld of about 1000 G.

The Zeeman and hyper�ne splitting crucially depends on the frequency spacing ∆ between
the levels 0− and 0+ of b3Πu. Using standard perturbation theory, the splitting is estimated
to be proportional to 〈HZ +HHF〉2/∆. We recall that the spin-orbit couplings to (2)3Σ+

u and
A1Σ+

u generate the spacing ∆ between the levels 0− and 0+ of b3Πu in the restricted Hilbert
space.

Figure 6.4 depicts results of our model calculations for a vibrational level of A − b with
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Figure 6.4: Hyper�ne level structure for a vibrational state vb with pb = 80% for two magnetic
�elds, B = 0 G (a) and 1000 G (b). Shown are the frequency positions δ of the
levels |F ′,m′F 〉 relative to the state |2, 2〉, as a function of ∆. The inset in (b) gives
the relative strengths κ for the optical dipole transitions from the Feshbach state
towards the levels |F ′,m′F 〉 of vb at B = 1000 G. For |2, 2〉 we set κ = 1. For
convenience, we have plotted the same data in Fig.6.7 in terms of 1/∆. This makes
it easier to read o� the line splittings for small |∆|.

80% triplet (b) and 20% singlet (A) character. The frequency positions of levels |F ′,m′F 〉 are
shown as a function of ∆ for two magnetic �elds, B = 0 G and 1000 G. Although the total
angular momentum F ′ is generally not a good quantum number anymore at higher magnetic
�elds, we refer to the molecular levels by the correlated value of F ′ at B = 0G. In Fig. 6.4 only
those six states |F ′,m′F 〉 are plotted that, according to the dipole selection rules, are accessible
by our spectroscopy experiment. As the Feshbach molecule has F = 2, mF = 2, levels with the
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quantum numbers m′F = 2 (m′F = 1, 3) can be observed via π (σ) transitions. We choose the
state |F ′ = 2,m′F = 2〉 as energy reference (i.e., δ = 0), because it corresponds to the strong
π resonance in Figs. 6.2 and 6.3. This allows for convenient comparison of our calculations to
the measured spectra. Note, at B = 0 G, no mF splitting can occur and therefore only three
di�erent curves are discernible in Fig. 6.4(a).

In our calculations, ∆ is set by adjusting the initial energy spacing between the 0+ and
0− components of the b state in HDiag [see Eq. (6.2)]. To a good approximation, within the
frequency ranges considered in Fig. 6.4 (i.e., |∆| = 16− 129 GHz) the level splittings increase
inversely with ∆, just as expected from perturbation theory. This can directly be seen in
Fig. 6.7 of section 6.10. For B = 1000 G and a small |∆| of 16 GHz, the overall spreading of
the levels reaches more than 200 MHz, whereas for a large |∆| ≥ 60 GHz it is on the order of
a few tens of MHz or less. Furthermore, the ordering of the energy levels is inverted, when
the sign of ∆ changes. We point out that some level spacings are smaller than the expected
linewidths and therefore cannot be resolved in the experiment. The widths of the levels are
mainly determined by those of the A1Σ+

u state (∼ 12 MHz) and the admixing parameter pA,
because the width of the pure b3Πu state is orders of magnitude smaller compared to the one
of A1Σ+

u . The basic structure of the calculated levels (see Fig. 6.4) and the level widths let
us expect to resolve three resonance features which agrees well with our observations shown in
Fig. 6.3.

We now want to assign the experimentally observed resonances to distinct transitions.
Besides considering the line positions we also take into account the strength of the lines. For
this purpose, we calculate the dipole matrix elements MFS,(F ′,m′F ) from the initial Feshbach

state |FS〉 to the �nal levels |F ′,m′F 〉 of the mixed b3Πu state. As already mentioned, we only
have to consider the singlet component of both levels. The inset in Fig.6.4(b) shows the relative
transition strengths κ = M2

FS,(F ′,m′F )/M
2
FS,(2,2) at B = 1000 G. We can roughly group the six

transitions into three strong ones (by σ light towards �nal states |3, 1〉 and |3, 3〉, by π light
towards |2, 2〉) and three weak transitions (σ: towards |1, 1〉 and |2, 1〉 and π: towards |3, 2〉).
Our observed spectra always exhibit only one strong line for π-polarized light (cf. Fig. 6.3).
It is therefore assigned to |2, 2〉 and used as reference level. The calculations predict a second
resonance for π polarization which should be about one order of magnitude weaker. However,
we did not unambiguously observe this line since its signal is easily drowned by the overlaying
strong σ lines if the achieved light polarization is not su�ciently pure.

In the following, the σ transitions are discussed in detail using the results shown in
Fig. 6.4(b). Although the transition towards |2, 1〉 is weak, we should be able to clearly observe
it, since the level |2, 1〉 is well separated from all other levels. The three remaining transitions
(towards |1, 1〉, |3, 1〉 and |3, 3〉), however, are quite close to each other. Especially for larger
values of |∆| (& 40GHz) these levels cannot be resolved and only a single resonance should be
visible. Among the three transitions, the one towards |3, 3〉 is most dominant. For low values
of |∆| (< 40 GHz) the strong |3, 3〉 line splits clearly from those corresponding to |1, 1〉 and
|3, 1〉 which both barely separate. This explains why our observed spectra for σ-polarized light
in Fig. 6.3 exhibit at most three resonance features. At this stage we have shown that the
experimental data can be qualitatively explained by our theoretical model and that we already
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can assign quantum numbers to the measured resonance lines.
Now, we want to carry out a more quantitative comparison of the measured line splittings

in Fig. 6.3 with the model predictions. For this, we study the dependence of the energy
level structure on the admixing parameter pb, i.e., the percentage of the b3Πu potential in the
vibrational state vb. In the simulations, we set pb by adjusting the term energy of the bare A1Σ+

u

state in Eq. (6.2). Results for ∆ = +59 GHz are shown in Fig. 6.5. To good approximation,
within the investigated range from pb = 65% to 95% the level frequencies depend linearly on
pb. This makes sense as the discussed hyper�ne and Zeeman interaction only appears within
the b3Πu (Ω = 0) state.

In order to carry out the quantitative comparison for each spectrum vb, we individually
�x the splitting of the bare A1Σ+

u 0+ and b3Πu 0+ levels such that the admixing parameter pb
equals to its literature value [157, 196], as listed in table 6.2. Afterwards, we �t our model to
the measured spectrum by adjusting a single parameter, the e�ective term energy of b3Πu 0−

in HDiag and thus the splitting ∆ between the 0− and 0+ components of the b state. All other
parameters of the model are kept at the values given in section 6.5. For the �t, we ignore the
states |3, 2〉 and |1, 1〉 since they cannot be experimentally resolved [see inset of Fig. 6.4(b)].
The resulting spectral positions of the hyper�ne levels are shown in Fig. 6.3 as vertical lines
together with the measured spectra. The agreement is quite satisfactory as the experimental
and calculated line positions do not di�er by more than a few MHz. Our �t results for ∆, i.e.,
the splitting of the 0± states after diagonalizing the Hamiltonian H of Eq. (6.1), are listed in
Fig. 6.3 as well as in table 6.2. We obtain values ranging from ∆ = −19.7 GHz to 104.5 GHz.
The error boundaries for ∆ in table 6.2 are estimated by simulations shifting the resonance
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Figure 6.5: Dependence of the hyper�ne and Zeeman structure on the admixing parameter
pb for a �xed value of ∆ = +59 GHz and a magnetic �eld of B = 1000 G. The
frequency δ is given relative to the |2, 2〉 level.
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frequency δ of the strong |F ′ = 3,m′F = 1〉 line by ±5MHz relative to the reference |2, 2〉. Such
an approach is reasonable as the frequency stability in our measurements is ±(2− 5)MHz.

Next, we investigate the Zeeman and hyper�ne structure as a function of the magnetic �eld.
Figures 6.6(a) and (b) depict the model calculations for the vibrational levels vb = 75 and 73,
respectively, using the values of pb and ∆ given in table 6.2. For both plots the admixing
parameters are similar (pb ≈ 80%), while the respective frequency spacings ∆ have di�erent
signs and magnitude. We show all the levels accessible in our spectroscopy together with the
experimentally derived levels at B = 999.9 G. Here, the frequency reference is represented by
the level |2, 2〉 at this magnetic �eld. We present in Fig. 6.6(c) the full hyper�ne and Zeeman
structure of a single state vb for ∆ = +14.0GHz, pb = 80.00%. This graph reveals particularly
well the transition from the linear Zeeman e�ect to a quadratic behavior above a few hundreds
of gauss and the enhancement of the splitting by the cooperative e�ect between Zeeman and
hyper�ne interaction.

Finally, we want to give a quantitative interpretation of the spectrum corresponding to
the vibrational level vA = 72 of A1Σ+

u [see Fig. 6.2(b)], which has a large b state admixture
(pb = 39.36%) due to the strong coupling of vA = 72 to vb = 78 as these states are fairly close
to each other. The separation is only 89.2 GHz according to tables 6.1 and 6.2. For vb = 78,
our model determines a spacing of ∆ = 36.4+3.4

−2.9 GHz between its 0+ and 0− components.
Consequently, the b3Πu 0− state is only separated by −52.8+3.4

−2.9 GHz from the A1Σ+
u 0+ state.

From this, we can predict the hyper�ne structure for vA = 72 with our model. The results
are shown in Fig. 6.2(b). As can be seen, the calculated and measured resonances agree well,
which nicely con�rms the consistency of our model.

6.7 Splitting between 0+ and 0− components in a potential

scheme

In the previous section, we have determined the e�ective splitting ∆ = [E(0−, J = 0) −
E(0+, J = 1)]/h for the state b3Πu using our simple model without vibrational degree of
freedom. Here, we compare the obtained results to those of coupled channel calculations with
a potential scheme, i.e., including the full dynamics of the relative motion within the atom pair.
As a �rst step we follow Ref. [157] and therefore restrict the calculations to the A− b system,
such that the spin-orbit interaction and the molecular rotation only couple the A and b states.
Thus, the in�uence of the spin-orbit coupling of b3Πu 0− to (2)3Σ+

u 0− is not yet considered.
The term values for the A− b complex are listed in table 6.4. For the calculations we take the
model potentials and spin-orbit functions reported in Ref. [157]. Columns 3 and 4 show the
term values for 0+, J = 1 and 0−, J = 0 in the absence of spin-orbit coupling, respectively. At
this stage, the 0+ and 0− components of the b3Πu state are only split due to rotation. Column
5 lists the term energies for 0+, J = 1 if the spin-orbit coupling is included. These are the same
values as given in tables 6.1 and 6.2. Column 6 provides the energy di�erence of each 0+ state
in column 4 relative to the closest 0− state in column 3. This quantity, which we call ∆A−b, is
the prediction for the 0± splitting within the A−b system. Noticeably, ∆A−b varies strongly for
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Fig. 6.6: Zeeman structure of the hy-
per�ne levels |F ′,m′F 〉 as a
function of the magnetic �eld
B. The frequency is refer-
enced to the position of level
|2, 2〉 atB = 999.9G. (a) Sim-
ulations for ∆ = −19.7 GHz,
pb = 73.80%, (b) for ∆ =
+81.8 GHz, pb = 82.70%
and (c) for ∆ = +14.0 GHz,
pb = 80.00%. The black
square (red dot) plot sym-
bols indicate the experimen-
tally observed resonances ob-
tained with π-polarized (σ-
polarized) light correspond-
ing to vb = 75 (a) and 73
(b). The error bars rep-
resent the measured transi-
tion linewidths (FWHM) de-
termined from our �ts to the
data [cf. Fig. 6.3(b) and (e)].
In (c), all hyper�ne energy
levels of the vibrational state
vb (J = 1, I = 2) are plotted,
where the color code is ex-
tended for the additional lev-
els compared to (a) and (b).

