Theoretische Modellierung und Simulation

Contents

Axel Groß
Institut für Theoretische Chemie Universität Ulm, 89069 Ulm

Raum O25/342
Email axel.gross@uni-ulm.de
http://www.uni-ulm.de/theochem

1. Einführung
2. Lehrplan
3. Vorlesung

Inst. f. Theoretische Chemie, O25

1. Introduction
2. Molecular Modeling
3. Statistical Mechanics and Monte Carlo methods
4. Molecular dynamics
5. Quantum Mechanics
6. Multiscale Modeling

Adsorption of organic molecules

Study of the electronic, chemical, catalytic and optic properties of organic molecules on anorganic substrates

Structure of oligopyridine on graphite
Close collaboration with experimental groups

Surface reactions: Methanol oxidation on $\mathrm{O}(2 \times 2) / \mathrm{Cu}(110)$
S.Sakong and A. Groß, J. Catal. 231, 420 (2005).

Energy scheme of the partial oxidation of $\mathrm{CH}_{3} \mathrm{OH}$ on clean and (2×2) oxygen-precovered $\mathrm{Cu}(110)$

Exhaust catalyst

Elementary steps in the CO oxidation

Without movies

Schematic animation of the CO oxidation
(C.Stampfl, FHI Berlin)

Methanol oxidation on Cu : Analysis of the electronic structure
S.Sakong and A. Groß, J. Catal. 231, 420 (2005).

$$
\mathrm{CH}_{2} \mathrm{O} / \mathrm{Cu}(110) \text { : Chemical interaction analyzed using electronic orbitals and charge densities }
$$

Detection of the electronic factors that determine the reactivity

Adsorption of $\mathrm{H}_{2} /(3 \times 3) 7 \mathrm{H} / \mathrm{Pd}(100)$

Dissociation
Energy redistribution

Large energy transfer to the hydrogen layer upon the dissociative adsorption of H_{2} Weak H-Pd coupling: hydrogen layer still not in thermal equilibrium after 3 ps
H.-J. Freund, Surf. Sci. 500, 271 (2002)

Elektrochemistry and electro catalysis

Interaction O_{2} with a Zundel ion on $\mathrm{Pt}(111)$ in an aqueous environment

Presence of water leads to activation barriers for the oxygen reduction on $\operatorname{Pt}(111)$
Study of systems that are relevant for the electrochemical energy conversion and storage

Quantum Mechanics: Hamiltonian

Chemistry:

Only electrostatic interaction taken into account \Rightarrow Hamiltonian

$$
\begin{equation*}
H=T_{\mathrm{nucl}}+T_{\mathrm{el}}+V_{\mathrm{nucl}-\mathrm{nucl}}+V_{\mathrm{nucl}-\mathrm{el}}+V_{\mathrm{el}-\mathrm{el}} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
T_{\mathrm{nucl}}=\sum_{\mathrm{I}=1}^{L} \frac{\vec{P}_{\mathrm{I}}^{2}}{2 M_{\mathrm{I}}}=\sum_{\mathrm{I}=1}