di�erent vibrational levels, which results from the fact, that the uncoupled vibrational ladders
vA and vb of A1Σ+

u and b3Πu are interwoven with di�erent spacings. Thus, their repulsion
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state vA, vb 0+, J = 1 0−, J = 0 0+, J = 1 ∆A−b ∆obs ∆obs −∆A−b

(w/o SO) (w/o SO) (w SO)

[hc× cm−1] [hc× cm−1] [hc× cm−1] [GHz] [GHz] [GHz]

A1Σ+
u 65 9352.911 9352.078 534.3

b3Πu 73 9369.939 9369.901 9368.758 34.3 81.8 47.5+10.6
−8.5

A1Σ+
u 66 9388.026 9388.005 −542.7

b3Πu 74 9414.679 9414.641 9412.519 63.6 104.5 40.9+23.9
−16.4

A1Σ+
u 67 9423.000 9423.589 −268.3

A1Σ+
u 68 9457.834 9454.571 137.9

b3Πu 75 9459.210 9459.172 9460.874 −51.0 −19.7 31.3+0.6
−0.6

A1Σ+
u 69 9492.527 9491.049 373.0

b3Πu 76 9503.529 9503.492 9503.516 −0.7 40.0 40.7+2.2
−2.0

A1Σ+
u 70 9527.078 9525.742 655.2

b3Πu 77 9547.635 9547.598 9547.629 −0.9

A1Σ+
u 71 9561.487 9560.041 −373.0

b3Πu 78 9591.525 9591.488 9591.479 0.3 36.4 36.1+3.4
−2.9

A1Σ+
u 72 9595.754 9594.454 −88.9 −52.8 36.1+3.4

−2.9

A1Σ+
u 73 9629.979 9627.657 224.9

Table 6.4: Energy levels of the component Ω = 0 of A1Σ+
u and of b3Πu without (w/o SO) and

with (w SO) spin-orbit coupling. Column 3 shows the calculated energies for 0+ of
the A and b states for J = 1, whereas column 4 contains only energy levels for 0−

and J = 0. In column 5 the corresponding values for 0+ and J = 1 are provided,
obtained with the spin-orbit interaction between states A and b. Column 6 reports
the splittings [E(0−) − E(0+)]/h calculated for the restricted system A − b and
denoted by ∆A−b, while column 7 lists the results derived from our experiments.
(For details see text.)

due to the interaction of di�erent vibrational levels is fairly irregular. Column 7, labeled ∆obs,
recalls the �ndings for ∆ inferred from our measurements. There is disagreement between the
measurements and the results of the restricted coupled channel model. All values ∆obs are
signi�cantly larger than ∆A−b. However, it is striking that the di�erences between ∆obs and
∆A−b are all close to 40GHz. The actual values are given in column 8, where the uncertainties
are taken from ∆obs (see, e.g., table 6.2). Indeed, all di�erences (except for vb = 75) are equal
within the given uncertainties. Could the spin-orbit coupling to state (2)3Σ+

u be responsible
for this discrepancy of ≈ 40 GHz? No, it cannot. Indeed, the (2)3Σ+

u state is far up in energy
[cf. Fig. 6.1(a)] and therefore all vibrational levels of b3Πu 0− experience an almost constant
shift, but it has the wrong sign to explain the observations. If ab initio calculations for the
(2)3Σ+

u potential energy curve and the corresponding spin-orbit interaction are applied, we
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obtain quantitatively that the 0− component of the b3Πu state is shifted by about 50GHz× h
to lower energies. This increases the deviation of already 40 GHz to about 90 GHz, much
beyond experimental uncertainties.

Because the energetic order of the 0+ components are accurately determined from former
spectroscopic work [157], our observation directs clearly to the spin-orbit energy of the 0−

component of state b3Πu. Interestingly, the spin-orbit functions of b3Πu presented in Fig. 6(a)
of [157] are di�erent for Ω = 2 and Ω = 0 by about 1.8 cm−1 as derived from the reported
amplitude DSO

e of the spin-orbit function in Table V of Ref.[157]. This di�erence indicates that
b3Πu is no longer a pure spin-orbit multiplet of a Π state. If we consider that a similar deviation
of the multiplet structure also exists for 0−, then a decrease of about 2.6 cm−1 compared to
the spin-orbit function for 0+ in [157] would be su�cient to model the ∆obs as given in table
6.4. We believe that this is a plausible explanation of our observation.

Finally, in view of the calculated splittings of 0− and 0+ we want to recall the measurements
for the vibrational levels vA = 66 and 69 of A1Σ+

u (cf. Fig. 6.2(a) and table 6.1). The absolute
values |∆A−b|, even when corrected by the above determined shift of 90 GHz, are very large.
Therefore, according to the discussion in section 6.6, we do not expect signi�cant hyper�ne
and Zeeman splittings. Indeed, no hyper�ne structure was observed in our spectra for vA = 66
and 69.

6.8 Conclusion

We have investigated the combined hyper�ne and Zeeman structure in the spin-orbit coupled
A1Σ+

u − b3Πu complex of 87Rb2 dimers. We performed spectroscopy of ultracold Feshbach
molecules at a magnetic �eld of 999.9 G and recorded the spectra for several excited vibra-
tional levels with either dominant A1Σ+

u character (vA = 66 − 70 and 72) or dominant b3Πu

character (vb = 73 − 76 and 78). We observe large line splittings of up to 160 MHz and �nd
that the Zeeman and hyper�ne structure of the 0+ state of b3Πu varies strongly for di�erent
vibrational levels. Using a simple model, where the molecule is treated as a rigid rotor of two
neutral atoms, we can explain the level structures as resulting from nondiagonal hyper�ne and
Zeeman interactions between the 0+ and 0− components of b3Πu. The hyper�ne and Zeeman
interactions act in a cooperative way, which enhances the level splittings. Furthermore, the
level splittings depend linearly on the admixture pb for the components 0+ of the complex
b3Πu and A1Σ+

u , and scale inversely with the frequency spacing ∆ between 0− and 0+. From
�ts of our model to the data, we �nd that ∆ strongly varies in the range of −53 to 105 GHz
within the interval of studied vb and vA. Our observed values for ∆ systematically deviate by
about 90GHz from predictions of close-coupled channel calculations of the electronic structure
correlated to the atom pair asymptote 52S + 52P using empirical potentials for A1Σ+

u and
b3Πu and ab initio results for (2)3Σ+

u . We can eliminate this deviation by introducing a spin-
orbit coupling function that is di�erent by 2.6 cm−1 for 0− and 0+.

The fact, that we can extract the frequency spacing ∆ from our measurements of the
hyper�ne and Zeeman structure is a signi�cant result of this work. In ordinary spectroscopy,
starting from a ground state molecule only the state 0+

u can be addressed, owing to selection
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rules. Therefore, very little data on the Λ-type doubling of Ω = 0 is available, so far. Recently,
all multiplet components of the (1)3Πg state were observed in the photoassociation of ultracold
85Rb atoms [139]. The colliding 2S+2S atom pair contains a superposition of states with both
symmetries 3Σ+

u (0− and 1) from which (1)3Πg (Ω = 0±, 1, 2) can be reached by electric dipole
transitions. To our knowledge, our method represents the �rst work to experimentally access
∆ by investigating only one of the 0± components of b3Πu.

In the simple model only the hyper�ne contribution from the s electron was considered.
Thus it is unknown, how much the missing contribution by the p electron and the electric
quadrupole interaction might in�uence the determination of the energy splitting between 0−

and 0+. In this respect and according to the evaluated multiplet structure here, it would be
interesting to compare the results of the simple model to full close-coupled channel calcula-
tions based on accurate Born-Oppenheimer potential curves including hyper�ne and Zeeman
interaction with its non-diagonal contributions between the multiplet components. But for
this task more experimental data is needed in order to determine the vibrational dependence
over a large interval, which allows for deriving r-dependent functional forms of the spin-orbit
interaction and probably also of the hyper�ne interaction. The latter one was clearly needed
in an earlier study on the triplet ground state a3Σ+

u of Rb2 [122]. We want to emphasize that
the strength of the present approach is, that the modeling of all observations on hyper�ne and
Zeeman splittings are concentrated in an e�ective single parameter, an average value of the
spin-orbit function for 0−. The hyper�ne parameter and the g-factors are kept constant at
their atomic values. This will be altered if a wide range of vibrational levels is studied.

In general, the gained information is valuable for a detailed, fundamental understanding of
molecular hyper�ne and Zeeman level structures. Despite the already existing long tradition
(see, e.g., the early paper by Freed [198]) there is still great interest in this �eld of research as
documented by recent experimental studies, for instance with respect to Rb2 [124, 200, 201].
Our results can be exploited for an optimized preparation of ultracold deeply-bound ground
state molecules either via photoassociation [202] or a stimulated Raman adiabatic transfer
(STIRAP) starting from Feshbach molecules.
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6.10 Inverse dependence of the hyper�ne structure on the

splitting between 0+ and 0− components

In �gure 6.7 we show the hyper�ne level structure for the parameters of Fig. 6.4 but as a
function of 1/∆. Figure 6.7 clearly reveals the inverse dependence of the level splittings on
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Figure 6.7: Hyper�ne level structure for a vibrational state vb with pb = 80% for two magnetic
�elds, B = 0 G (a) and 1000 G (b). Shown are the frequency positions δ of the
levels |F ′,m′F 〉 relative to the state |2, 2〉, as a function of 1/∆.

∆ in the investigated range of |∆| = 16 − 129 GHz. This representation is more convenient
for reading o� the splitting for small values of ∆. Furthermore, it becomes obvious that the
Zeeman e�ect enhances the splittings since in (b) the frequency separation of the group of levels
characterized by F = 1 and 3 relative to the group corresponding to F = 2 is signi�cantly
larger than in (a).

6.11 Additional spectroscopic data concerning the b3Πu state

We also have performed one-photon spectroscopy starting from Feshbach molecules towards

118



6.11 Additional spectroscopic data concerning the b3Πu state

the vibrational levels vb = 79 and 84 of the b3Πu state. These data are not fully interpreted up
to now. Nevertheless, for the sake of completeness and documentation, table 6.5 gives a com-
parison of the experimentally observed level energies and the values calculated by A. Drozdova
et al. [196]. In the following, the measurement results and some theoretical considerations
are discussed. However, please note, a �rm explanation of the spectra is not possible at the
moment and necessitates further investigations.

6.11.1 Discussion of data for vb = 84

Figure 6.8 shows our recording concerning the 0+ component of the vibrational level vb =
84. This scan has to be considered as preliminary as its details cannot be explained by our
theoretical model. Within a range of 100MHz, we clearly observe two resonances for σ-polarized
light and three resonances when using π polarization. In the following, we choose the arithmetic
mean of the center frequencies of the three π lines as reference. The corresponding value of
Eexp/(hc) = 9852.7094 cm−1 agrees well with the theoretical prediction for vb = 84 (cf. table
6.5). Surprisingly, we measure three resonance features when applying π-polarized light. As
discussed in section 6.4.2, the spectra for the 0+ component with respect to vibrational levels
vb = 73 to 76 and 78 exhibit just a single π line and according to selection rules no more than
two π transitions are allowed. Noticeably, if one neglects the two π resonances at around δ = 0
and −40 MHz in Fig. 6.8, the general structure of the spectrum is similar to the one observed
for vb = 73 to 76 and 78.

Of course, technical problems could lead to artifacts. For example, I want to consider the
e�ect of imperfect polarizations. In Fig. 6.8, there is no resonance dip for σ-polarized light on
top of the strong π resonance at around δ = +40 MHz. This indicates that the achieved σ
polarization was su�ciently pure. In contrast, concerning π polarization we cannot make such
a statement. It might be possible, that at the given frequency range, the π measurement was

vb b [%] Ecalc/(hc) [cm−1] Eexp/(hc) [cm−1] ε [10−3cm−1]

84 90.42 9852.710 9852.7094 0.6
79 89.80 9636.230 9636.1486 81.4

9636.2079 22.1
9636.2419 −11.9
9636.3145 −84.5
9636.4127 −182.7

Table 6.5: Comparison of calculated Ecalc and measured Eexp level energies with respect to
vibrational states vb = 84 and 79 of the b3Πu potential. The energy reference
is given by the |fa = 1,mfa = 1〉 + |fb = 1,mfb

= 1〉 atomic dissociation limit
at zero magnetic �eld (see section 6.3.1). In analogy to tables 6.1 and 6.2, ε =
(Ecalc−Eexp)/(hc) and pb denotes the admixture of the b3Πu potential. The values
for Ecalc and pb are taken from [196].
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Figure 6.8: Loss resonances for excitation of molecules from the Feshbach state towards the
vibrational level vb = 84 of the b3Πu potential obtained with π-polarized light
(squares) and σ-polarized light (circles). Here, the o�set energy corresponding to
δ = 0 and given in table 6.5 represents the arithmetic mean of the three frequencies
related to the π resonances. In analogy to Figs. 6.2 and 6.3, N/N0 denotes the
remaining fraction of Feshbach dimers and solid lines are �ts to the data applying
the function e−KL. The measurements with π- and σ-polarized light were performed
for the same laser intensities and pulse lengths.

compromised due to imperfect polarization, which would in�uence the signals at around δ = 0
and −40 MHz. In order to exclude a potential technical problem, a new measurement of the
vb = 84 spectrum should be performed.

6.11.2 Discussion of data for vb = 79

Here, only measurements for π-polarized light were performed. We observed �ve resonances,
which are separated by about a few GHz from each other (see Fig. 6.9). Among them, the
resonance at Eexp/(hc) = 9636.2419 cm−1 shows the best agreement with the calculated value
corresponding to vb = 78 (cf. table 6.5). How this structure comes about is not clear at the
moment. Possibly, similar to the mechanism reported for RbCs molecules in Ref. [185], it is
related to the fact that a Ω = 1 state of b3Πu is close-by. In table 6.6, calculated level energies
of Ω = 0, 1, and 2 states of b3Πu for all relevant frequency ranges are listed. In general, the
spacing between the Ω = 0 and Ω = 1 components is on the order of a few cm−1. However, as
the spacing is very similar for the di�erent vibrational states, it is surprising that the particular
level structure of Fig. 6.9 was only observed at around 9636 cm−1. Therefore, a �rm statement
about the in�uence of the Ω = 1 state is not possible at the moment and necessitates further
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Figure 6.9: Loss resonances for excitation of Feshbach molecules at around 9636cm−1 observed
with π-polarized light. The frequency δ = 0 corresponds to 9636.1486 cm−1 (a),
9636.3145 cm−1 (b), 9636.4127 cm−1 (c), 9636.2079 cm−1 (d), and 9636.2419 cm−1

(e) (cf. table 6.5).

theoretical and experimental investigation.

6.11.3 States corresponding to (((1)))3Σ+
g and (((2)))1Σ+

g

In this section, I want to consider some states of the (1)3Σ+
g and (2)1Σ+

g potentials as they are
close to the investigated frequency ranges.

� (1)3Σ+
g : According to the data corresponding to Fig. 3 of Ref. [124], the observed reso-

nances at ∼ 9636 cm−1 (∼ 9853 cm−1) given in table 6.5 are located between the (1)3Σ+
g

vibrational levels v(1) = 7 at about 9624cm−1 and v(1) = 8 at about 9659cm−1 (v(1) = 13
at about 9828cm−1 and v(1) = 14 at about 9862cm−1). Please note, each vibrational level
v(1) is a doublet of 0−g and 1g substructures of which the barycenters exhibit a splitting of
more than 40GHz [124]. However, the separation of adjacent states of b3Πu and (1)3Σ+

g

is still on the order of at least several cm−1. Thus, for the spectra shown in Figs. 6.8 and
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EΩ=0
calc /(hc) [cm

−1] EΩ=1
calc /(hc) [cm

−1] EΩ=2
calc /(hc) [cm

−1]

9368.758 9365.693 9354.493

9412.519 9410.754 9399.921

9460.874 9455.609 9445.146

9503.516 9500.256 9490.167

9591.479 9588.918 9579.587

9636.230 9632.930 9623.984

9852.710 9849.711 9842.750

Table 6.6: Comparison of calculated level energies for adjacent Ω = 0, 1, and 2 components
of the b3Πu state taken from Ref. [196]. Only those energy regions are considered
that are relevant with respect to the spectroscopy results presented in this chapter
(i.e., the values of the �rst column are identical to those given in tables 6.2 and 6.5,
respectively).

6.9 none of the resonance lines can be assigned to (1)3Σ+
g .

� (2)1Σ+
g : Information about the level structure of (2)1Σ+

g can be gained from the set of
parameters for 85Rb2 molecules listed in Ref. [203]. The provided term value Te for the
minimum of the (2)1Σ+

g potential curve is 13601.57cm−1 with respect to the minimum of
theX1Σ+

g potential. Using the o�set energies given in section 6.4.1 this value corresponds
to 9608.26cm−1 when taking the |fa = 1,mfa = 1〉+|fb = 1,mfb

= 1〉 atomic dissociation
limit at zero magnetic �eld as energy reference. Within a potential, the term values T (v)
of vibrational states can be calculated by means of the Dunham expansion (for more
details, see, e.g., [204]), which reads

T (v) ≈ Te + ωe

(
v +

1
2

)
− ωexe

(
v +

1
2

)2

, (6.7)

if it is truncated after the second order and rotational terms are neglected. For 85Rb2,
according to Ref. [203], ωe85 = 31.488 cm−1 and ωexe85 = −0.0114 cm−1. Now, we
have to calculate the corresponding parameters for 87Rb2. Accounting for the isotope
shift leads to ωe87 = ωe85

√
µ85/µ87 and ωexe87 = ωexe85(µ85/µ87) [204], where µ85 and

µ87 are the reduced masses of the 85Rb2 and the 87Rb2 molecules, respectively. Inserting
Te = 9608.26cm−1, ωe87 =

√
(85/87)×31.488cm−1 and ωexe87 = (85/87)×−0.0114cm−1

in Eq. (6.7) yields the term values listed in table 6.7. As can be seen, no vibrational state
v(2) of (2)1Σ+

g is in the direct vicinity of the measured transition lines around 9636 cm−1

and 9853 cm−1. However, I want to emphasize that the estimation of the term values
concerning v(2) is somewhat poor since higher order terms in the Dunham expansion
are neglected as the corresponding coe�cients are not available. Please note, an electric
dipole transition from the Feshbach state towards (2)1Σ+

g is not possible owing to selection
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v(2) T [cm−1]

0 9623.82

1 9654.97

2 9686.14

3 9717.33

4 9748.54

5 9779.78

6 9811.04

7 9842.32

8 9873.62

9 9904.94

10 9936.29

Table 6.7: Term values T (v(2)) of vibrational states v(2) = 0 to 10 corresponding to the (2)1Σ+
g

potential of Rb2 estimated using the Dunham coe�cients provided in Ref. [203].

rules. Thus, any in�uence of (2)1Σ+
g on the spectra shown in Figs. 6.8 and 6.9 would

be related to coupling mechanisms between potentials shifting the energies of relevant
states.
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Three-body recombination is a collision between three atoms where two atoms combine to
form a molecule and the third atom carries away part of the released reaction energy. Here,
we experimentally determine for the �rst time the population distribution of the molecular
reaction products after a three-body recombination for non-resonant particle interactions. The
key to our measurements is a sensitive detection scheme that combines the photoionization of
the molecules with subsequent ion trapping. Using an ultracold 87Rb gas at very low kinetic
energy below h × 20 kHz, we �nd a broad population of �nal states with binding energies of
up to h× 750 GHz. This is in contrast with previous experiments, performed in the resonant
interaction regime, that found a dominant population of only the most weakly bound molecular
state or the occurrence of E�mov resonances. This work may contribute to the development
of an in-depth model that can qualitatively and quantitatively predict the reaction products
of three-body recombination.
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7.1 Introduction

Whereas cold collisions of two atoms are well understood, the addition of a third collision part-
ner markedly complicates the interaction dynamics. In the context of Bose-Einstein condensa-
tion in atomic gases, three-body recombination plays a crucial role [205-208] and it constitutes
a present frontier of few-body physics [209-211]. Until now, recombination events were mainly
investigated by measuring atom loss rates. Discussions of the �nal states populated in the re-
combination process were restricted to the special case of resonant interactions [212, 213] and
culminated in the observations of E�mov resonances [214-216] and of molecules in the most
weakly bound states [217, 218]. However, in the more general case of non-resonant interaction,
that is, a modulus of the scattering length smaller than or comparable to the van der Waals
radius, the recombination products might depend on details of the interaction potential. In
fact, ongoing theoretical studies using simpli�ed models indicate that recombination does not
necessarily always favour the most weakly bound state (J. d'Incao, private communication;
see also Ref. [219]). In general, recombination processes are of fundamental interest in vari-
ous physical systems [205, 220, 221]. The control and tunability of ultracold atomic systems
provide an experimental testbed for a detailed understanding of the nature of these processes.

Here, we demonstrate the probing of molecules with binding energies up to h × 750 GHz
(where h is Planck's constant) generated through three-body recombination of ultracold ther-
mal 87Rb atoms. We produce the atomic sample in an optical dipole trap located within a linear
Paul trap. The recombination and detection process is illustrated in Fig.7.1(a)-(d). Following a
recombination event, the created Rb2 molecule can undergo resonance-enhanced multi-photon
ionization (REMPI) by absorbing photons from the dipole trap laser at a wavelength of around
1064.5 nm. The ion is then captured in the Paul trap and detected essentially background-free
with very high sensitivity on the single-particle level. Fig. 7.1(e) shows a simpli�ed scheme of
the Rb2 and Rb+

2 potential energy curves. From weakly bound molecular states, three photons
su�ce to reach the molecular ionization threshold. An additional photon may dissociate the
molecular ion. By scanning the frequency of the dipole trap laser by more than 60 GHz we
obtained a high-resolution spectrum featuring more than 100 resonance peaks. This dense and
complex spectrum contains information concerning which vibrational, rotational and hyper�ne
levels of the Rb2 molecule are populated. We present an analysis of these data and make
a �rst assignment of the most prominent resonances. This assignment indicates that in the
recombination events a broad range of levels is populated in terms of vibrational, rotational,
electronic and nuclear spin quantum numbers.

7.2 Experimental scheme

Our experimental scheme to detect cold molecules makes use of the generally excellent detection
e�ciencies attainable for trapped ions. It is related to proven techniques where cold molecules
in magneto-optical traps were photoionized from the singlet and triplet ground states [121, 222-
226] (see also Ref.[227]). Our method is unique as it introduces the use of a hybrid atom-ion trap
that signi�cantly improves the detection sensitivity. We perform the following experimental
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Figure 7.1: Illustration of recombination and ionization in the atom-ion trap. (a,b) A three-
body collision in the ultracold gas of 87Rb atoms (a) leads to a recombination event
in which a Rb2 molecule is formed with high kinetic energy (b). (c) While the atom
is lost from the trap, the molecule can be photoionized in a REMPI process and
trapped in the Paul trap. (d) The relative positions of the atom and ion trap
centers are shifted by about 300 µm to avoid atom�ion collisions. (e) Potential
energy curves of the Rb2 and Rb+

2 molecule adapted from Refs. [121, 228]. The
curves A, b, c are A1Σ+

u , b
3Πu, c3Σ+

u . The internuclear distance is given in units
of Bohr radii a0. A REMPI path with three photons is shown. It can create Rb+

2

ions in vibrational states up to v ≈ 17.

sequence. A thermal atomic sample typically containing Nat ≈ 5 × 105 spin-polarized 87Rb
atoms in the |F = 1,mF = −1〉 hyper�ne state is prepared in a crossed optical dipole trap at
a magnetic �eld of about 5G. The trap is positioned onto the nodal line of the radiofrequency
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�eld of a linear Paul trap. Along the axis of the Paul trap the centers of the atom and ion trap
are separated by about 300 µm to avoid unwanted atom-ion collisions [Fig. 7.1(d)]. At atomic
temperatures of about 700 nK and peak densities n0 ≈ 5 × 1013 cm−3 the total three-body
recombination rate in the gas is Γrec = L3n

2
0Nat/35/2 ≈ 10 kHz. Here, the three-body loss rate

coe�cient L3 was taken from Ref. [207]. At the rate Γrec, pairs of Rb2 molecules and Rb atoms
are formed as �nal products of the reactions. Both the atom and molecule would generally be
lost from the shallow neutral particle trap owing to the comparatively large kinetic energy they
gain in the recombination event (in our case typically of the order of a few K×kB, where kB is
the Boltzmann constant). The molecule, however, can be state-selectively ionized in a REMPI
process driven by the dipole trap laser. All of these molecular ions remain trapped in the deep
Paul trap and are detected with single-particle sensitivity (Methods). In each experimental
run, we hold the atomic sample for a time τ ≈ 10 s. After this time we measure the number
of produced ions in the trap from which we derive (after averaging over tens of runs) the ion
production rate Γion normalized to a cloud atom number of 106 atoms.

As a consistency check of our assumption that Rb2 molecules are ionized in the REMPI
process, we verify the production of Rb+

2 molecules. For this, we perform ion mass spectrometry
in the Paul trap (Methods). We detect primarily molecular Rb+

2 ions, a good fraction of atomic
Rb+ ions but no Rb+

3 ions. Our experiments show that Rb+ ions are produced in light-assisted
collisions of Rb+

2 ions with Rb atoms on timescales below a few milliseconds. Details of this
dissociation mechanism are under investigation and will be discussed elsewhere.

7.3 Dependence of the ion production on atomic density, laser

frequency and laser intensity

In the following, we analyze the dependence of the ion production rate on atomic density as
well as on laser frequency and intensity. This will ultimately help to understand the three-body
recombination process.

7.3.1 Density dependence

Two pathways for the production of our neutral Rb2 molecules come immediately to mind. One
pathway is far-o�-resonant photoassociation of two colliding Rb atoms (here with a detuning of
about 500GHz×h). This pathway can be ruled out using several arguments, the background of
which will be discussed in more depth later. For one, we observe molecules with a parity that
is incompatible with photoassociation of totally spin-polarized ensembles. Furthermore, we
observe a dependence of the ion production rate on light intensity that is too weak to explain
photoassociation.

The second pathway is three-body recombination of Rb atoms. Indeed, by investigating
the dependence of the ion production rate Γion (which is normalized to a cloud atom number
of 106 atoms) on atomic density, we �nd the expected quadratic dependence (Fig. 7.2). For
this measurement the density was adjusted by varying the cloud atom number while keeping
the light intensity of the dipole trap constant.
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Figure 7.2: Dependence of the ion production rate Γion on atomic density. Γion is normalized
to a cloud atom number of 106 atoms. The data are well described by a quadratic
�t (solid green line). They were taken at a constant dipole trap laser intensity
IL = 36 kWcm−2 and a laser frequency of νL = 281, 630 GHz. The error bars
indicate statistical uncertainties and represent one standard deviation from the
mean.

7.3.2 Dependence on laser frequency - REMPI spectrum

Next, we investigate the dependence of the ion production rate on the wavelength of the narrow-
linewidth dipole trap laser (Methods). We scan the wavelength over a range of about 0.3 nm
around 1064.5 nm, corresponding to a frequency range of about 60 GHz. Typical frequency
step sizes are 50 or 100 MHz. We obtain a rich spectrum of resonance lines that is shown
in Fig. 7.3(a). The quantity Γ̄ion denotes the ion production rate normalized to the atom
number of the cloud and to the square of the atomic peak density. We �nd strongly varying
resonance strengths and at �rst sight fairly irregular frequency spacings. In the following we
will argue that most resonance lines can be attributed to respective well-de�ned molecular levels
(resolving vibrational, rotational and often even hyper�ne structure) that have been populated
in the recombination process. These levels are located in the triplet or singlet ground state,
a3Σ+

u and X1Σ+
g , respectively. The relatively dense distribution of these lines re�ects that

a fairly broad range of states is populated. A direct assignment of the observed resonances
is challenging, as it hinges on the precise knowledge of the level structure of all the relevant
ground and excited states. In the following we will access and understand the data step by
step.

One feature of the spectrum that stands out is the narrow linewidth of many lines. For
example, Fig. 7.3(b) shows a resonance of which the substructures have typical half-widths
∆νr ≈ 50MHz. This allows us to roughly estimate the maximal binding energy of the molecules
involved. As the velocity of the colliding ultracold atoms is extremely low, the kinetics of the
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Figure 7.3: REMPI spectrum. (a) A scan of the dipole trap laser frequency νL over more than
60GHz around an o�set frequency ν0

L = 281.610THz shows a multitude of resonance
lines. Each data point is the result of 30-60 repetitions of the experiment with ion
detection on the single-particle level. The total spectrum was obtained over a
time span of 2 months. Checks of the long-term consistency of resonance positions
and strengths were performed. Spectral regions dominated by transitions to c3Σ+

g

are indicated by the shaded areas in dark and light blue (0−g and 1g component,
respectively). (b) High-resolution scan of the strong resonance at νL−ν0

L ≈ 0.5GHz.
(c) Central spectral region with assigned P/R branches of the transition X1Σ+

g (v =
115) → A1Σ+

u (v′ = 66). The corresponding quantum numbers I and J ′ are given.
P (J) marks the transition J → J+1; R(J) marks the transition J → J−1. These
lines can be grouped into pairs sharing the same J ′ of the excited state and I
quantum number. The region where also transitions to b3Πu appear is marked by a
green horizontal bar. The error bars indicate statistical uncertainties and represent
one standard deviation from the mean.

recombination products is dominated by the released molecular binding energy Eb. Owing to
energy and momentum conservation the molecules will be expelled from the reaction with a
molecular velocity vRb2 =

√
2Eb/(3mRb2) where mRb2 is the molecular mass. The molecular

resonance frequency ν0 will then be Doppler-broadened with a half-width ∆νD =
√

3ν0vRb2/2c.
Here, c is the speed of light. By comparing ∆νD to the observed values of ∆νr we estimate a

130



7.3 Dependence of the ion production on atomic density, laser frequency and laser intensity

maximal binding energy of the order of Eb,max ≈ h × 2.5 THz. This simple analysis overesti-
mates the value Eb,max because it neglects the natural linewidth of the transition and possible
saturation broadening. Still, it already strongly constrains the possibly populated molecular
levels that are observed in our experiment.

7.3.3 Dependence on laser intensity

Next, we investigate the dependence of the ion production rate on laser intensity IL. In our
experimental setup, this measurement is rather involved because the laser driving the REMPI
process also con�nes the atomic cloud. Thus, simply changing only the laser intensity would
undesirably also change the density n0 of the atoms. To prevent this from happening we keep n0

constant (n0 ≈ 5× 1013 cm−3) by adjusting the atom number and temperature appropriately.
Owing to these experimental complications we can vary IL only roughly by a factor of 2
[Fig. 7.4(a)]. We set the laser frequency to the value of νL = ν0

L ≡ 281, 610 GHz, on the tail
of a large resonance (Fig. 7.3). The atomic temperatures in this measurement range between
500 nK and 1.1 µK, well above the critical temperatures for Bose-Einstein condensation. The
atomic densities can therefore be described using a Maxwell-Boltzmann distribution. Assuming
a simple power-law dependence of the form Γ̄ion ∝ IαL we obtain the best �t using an exponent
α = 1.5(1) [solid green line in Fig.7.4(a)]. This �t is between a linear and a quadratic intensity
dependence (dashed red and blue lines, respectively). Thus, at least two of the three transitions
composing the ionization process are partially saturated at the typical intensities used.

To better circumvent possible density variations of the atomic cloud induced by changes
in laser intensity, we employ a further method that enables us to vary the intensity with
negligible e�ects on the atomic sample. We achieve this by keeping the time-averaged intensity
〈IL〉 constant and comparing the ion production rates within a continuous dipole trap and a
chopped dipole trap in which the intensity is rapidly switched between 0 and 2IL. In both
cases the trap is operated at an intensity 〈IL〉 ≈ 15 kWcm−2. In the chopped con�guration the
intensity is switched at a frequency of 100 kHz so that the atoms are exposed to the light for
5µs followed by 5µs without light. It should be noted that molecules formed in the dark period
with su�ciently high kinetic energies may leave the central trapping region before the laser
light is switched back on. They are then lost for our REMPI detection. Taking into account the
molecular velocity and the transverse extensions of the laser beams we can estimate that this
potential loss mechanism leads to errors of less than 30%, even at the highest binding energies
relevant to this work (Eb ≈ h×750GHz, see below). We did not observe evidence of such losses
experimentally. Investigations were made by changing the chopping frequency. We de�ne R
as the ratio of the ion production rates in the chopped and the continuous trap con�guration.
Figure 7.4(b) shows the results of these measurements for various laser frequencies νL. We �nd a
value R ≈ 1.5 for o�-resonant frequency settings νL−ν0

L < 0.4GHz, in good agreement with the
result presented in Fig. 7.4(a). When scanning the laser onto resonance at νL− ν0

L ≈ 0.45GHz
[Fig.7.3(b)] we obtain R ≈ 1. This result indicates a linear intensity dependence of the REMPI
process in the resonant case, which is explained by the saturation of two of the three molecular
transitions involved. It is known that transitions into the ionization continuum [photon III,
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Figure 7.4: Dependence of the ion production rate on the intensity of the dipole trap laser. (a)
Assuming a power-law dependence Γ̄ion ∝ IαL , the best �t to the data is achieved
for α ≈ 1.5 (solid green line). Linear and quadratic �ts are also given (blue and
red dashed lines, respectively). (b) Measurement of the intensity dependence using
a chopped dipole trap. The ratio R ≈ 1 on resonance indicates saturation of both
transitions I and II. The error bars indicate statistical uncertainties and represent
one standard deviation from the mean.

Fig. 7.1(e)] will not saturate under the present experimental conditions. This means that the
excitation pathway through photon I and II must be saturated and therefore both are close to
resonance.
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7.4 Assignment of observed resonances to molecular transitions

Given the wavelength range of about 1, 064.5 ± 0.15 nm, an inspection of the level struc-
ture shows that photon I can only resonantly drive three di�erent transitions that connect
vibrational levels in states X and a to vibrational levels in states A, b and c [Fig. 7.1(e)].
Spectroscopic details for these transitions and the corresponding vibrational levels are given in
the Methods and in Fig. 7.536. From recent spectroscopic studies [122, 124, 229] and further
measurements in our laboratory the level structure of all relevant levels of the X, a, A, b, and
c states is well known. The absolute precision of most of the level energies is far better than
1 GHz for low rotational quantum numbers J .

In the experimental data [Fig. 7.3(a)] the central region from νL − ν0
L = −6 to 7 GHz

is marked by several prominent resonances that are signi�cantly stronger than those observed
throughout the rest of the spectrum. These resonance peaks can be assigned to transitions from
the X ground state to A and b states. The prominence of these singlet transitions is explained
by the near degeneracy of levels due to small hyper�ne splittings. Indeed, by analyzing these
strong resonances with regard to line splittings and intensities it was possible to consistently
assign rotational ladders for total nuclear spin quantum numbers I = 1, 2, 3 for the transition
X (v = 115) → A (v′ = 66). The starting point of the rotational ladder for I = 2 was �xed
by spectroscopic measurements in our laboratory. At frequencies νL − ν0

L & 2 GHz additional
strong lines appear that we attribute to the X (v = 109) → b (v′ = 73) transition. The fact
that we observe X state molecules with I = 1, 2, 3 is interesting because for I = 1, 3 the
total parity of the molecule is negative, whereas for I = 0, 2 it is positive. However, a two-
body collision state of our spin-polarized Rb atoms necessarily has positive total parity due to
symmetry arguments and a photoassociation pathway would lead to ground-state levels with
positive parity. The observed production of molecules with negative total parity must then be
a three-body collision e�ect.

We now consider the role of secondary atom-molecule collisions that would change the
product distribution owing to molecular relaxation. Two aspects are of importance: depopula-
tion of detected molecular levels, and population of detected molecular levels through relaxation
from more weakly bound states. In our experiments reported here we detect molecules that are
formed in states with binding energies of the order of hundreds of GHz × h. These molecules
leave the reaction with kinetic energies of several K×kB. At these energies the rate coe�cients
for depopulating atom-molecule collisions are small (see for example Ref.[219]) and the collision
probability before the molecule is either ionized or has left the trap is below 1%.

For the population processes, we can estimate an upper bound for rate coe�cients by
assuming recombination to occur only into the most weakly bound state with a binding energy
of 24MHz×h. In this case subsequent atom-molecule collision rates will be roughly comparable
to those expected in the ultracold limit. At typical rate coe�cients of 10−10 cm3s−1 (Refs. [230-

36Please note that in the original publication of A. Härter et al. [36] the relevant excitation energies with
respect to A1Σ+

u and b3Πu were assigned to the vibrational levels v′A = 68 and v′b = 72. Later it turned
out that actually these energies correspond to v′A = 66 and v′b = 73, respectively. Therefore, I changed the
numbering accordingly in the present reprint.
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Figure 7.5: Overview over relevant molecular levels and transitions. The vertical axis denotes
the energy Eb of the energetically lowest levels of each vibrational manifold with
respect to the 5S + 5S asymptote. Colored thick arrows represent molecular tran-
sitions relevant to the spectrum of Fig. 7.3. The expected relative strengths of
these transitions are also given. Grey arrows mark transitions that occur in the
relevant spectral region but are so weak that they can be neglected (for further
spectroscopic details, see Methods). We identify three main molecular transitions
for the initial step of the REMPI process. The blue arrows indicate molecules in
the v = 26 vibrational level of the a3Σ+

u potential that are excited to the v′ = 0
level of the c3Σ+

g potential. This level is split into a 1g and a 0−g component. The
red arrow is an excitation from X1Σ+

g (v = 115) to A1Σ+
u (v′ = 66). The green

arrow is an excitation from X1Σ+
g (v = 109) to b3Πu (v′ = 73). This transition

becomes possible through the strong spin-orbit coupling of the A and b states.

233]) and the atomic densities n0 ∼ 1× 1013 cm−3 used in the measurement shown in Fig. 7.2,
the collision probability before the molecule leaves the atom cloud is around 5%. This small
probability grows linearly with density so that the density dependence of the ion production rate
should show a signi�cant cubic contribution if secondary collisions were involved (as expected
for this e�ective four-body process). This is inconsistent with the data and thus indicates that
the population that we detect is not signi�cantly altered by secondary collisions.

We can roughly estimate the range of molecular rotation J of the populated levels in the
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ground state. The strong, isolated lines that we have assigned to the X (v = 115)→ A(v′ = 66)
transition are all contained within a relatively small spectral region (|νL − ν0

L| < 6 GHz) and
are explained by rotational quantum numbers J ≤ 7. Population of higher rotational quantum
numbers would result in a continuation of the strong resonance lines stretching to transition
frequencies beyond νL − ν0

L = 10 GHz, which we do not observe. Similarly, if only rotational
quantum numbers J ≤ 5 were populated, a spectrum would result that does not have enough
lines to explain the data. Thus, we can roughly set the limits on the molecular rotation to
J ≤ 7, a value that is also consistent with our observations of the spread of the transitions
X → b and a→ c (Fig.7.5). Finding quantum numbers as high as J = 7 is remarkable because
the three-body collisions at microkelvin temperatures clearly take place in a s-wave regime,
that is, at vanishing rotational angular momentum. Hence, one could expect to produce X
state molecules dominantly at J = 0, which, however, we do not observe.

Despite the limited spectral range covered by our measurements, we can already estimate
the number of molecular vibrational levels populated in the recombination events. From the
three states X (v = 109), a(v = 26) and X (v = 115) that we can observe within our wavelength
range, all deliver comparable signals in the spectrum of Fig. 7.3. This suggests that at least
all vibrational states more weakly bound than X (v = 109) should be populated, a total of 38
vibrational levels (counting both singlet and triplet states). This is a signi�cant fraction of the
169 existing levels of the X and a states, although restricted to a comparatively small range
of binding energies.

7.5 Conclusion

In conclusion, our work represents a �rst experimental step towards a detailed understanding
on how the reaction channels in three-body recombination are populated. A full understanding
will clearly require further experimental and theoretical e�orts. On the experimental side the
scanning range has to be increased and it could be advantageous to switch to a two-color
REMPI scheme in the future. Such studies may �nally pave the way to a comprehensive
understanding of three-body recombination, which includes the details of the �nal products.

Reaching beyond the scope of three-body recombination, the great sensitivity of our de-
tection scheme has enabled us to state-selectively probe single molecules that are produced
at rates of only a few hertz. We thereby demonstrate a new scheme for precision molecular
spectroscopy in extremely dilute ensembles.

7.6 Methods

7.6.1 Dipole trap and REMPI con�guration

The crossed dipole trap is composed of a horizontal and a vertical beam focused to beam waists
of ∼ 90µm and ∼ 150µm, respectively. It is positioned onto the nodal line of the radiofrequency
�eld of the linear Paul trap with micrometer precision. The two trap centers are separated
by about 300 µm along the axis of the Paul trap [Fig. 7.1(d)]. In a typical con�guration, the
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trap frequencies of the dipole trap are (175, 230, 80)Hz resulting in atom cloud radii of about
(6, 7, 16) µm. The short-term frequency stability of the dipole trap laser source is of the
order of 1 kHz and it is stabilized against thermal drifts to achieve long-term stability of a
few megahertz. The two beams of the dipole trap are mutually detuned by 160 MHz to avoid
interference e�ects in the optical trap. Consequently, two frequencies are in principle available
to drive the REMPI process. However, the intensity of the horizontal beam is 4 times larger
than the one of the vertical beam and we have not directly observed a corresponding doubling
of lines. Further details on the atom-ion apparatus are given in Ref. [234].

7.6.2 Paul trap con�guration

The linear Paul trap is driven at a radiofrequency of 4.17MHz and an amplitude of about 500V
resulting in radial con�nement with trap frequencies of (ωx,Ba, ωy,Ba) = 2π×(220, 230)kHz for a
138Ba+ ion. Axial con�nement is achieved by applying static voltages to two endcap electrodes
yielding ωz,Ba = 2π × 40.2 kHz. The trap frequencies for dark Rb+

2 and Rb+ ions produced
in the REMPI processes are (mBa/mdark × ωx,Ba, mBa/mdark × ωy,Ba,

√
mBa/mdark × ωz,Ba),

where mBa and mdark denote the mass of the Ba+ ion and the dark ion, respectively. The
depth of the Paul trap depends on the ionic mass and exceeds 2 eV for all ionic species relevant
to this work.

7.6.3 Ion detection methods

We employ two methods to detect Rb+
2 and Rb+ ions, both of which are not amenable to

�uorescence detection. In the �rst of these methods we use a single trapped and laser-cooled
138Ba+ ion as a probe. By recording its position and trapping frequencies in small ion strings
with up to 4 ions we detect both the number and the masses of the ions following each REMPI
process (see also Ref. [235]). The second method is based on measuring the number of ions
in the Paul trap by immersing them into an atom cloud and recording the ion-induced atom
loss after a hold time of 2 s (see also Ref. [236]). During this detection scheme, we take care
to suppress further generation of ions by working with small and dilute atomic clouds and by
detuning the REMPI laser from resonance. Both methods are background-free in the sense
that no ions are captured on timescales of days in the absence of the atom cloud. Further
information on both detection methods is given in the Supplementary Information of Ref. [36]
given in section 7.837.

7.6.4 Spectroscopic details

Spin-orbit and e�ective spin-spin coupling in the A, b, and c states lead to Hund's case (c)
coupling where the relevant levels of states A and b have 0+

u symmetry whereas the levels of
state c3Σ+

g are grouped into 0−g and 1g components. The level structure of the 0+
u states is

quite simple as it is dominated by rotational splittings. Typical rotational constants for the

37Also available at http://www.nature.com/nphys/journal/v9/n8/extref/nphys2661-s1.pdf.
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electronically excited states are of the order of 400MHz; for the weakly bound X and a states
they are around 100− 150 MHz.

Figure 7.5 shows the relevant optical transitions between the X, a states and the A, b,
c states in our experiment. For the given expected relative strengths of these transitions, we
consider only Franck-Condon factors and the mixing of singlet and triplet states, and electronic
transition moments are ignored. The colored arrows correspond to transitions with large enough
Franck-Condon factors (typically 10−2−10−3) so that at laser powers of ≈ 104Wcm−2 resonant
transitions can be well saturated. Transitions marked with grey arrows can be neglected owing
to weak transition strengths, being forbidden in �rst order by dipole selection rules.
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7.8 Supplementary Information

In this Supplementary Information we describe two methods that we employ to detect small
numbers of Rb+

2 and Rb+ ions in our linear Paul trap.

7.8.1 Ion detection method 1

To implement our �rst ion detection method allowing mass-sensitive detection of "dark" ions we
rely on the presence of a single "bright" ion in the trap. Information on additional ions can be
extracted from its �uorescence position. When using this method, our experimental procedure
begins with the loading of a single 138Ba+ ion into our linear Paul trap. We laser-cool the ion
and image its �uorescence light onto an electron-multiplying charge-coupled device camera.
This enables us to determine the position of the trap center to better than 100 nm. The ion is
con�ned at radial and axial trapping frequencies ωr,Ba ≈ 2π×220kHz and ωax,Ba ≈ 2π×40.2kHz
and typically remains trapped on timescales of days. Next, we prepare an ultracold atomic
sample in the crossed dipole trap. At typical atomic temperatures of about 700 nK the atom
cloud has radial and axial extensions of about 7 µm and 15 µm and is thus much smaller than
the trapping volume of our Paul trap. To avoid atom-ion collisions we shift the Ba+ ion by
about 300 µm with respect to the atom cloud before the atomic sample arrives in the Paul
trap. The shifting is performed along the axis of the trap by lowering the voltage on one of the
endcap electrodes. Additionally, we completely extinguish all resonant laser light so that the
atoms are only subjected to the light of the dipole trap. The atomic sample is moved into the
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center of the radial trapping potential of the Paul trap and is typically held at this position for
a time τhold ≈ 10 s. Despite the axial o�set from the center of the Paul trap, the atom cloud
at this position is fully localized within the trapping volume of the Paul trap. After the hold
time the sample is detected using absorption imaging. Subsequently, the ion cooling beams are
switched back on for �uorescence detection of the Ba+ ion.

The presence of a second ion in the trap leads to positional shifts of the 138Ba+ ion by
distances on the order of 10 µm (see Fig. 7.6). We make use of the mass-dependent trap
frequencies of the Paul trap to gain information on the ion species trapped. In a two-ion
Coulomb crystal composed of a Ba+ ion and a dark ion, the axial center-of-mass frequency
ωax,2ion shifts with respect to ωax,Ba depending on the mass of the dark ion mdark [237]. We
measure ωax,2ion by modulating the trap drive at frequencies ωmod and by monitoring the
induced axial oscillation of the Ba+ ion, visible as a blurring of the �uorescence signal. In this
way, after each ion trapping event, we identify a resonance either at ωmod ≈ 2π × 44 kHz or
ωmod ≈ 2π × 38 kHz corresponding to mdark = 87 u and mdark = 174 u, respectively (see table
7.1).

We have expanded this method for ion strings with up to four ions including the Ba+ ion.
For this purpose, we perform the following step-by-step analysis.

1. The position x of the Ba+ ion with respect to the trap center is detected. If x 6= 0, the
value of x allows us to directly determine the total number of ions in the string.

2. If x = 0 we need to distinguish between a single Ba+ ion and a three-ion string with Ba+

at its center. This is done by modulating the trap drive at ωax,Ba, thereby only exciting
the Ba+ ion if no further ions are present.

3. We destructively detect the Rb+ ions by modulating the trap drive on a 5kHz wide band

-30 -20 -10 0 10 20 30
ion position x (µm)

Figure 7.6: Ion detection using a 138Ba+ ion. Positional shifts of the �uorescence of the Ba+

ion and measurements of the trap oscillation frequencies allow us to perform mass-
sensitive detection of up to three "dark" ions in the trap.
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ion species ωax,2ion/2π [kHz] ωr/2π [kHz]
138Ba+ and 138Ba+ 40.2 220.0
138Ba+ and 87Rb+ 44.0 345.3
138Ba+ and 87Rb+

2 37.7 170.7

Table 7.1: Trap oscillation frequencies of two-ion crystals.

around 2×ωr,Rb/(2π) = 691kHz. This selectively removes only Rb+ ions from the string
making use of the relatively weak interionic coupling when exciting the ions radially.

4. Steps 1. and 2. are repeated to detect the number of remaining ions.

5. The Rb+
2 ions are destructively detected via modulation around 2×ωr,Rb2/(2π) = 341kHz.

7.8.2 Ion detection method 2

We have also developed a second ion detection method that does not require an ion �uorescence
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Figure 7.7: Ion detection method based on ion-induced atom loss. We overlap an ultracold
atom cloud containing approximately 110,000 atoms with the center of the Paul
trap. After an interaction time τ = 2 s we detect the ion-induced atom loss via
absorption imaging of the atom cloud. The discrete number of trapped ions is
clearly re�ected in the displayed histogram of atom numbers.
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signal. Instead, the trapped ions are detected via their interaction with an atomic sample. For
this purpose, we produce a comparatively small atom cloud containing about 1× 105 atoms at
a density of a few 1012 cm−3. In addition, we set the frequency of the dipole trap laser to an
o�-resonant value so that the production of additional ions during the ion probing procedure
becomes extremely unlikely. We now fully overlap the ion and atom traps for an interaction
time τint = 2 s. By applying an external electric �eld of several V/m we set the ion excess
micromotion energy to values on the order of tens of kB×mK [236, 238]. Consequently, if ions
are present in the trap, strong atom losses occur due to elastic atom-ion collisions. Fig. 7.7
shows a histogram of the atom numbers of the probe atom samples consisting of the outcome
of about 1,000 experimental runs. The histogram displays several peaks which can be assigned
to the discrete number of ions in the trap. Up to �ve ions were trapped simultaneously and
detected with high �delity. The atom loss rate increases nonlinearly with ion number mainly
because the interionic repulsion prevents the ions from all occupying the trap center where the
atomic density is maximal. While ion detection method 2 does not distinguish ionic masses,
it has advantages in terms of experimental stability and does not require the trapping of ions
amenable to laser cooling or other �uorescence based detection techniques.
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8 Concluding Remarks

In the following, I want to brie�y summarize the main results of the thesis and discuss possible
future investigations and further prospects of the setup.

8.1 Summary

At the moment, Rb2 is one of the few nonpolar molecular species with which experiments
at temperatures in the µK or even nK regime can be performed. In this thesis, I reported
on results, where these dimers were controlled on the quantum level by means of laser pulse
sequences and magnetic ramps. We investigated various precisely de�ned states within the
vibrational ground state manifold (v = 0) of the lowest triplet potential, a3Σ+

u , as well as the
hyper�ne structure of Ω = 0+ levels of the spin-orbit coupled A1Σ+

u − b3Πu complex.
For this purpose, the molecules were held in a 3D optical lattice that allows to isolate

them from each other. The corresponding potential depths for the three standing light waves
depend on the state- and frequency-dependent, in general anisotropic, dynamical polarizability
α(ω) of the dimers. We demonstrated how this fact can be exploited to measure the degrees
of alignment of the molecular axis with respect to each direction of space. The underlying
method was applied to di�erent states of v = 0 within a3Σ+

u . In order to access these energy
levels we employed STIRAP transfer starting with weakly bound Feshbach dimers. Our studies
show that the alignment of the molecular axis can be engineered by preparing an appropriate
rotational state. Furthermore, we derived the dynamical polarizabilities parallel and orthogonal
to the molecular axis of the Rb2 dimer, α‖ = (8.9±0.9)×103a.u. and α⊥ = (0.9±0.4)×103a.u.,
respectively. Focusing on the isotropic, nonrotating case, a theoretical analysis of α(ω) with
respect to all vibrational levels of the a3Σ+

u and X1Σ+
g potentials was provided.

From the obtained spectroscopic results on the A1Σ+
u − b3Πu complex in Rb2 we learned

that interesting interactions can occur in strongly perturbed systems. The mixing of the singlet
and triplet states and level shifts, both owing to spin-orbit couplings, have a signi�cant in�uence
on hyper�ne structures in the A−b manifold. This was revealed by our measurements for states
with 0+ symmetry and J = 1. Noticeably, the observed splittings of hyper�ne levels can reach
values which are orders of magnitude larger than expected. In addition, the spectra exhibit
nonequal level spacings and a strong dependence on the vibrational quantum number. Using
a simple model, we could explain the recorded combined hyper�ne and Zeeman structures and
extract quantitative information from the data.
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8 Concluding Remarks

8.2 Outlook

In view of the results discussed in this work I want to give an outline of several experiments
that might be performed in the future.

� Coherent superposition of molecular states: Until now, we have performed ex-
periments individually for various well-de�ned molecular quantum states of the va = 0
manifold of a3Σ+

u . Here, the high resolution achieved in our STIRAP transfer guaran-
teed the unambiguous population of the desired �nal energy level. A consequent next
step would be the creation of superpositions of states. For the case of heteronuclear
KRb, couplings between di�erent rotational levels (R = 0 and 1) [59] as well as between
di�erent R = 0 hyper�ne levels [45] of vX = 0 within X1Σ+

g were demonstrated using mi-
crowaves. In Ref. [59] dipolar spin-exchange interactions were observed in interferometry
experiments with the superposition state of R = 0 and 1 applying the Ramsey technique.
The fringe contrast as a function of the interrogation time showed oscillations in addition
to an overall decay. With respect to Rb2 and the lowest vibrational level of a3Σ+

u the
rotational states R = 0 and 2 might be used to encode a spin. However, according to
selection rules there is no obvious route to create a superposition of R = 0 and 2 em-
ploying microwave techniques. Instead, an optical Raman scheme would be feasible and
easy to realize since the relevant level energies are precisely known from our studies. It
would be very interesting to measure the dephasing of the spin-coherence dependent on
the tunneling rates of the molecules in the optical lattice and due to collisions. Please
note, Rb2 is nonpolar and we work with triplet molecules. A comparison of the results to
those obtained with polar dimers in their singlet ground state could lead to new insights.

� A − b spectroscopy: In the present thesis we experimentally investigated the hyper-
�ne structure within the A1Σ+

u − b3Πu complex for states with 0+ symmetry and J = 1
( ~J = ~R + ~L + ~S). It would be interesting to extend these studies to levels of higher
angular momentum J . According to selection rules this is not possible in a direct way,
when starting from the nonrotating Feshbach state at B ∼ 1000 G. However, rotation-
ally excited, weakly bound molecules can be prepared by tuning the magnetic �eld and
bridging avoided crossings via adiabatic population transfer with radiofrequency �elds
[125]. Thereby, higher J levels of the A − b complex could in principle be addressed in
single optical dipole transitions. Furthermore, in order to measure the splittings between
the 0+ and 0− components of b3Πu the ability to spectroscopically observe 0− levels is
required. As already mentioned in chapter 6, an excitation of molecules from the lowest
singlet or triplet electronic state towards b3Πu 0− in a one-photon process is not allowed.
Instead, a two-photon Raman scheme, i.e., dark state spectroscopy might be promising.
For this purpose, the (1)3Πg potential (cf. Fig. 3.12) possibly provides an appropriate in-
termediate level. But please note, both states b3Πu as well as (1)3Πg belong to the 5s+5p
atomic asymptote and consequently the Franck-Condon factors for transitions between
levels of these potentials are in general very low. Therefore, a theoretical estimation of
this quantity should be performed in order to identify the most adequate intermediate
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states.

� Scattering experiments with rotating molecules: Recently, a theoretical investiga-
tion of the scattering of a particle with internal structure from a single slit was reported.
In Refs. [239] and [240], Wolfgang P. Schleich and collaborators considered a rigid rotor,
e.g., a diatomic molecule, slowly approaching a slit, which is comparable in size to the
rotor dimension. In a quantum mechanical treatment they calculated the transmission of
the particle through the aperture. It turned out that, as a result of the rotational motion,
it can be trapped brie�y within the slit. Here, I want to discuss some aspects concerning
the feasibility of such studies in ultracold-molecule setups using optical lattices. First
of all, applying Feshbach resonances, very weakly bound dimers can be produced that
have a remarkable internuclear distance of more than 100nm. This is close to the typical
widths of optical potential wells and therefore light �elds represent a promising tool to
create an appropriate slit. Furthermore, it is possible to prepare the molecules either
in rotating or nonrotating states dependent on the species and the employed Feshbach
resonance. Now, one might imagine the following experimental scenario: The molecule
formation takes place in a deep 3D optical lattice. Subsequently, one of the lattice beams
is turned o� giving rise to an array of parallel quasi-1D traps. After a short time, these
tubes will be occupied by at most a single detectable molecule, if inelastic collisions occur.
By applying magnetic �eld gradients the trapping potential can be tilted such that the
molecules will move towards one edge of the individual traps. Next, a slit is produced at
the center of each trap. For instance, this can be realized by means of a standing light
wave in the transverse direction which has half the wavelength of the optical lattice. A
di�erent approach relies on imprinting light sheets by utilizing a phase plate or a dig-
ital micromirror device (DMD) with subsequent focusing via a lens characterized by a
high numerical aperture. Then, the tilt of the trapping potential is reversed in order to
accelerate the molecules towards the slit. Finally, the number of transmitted dimers is
measured as a function of time.

The following, last issue addresses a rather technical aspect related to our setup.

� Optical dipole trap: We intend to implement an optical dipole trap in order to replace
the QUIC setup. An optical dipole trap would signi�cantly simplify the experimental
sequence as the transfer of the atomic cloud within the glass cell (cf. section 3.5) would
be obsolete. Furthermore, it could be advantageous regarding the production of a larger
absolute number of molecules. As mentioned in section 3.8.2, when starting with about
4× 105 atoms, we can produce only about 2.5− 3× 104 Feshbach dimers at the moment,
although the conversion e�ciency for the doubly occupied potential wells is ∼ 90%.
Therefore, the low number of molecules is directly related to a low number of lattice sites
that are �lled with exactly two atoms. This is a result of the potential created by the
QUIC trap. In principle, it would be necessary to adjust the trapping frequencies, i.e., the
density of the atom cloud before it is loaded into the optical lattice. Unfortunately, the
corresponding magnetic �elds cannot be changed signi�cantly without facing di�erent
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problems. For the realization of an optical dipole trap a laser38 at a wavelength of
1570 nm with a maximum output power of 10 W is available in our laboratory. All
parameters relevant for the desired application have been checked and the necessary
intensity stabilization has already been built up (see Ref. [241]).

I want to conclude the present thesis by pointing out that until now, several molecular species
were prepared in the rovibrational ground state of either the lowest singlet or triplet poten-
tial. However, in terms of alignment or orientation, we have seen that rotationally excited
molecules are very interesting. In principle, the methods to control and probe the alignment
of the molecular axis, demonstrated for the case of nonpolar Rb2 in this work, can be read-
ily implemented in a wide range of ultracold-molecule setups. Therefore, besides the already
mentioned possible applications, e.g., concerning superpositions of states, further research in
this direction will lead to new insights that might not even be envisioned at the moment.

38CEFL-KILO-10-LP-W10-G5-WT1-FM1-ST1-OM0-B301-FA from Keopsys SA, Lannion, France.
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A Appendix

A.1 E�ective parameters for analytical representations of

dynamical polarizabilities

As described in section 4.8, Eq. (4.8) can be used to reproduce the numerical results for the
real part of the dynamical polarizability with respect to all vibrational levels of the triplet and
singlet electronic ground state of Rb2. In the following, the corresponding e�ective parameters
(tables A.1, A.2 and A.3) and the o�-resonant frequency regimes (�gures A.1 and A.2), where
the analytical expression is valid, are given. These results are provided by our collaborators
Olivier Dulieu, Romain Vexiau and Nadia Bouloufa-Maafa, and presented in Ref. [131]. Please
note, here we always consider molecules that do not rotate, i.e., N = 0.

A.1.1 Vibrational states of a3Σ+
u
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Figure A.1: Frequency regions indicated by the black areas, where the real part of α(ω) of
the a3Σ+

u vibrational states va can be represented using two or three e�ective
transitions.
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va ω̃e�,1 [cm−1] de�,1 [a.u.] ω̃e�,2 [cm−1] de�,2 [a.u.] rRMS [%]

0 10112.33 2.792881 13481.32 3.211023 0.976

1 10124.48 2.806632 13462.41 3.186648 2.402

2 10138.02 2.819581 13442.32 3.161026 4.702

3 10149.23 2.826924 13422.63 3.136275 7.265

4 10165.60 2.836308 13403.04 3.113487 9.453

5 10178.56 2.839702 13384.04 3.092283 11.806

6 10193.00 2.841532 13365.39 3.073084 13.520

7 10209.01 2.842671 13346.88 3.055347 13.608

8 10241.94 2.856396 13327.47 3.038251 15.856

9 10255.95 2.850516 13309.78 3.024335 12.723

10 10297.71 2.865961 13290.31 3.009602 13.416

11 10337.01 2.875559 13271.41 2.997182 14.456

12 10649.49 2.912128 13315.06 3.254995 14.369

13 10743.27 2.917850 13297.31 3.267539 10.163

14 10856.18 2.925106 13279.06 3.281925 9.215

15 10952.70 2.930383 13257.34 3.281501 8.486

16 11067.05 2.919322 13243.23 3.309404 7.851

17 11171.55 2.918061 13220.90 3.312712 7.547

18 11272.00 2.907345 13201.39 3.324143 7.232

19 11385.70 2.889403 13182.66 3.345595 7.046

20 11474.75 2.868762 13164.56 3.358371 6.764

21 11589.59 2.857391 13139.36 3.366384 6.569

22 11676.27 2.840077 13117.14 3.371518 6.251

23 11768.03 2.814790 13096.43 3.383873 5.906

24 11863.93 2.790719 13073.29 3.395242 5.583

25 11948.75 2.764104 13051.38 3.406065 5.242

26 12023.87 2.743002 13027.71 3.407386 4.795

27 12106.93 2.707386 13005.36 3.423806 4.397

28 11037.87 2.367592 13099.24 3.476488 1.415

29 11080.24 2.345712 13089.80 3.479831 1.210

30 11079.21 2.253547 13062.51 3.533553 1.059

31 9911.65 0.936293 12846.40 4.140226 0.408

32 9907.44 0.841004 12826.29 4.160146 0.335

33 9862.64 0.714259 12804.07 4.184604 0.241

34 10003.28 0.707082 12794.13 4.180198 0.256

35 9790.85 0.486185 12768.17 4.215499 0.120

36 9965.93 0.471244 12762.26 4.213153 0.134

37 11626.80 1.191479 12795.94 4.060964 0.159

38 12195.85 1.533889 12794.74 3.947516 0.091

39 12670.01 3.586949 12874.37 2.258576 0.090

40 11672.87 0.000000 12733.75 4.236863 0.069

Table A.1: Parameters for reproducing the real part of α(ω) for the a3Σ+
u vibrational states va

using two e�ective transitions. Given are the relevant transition frequencies ωe� in
units of wavenumbers [ω̃e� = ωe�/(2πc)] and the corresponding dipole moments de�.
The relative root mean square (rRMS) values are calculated according to Eq. (4.9)
and represent the errors of the simpli�ed model compared to the numerical results
(see also Fig. 4.9).
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A.1 E�ective parameters for analytical representations of dynamical polarizabilities

va ω̃e�,1 [cm−1] de�,1 [a.u.] ω̃e�,2 [cm−1] de�,2 [a.u.] ω̃e�,3 [cm−1] de�,3 [a.u.] rRMS [%]

0 9590.41 0.185198 10120.66 2.785057 13482.52 3.215639 1.071

1 9737.73 0.904303 10217.37 2.641512 13471.82 3.220395 0.830

2 9763.22 1.257521 10333.45 2.488387 13459.98 3.224902 0.860

3 9751.48 1.364655 10430.64 2.426252 13447.38 3.228257 0.860

4 9736.83 1.413862 10524.00 2.391762 13434.65 3.232971 0.917

5 9717.63 1.414144 10602.93 2.386689 13420.99 3.236433 1.019

6 9699.59 1.401748 10677.32 2.389227 13406.69 3.239517 1.163

7 9683.02 1.382871 10748.52 2.395828 13391.70 3.242234 1.162

8 9672.13 1.378077 10831.95 2.391468 13376.86 3.248165 1.366

9 9655.95 1.341866 10891.17 2.410047 13359.86 3.247776 0.911

10 9647.39 1.330426 10972.00 2.409608 13343.58 3.253083 0.921

11 9637.84 1.308216 11044.01 2.417081 13326.02 3.255710 1.123

12 9641.33 1.333716 11171.09 2.368223 13317.41 3.292024 0.711

13 9630.35 1.300184 11251.03 2.376126 13300.81 3.305618 0.650

14 9619.82 1.264942 11330.84 2.383139 13284.29 3.320739 0.717

15 9611.72 1.230969 11398.49 2.394595 13264.85 3.324882 0.672

16 9611.41 1.220352 11494.21 2.371852 13250.66 3.349338 0.794

17 9602.28 1.178701 11560.85 2.385153 13230.57 3.356448 0.760

18 9600.19 1.154154 11638.84 2.378668 13212.05 3.369833 0.746

19 9599.30 1.130792 11723.85 2.363649 13193.91 3.390178 0.815

20 9611.89 1.132451 11808.64 2.330800 13176.30 3.406338 0.698

21 9589.93 1.055503 11864.09 2.362846 13153.04 3.416474 0.760

22 9593.22 1.030744 11936.50 2.352384 13131.44 3.427758 0.661

23 9610.59 1.028859 12011.99 2.318529 13111.74 3.443508 0.578

24 9608.67 0.986896 12075.04 2.314174 13089.46 3.457836 0.571

25 9611.16 0.949278 12136.81 2.302735 13068.36 3.474313 0.444

26 9630.08 0.932263 12196.63 2.283813 13045.34 3.483366 0.363

27 9652.31 0.914930 12265.06 2.248322 13022.47 3.505861 0.348

28 9664.11 0.875433 12323.33 2.239643 12997.09 3.517888 0.244

29 9713.59 0.873735 12370.71 2.194975 12977.59 3.537408 0.326

30 9462.31 0.438363 11672.79 2.320231 13035.17 3.508957 0.213

31 9549.01 0.536731 12413.74 3.394454 13188.14 2.485224 0.029

32 9549.37 0.485334 12477.46 3.502939 13180.90 2.340804 0.025

33 9549.31 0.431667 12537.24 3.627132 13177.05 2.154360 0.021

34 9547.69 0.375099 12592.55 3.771700 13182.21 1.901211 0.018

35 9546.97 0.318713 12648.01 3.952470 13215.83 1.501938 0.016

36 9267.78 0.000000 11274.59 1.182139 12810.47 4.060789 0.240

37 9515.30 0.188211 12709.74 4.169399 13316.67 0.743190 0.018

38 9386.63 0.082332 12648.45 3.652151 12944.33 2.146721 0.045

39 9193.98 0.000000 12724.88 4.221117 13355.56 0.374808 0.043

40 9596.83 0.000000 12731.90 4.235114 13550.10 0.110491 0.071

Table A.2: Parameters for reproducing the real part of α(ω) for the a3Σ+
u vibrational states va

using three e�ective transitions. Given are the relevant transition frequencies ωe� in
units of wavenumbers [ω̃e� = ωe�/(2πc)] and the corresponding dipole moments de�.
The relative root mean square (rRMS) values are calculated according to Eq. (4.9)
and represent the errors of the simpli�ed model compared to the numerical results.
As can be seen from Fig. 4.9, the rRMS values are signi�cantly decreased by adding
a third transition in Eq. (4.8).
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A.1.2 Vibrational states of X1Σ+
g
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Figure A.2: Frequency regions indicated by the black areas, where the real part of α(ω) of the
X1Σ+

g vibrational states vX can be represented using two e�ective transitions.
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vX ω̃e�,1 [cm−1] de�,1 [a.u.] ω̃e�,2 [cm−1] de�,2 [a.u.] rRMS [%]

0 11450.31 2.647731 15019.57 2.965774 0.518

1 11383.24 2.689551 14963.22 2.929415 1.962

2 11263.16 2.707908 14893.80 2.828507 2.175

3 11192.67 2.726587 14841.26 2.774923 1.770

4 11084.86 2.738700 14793.77 2.724816 2.423

5 10988.23 2.746025 14752.23 2.688516 2.736

6 10896.90 2.743087 14716.89 2.665019 3.174

7 11177.30 2.815120 14700.93 2.730883 0.827

8 11147.88 2.830717 14669.19 2.716210 0.776

9 11106.07 2.845253 14637.00 2.696263 0.816

10 11059.13 2.858737 14604.95 2.675684 0.889

11 11010.69 2.871102 14573.62 2.654337 0.986

12 10970.15 2.878189 14547.88 2.646632 1.012

13 10838.51 2.793461 14587.80 2.757705 1.008

14 10881.05 2.890135 14500.45 2.627477 1.117

15 10727.35 2.799699 14543.51 2.741307 1.213

16 10208.21 2.257552 14978.89 3.404092 0.226

17 10002.85 1.947713 13849.09 3.524078 0.024

18 10100.47 2.224233 14911.39 3.438765 0.160

19 10061.69 2.225589 14922.86 3.445085 0.122

20 9882.99 1.945188 13777.83 3.534547 0.027

21 9843.10 1.941773 13738.67 3.538702 0.030

22 9813.35 1.953855 13746.87 3.537403 0.028

23 9777.20 1.948963 13708.85 3.541736 0.031

24 9750.04 1.960652 13717.97 3.540422 0.028

25 9708.16 1.942813 13630.49 3.548562 0.038

26 9676.11 1.939030 13590.00 3.551851 0.042

27 9645.62 1.935171 13549.82 3.554939 0.047

28 9624.18 1.952327 13569.55 3.551978 0.042

29 9588.19 1.934617 13470.93 3.558445 0.057

30 9562.35 1.934546 13435.34 3.559923 0.062

31 9545.37 1.953333 13466.08 3.556637 0.054

32 9515.47 1.940706 13378.95 3.560743 0.069

33 9493.89 1.943129 13349.76 3.561133 0.073

34 9473.56 1.945944 13322.16 3.561295 0.078

35 9456.33 1.956178 13318.38 3.559747 0.077

36 9437.75 1.960584 13288.73 3.559217 0.082

37 9424.53 1.972904 13301.55 3.557346 0.078

38 9407.51 1.976326 13267.29 3.556797 0.084

39 9392.40 1.983139 13243.85 3.555443 0.088

40 9381.54 1.996441 13253.11 3.553087 0.085

41 9375.86 2.021790 13313.92 3.548456 0.070

42 9356.73 2.009166 13209.66 3.550194 0.093

43 9358.74 2.052830 13346.77 3.542223 0.062

44 9338.83 2.029753 13201.80 3.545753 0.094

45 9336.82 2.058367 13275.94 3.540565 0.075

46 9339.36 2.096092 13393.08 3.533154 0.052

47 9333.18 2.106903 13392.40 3.530663 0.051

48 9323.64 2.103332 13337.80 3.531068 0.062
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49 9318.98 2.116007 13338.47 3.527961 0.062

50 9315.02 2.125330 13333.24 3.525646 0.063

51 9314.11 2.141766 13357.85 3.521955 0.058

52 9311.93 2.151245 13356.64 3.519599 0.058

53 9310.18 2.163034 13354.05 3.516491 0.059

54 9314.05 2.185063 13415.45 3.511925 0.048

55 9317.92 2.205836 13467.32 3.507238 0.039

56 9318.38 2.215597 13465.81 3.504802 0.039

57 9321.95 2.231658 13494.15 3.500965 0.035

58 9322.50 2.236386 13472.81 3.499704 0.038

59 9325.20 2.246586 13474.43 3.497270 0.038

60 9332.11 2.265347 13521.61 3.492997 0.031

61 9335.86 2.272377 13517.88 3.491465 0.031

62 9342.86 2.287969 13551.11 3.487904 0.026

63 9345.01 2.287936 13512.58 3.488343 0.031

64 9355.62 2.306927 13573.27 3.483989 0.023

65 9361.08 2.313513 13564.84 3.483078 0.023

66 9364.38 2.310490 13521.05 3.485027 0.028

67 9373.19 2.320842 13540.44 3.483386 0.024

68 9382.32 2.330355 13554.17 3.482087 0.021

69 9383.40 2.317073 13471.50 3.487990 0.030

70 9395.20 2.329938 13508.42 3.486106 0.024

71 9401.64 2.326841 13477.73 3.489506 0.025

72 9407.54 2.321753 13440.51 3.493896 0.028

73 9415.13 2.318271 13418.38 3.498014 0.028

74 9425.64 2.320938 13419.16 3.500383 0.025

75 9429.20 2.305132 13355.00 3.509545 0.030

76 9442.08 2.309778 13371.57 3.511674 0.025

77 9447.61 2.295936 13322.42 3.520967 0.028

78 9452.64 2.279567 13271.63 3.531566 0.030

79 9466.62 2.281567 13287.09 3.535311 0.025

80 9468.05 2.254515 13211.08 3.550865 0.030

81 9473.88 2.235088 13166.77 3.563714 0.032

82 9484.27 2.224975 13157.22 3.572906 0.029

83 9487.26 2.196832 13098.00 3.589895 0.032

84 9497.46 2.183098 13087.81 3.600874 0.030

85 9513.36 2.179872 13105.63 3.607725 0.024

86 9517.28 2.149908 13059.28 3.625901 0.025

87 9519.21 2.113937 13006.38 3.646556 0.027

88 9511.69 2.057523 12915.59 3.675471 0.034

89 9529.57 2.051950 12941.50 3.683968 0.027

90 9529.37 2.009042 12894.41 3.707103 0.029

91 9528.63 1.962363 12846.68 3.731797 0.031

92 9545.70 1.950943 12869.57 3.742245 0.025

93 9553.80 1.918367 12856.44 3.761154 0.023

94 9551.50 1.866579 12816.63 3.786906 0.024

95 9537.66 1.792444 12748.78 3.820251 0.029

96 9544.41 1.753703 12742.39 3.840335 0.027

97 9561.03 1.732331 12763.41 3.853660 0.022

98 9544.53 1.650799 12706.31 3.887472 0.026
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99 9561.88 1.625137 12727.86 3.901814 0.021

100 9555.12 1.559982 12702.97 3.928275 0.022

101 9548.67 1.492998 12681.93 3.954403 0.023

102 9553.27 1.441929 12683.00 3.974922 0.021

103 9580.44 1.420738 12716.85 3.986278 0.015

104 9595.33 1.378012 12729.22 4.003254 0.012

105 9552.23 1.259510 12675.30 4.039337 0.017

106 9568.39 1.215614 12693.19 4.054950 0.014

107 9558.89 1.139750 12685.56 4.077061 0.014

108 9572.52 1.088815 12699.79 4.092563 0.011

109 9577.94 1.026769 12706.26 4.109467 0.010

110 9554.84 0.936267 12695.11 4.130496 0.011

111 9557.79 0.871677 12702.17 4.145328 0.009

112 9561.12 0.806703 12709.11 4.159077 0.008

113 9564.72 0.741371 12715.78 4.171734 0.007

114 9568.55 0.676546 12722.10 4.183155 0.006

115 9573.17 0.612471 12728.23 4.193373 0.005

116 9578.47 0.549063 12734.02 4.202418 0.004

117 9584.65 0.486356 12739.48 4.210336 0.003

118 9594.62 0.425485 12744.70 4.217095 0.003

119 9577.09 0.354456 12746.11 4.223570 0.003

120 9636.94 0.310253 12752.36 4.227532 0.002

121 9655.62 0.251670 12753.80 4.232437 0.002

122 9806.04 0.220488 12756.29 4.235328 0.001

123 10319.14 0.248531 12761.67 4.234457 0.001

124 12073.63 1.115818 12809.17 4.092981 0.003

Table A.3: Parameters for reproducing the real part of α(ω) for theX1Σ+
g vibrational states vX

using two e�ective transitions. Given are the relevant transition frequencies ωe� in
units of wavenumbers [ω̃e� = ωe�/(2πc)] and the corresponding dipole moments de�.
The relative root mean square (rRMS) values are calculated according to Eq. (4.9)
and represent the errors of the simpli�ed model compared to the numerical results
(see also Fig. 4.9).
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A Appendix

A.2 Ultrakalte Moleküle in Reih und Glied

Physik in unserer Zeit 46 (2), 60 (2015)39

Markus Deiÿ und Johannes Hecker Denschlag

Universität Ulm

Chemische Reaktionen können statt�nden, wenn Atome oder Moleküle miteinander stoÿen. Die
Reaktionsdynamik ist dabei abhängig von verschiedenen Parametern, insbesondere auch der re-
lativen Orientierung der Kollisionspartner zueinander. Vor kurzem ist es an der Universität
Ulm gelungen, ultrakalte Moleküle innerhalb eines optischen Gitters durch Rotationsanregung
auszurichten und diese Ausrichtung mit einer neuartigen Methode zu vermessen [46]. Dies
ermöglicht zukünftig die Untersuchung von stereochemischen Reaktionsprozessen bei Tempe-
raturen von unter 1 µK in einem Modellsystem, das sich durch ein Höchstmaÿ an Kontrolle
auszeichnet.

Ein homonukleares, zweiatomiges Molekül ähnelt einer Hantel, deren Achse im Raum rotieren
kann. Für solch einen Rotator sind die Energieeigenzustände durch die Quantenzahlen des
Drehimpulses R und mR festgelegt. Die dazugehörige Wellenfunktion, die Kugel�ächenfunk-
tion YR,mR

(θ, φ), beschreibt die Winkelverteilung der Hantelachse. Abbildung A.3(a) zeigt
Polardiagramme von |YR,mR

(θ, φ)|2 für zwei Rotationseigenfunktionen. Im Fall von R = 0 und
mR = 0 erhält man eine isotrope Verteilung, das heiÿt die Molekülachse zeigt zufällig in eine
beliebige Richtung des Raumes. Hingegen ist für R = 2, mR = 0 das Molekül hauptsächlich
entlang der z-Achse ausgerichtet.

In unserem Experiment [46] werden zunächst aus Atomen ultrakalte Rb2-Moleküle erzeugt
[242], die keine Rotation aufweisen, das heiÿt R = 0. Mit Hilfe eines stimulierten Zwei-Photon-
Übergangs auf der Basis zweier Laserpulse kann man nun sehr e�zient beispielsweise den
Zustand R = 2, mR = 0 präparieren. Der dazu nötige Drehimpuls stammt aus dem Eigen-
drehimpuls der Photonen. Ein Magnetfeld in z-Richtung de�niert die Quantisierungsachse und
stabilisiert den Rotationszustand der Moleküle sowie die Ausrichtung ihrer Achse.

Die Moleküle sind in einem dreidimensionalen optischen Gitter gefangen, das durch ste-
hende Lichtwellen in allen drei Raumrichtungen mit zueinander orthogonalen Polarisationen
generiert wird. Daraus resultiert eine periodische Potentialstruktur, eine Art Eierkarton in 3D,
wobei in unserem Fall jeder Gitterplatz mit höchstens einem Molekül besetzt wird [Abbildung
A.3(b)]. Wie lässt sich nun die Ausrichtung der Moleküle messen?

39Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
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Abbildung A.3: Molekülausrichtung. (a) Polare Darstellung des Betragsquadrats der Rotati-
onswellenfunktionen für R = 0 und mR = 0 (oben) und R = 2, mR = 0 (un-
ten). Je weiter ein Punkt auf der Kurvenober�äche vom Koordinatenursprung
entfernt ist, desto gröÿer ist die Wahrscheinlichkeit, dass die Molekülachse vom
Ursprung ausgehend dorthin zeigt. (b) Verteilung der Moleküle innerhalb des
dreidimensionalen optischen Gitters. Für R = 2, mR = 0 (unten) erhält man
im Mittel eine teilweise Ausrichtung entlang der z-Achse, während im Fall von
R = 0, mR = 0 (oben) die Richtungen der Molekülachsen gleichverteilt sind.

Die Tiefe der Potentialmulde, die von einer stehenden Lichtwelle hervorgerufen wird, hängt
vom relativen Winkel zwischen der Polarisation des Lichtfeldes und der Molekülachse ab. Es
werden nun die Gittertiefen für die Polarisationen in x-, y- und z-Richtung gemessen. Im Fall
des kugelsymmetrischen Molekülzustands R = 0 �nden wir gleiche Gittertiefen, unabhängig
von der Polarisationsrichtung. Verwenden wir jedoch den Zustand R = 2, mR = 0, so ist
das Gitter für Polarisation in z-Richtung fast doppelt so tief wie für Polarisationen orthogonal
dazu.

Zur Bestimmung der Potentialtiefe wird diese moduliert. Eine resonante Modulation
erzeugt eine Anregung des Bewegungszustandes des Moleküls, wodurch es aus dem Gitter
verloren geht. Der Grund dafür ist, dass Moleküle in einem optischen Gitter, ähnlich wie Elek-
tronen im Festkörper, eine Energie-Bandstruktur aufweisen, die von der Gittertiefe abhängt.
Da die Bandstruktur genau bekannt ist, kann man aus den beobachteten Resonanzfrequenzen
auf die Gittertiefe rückschlieÿen und somit die relative Orientierung der Moleküle zur verwen-
deten Polarisationsrichtung ermitteln.

Diese Methode ermöglicht interessante Kollisionsexperimente mit den teilweise ausgerichte-
ten, ultrakalten Molekülen. Wie anfangs erwähnt, sollten Reaktionsprozesse von Molekülen
abhängig davon sein, wie ihre Achsen zueinander stehen. Folglich könnten etwa Reaktionen
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Abbildung A.4: Stereochemie. Kollision zweier Moleküle in einer eindimensionalen Potential-
röhre für verschiedene relative Ausrichtungen (a) und (b) der Molekülachsen.

zwischen Molekülen mit R = 0 beziehungsweise R = 2 verschiedene Raten aufweisen oder gar
unterschiedliche Produkte erzeugen.

In unserem Aufbau sind solche Experimente einfach zu realisieren. Nach der Präparation
der Moleküle im dreidimensionalen optischen Gitter kann beispielsweise eine der drei stehenden
Wellen ausgeschaltet werden. Das Gitter verwandelt sich dann in ein System von parallelen
Potentialröhren, in denen sich die ausgerichteten Moleküle frei bewegen und kollidieren können
(Abbildung A.4). Solche Experimente werden zu einem tieferen Verständnis fundamentaler
chemischer Prozesse führen.
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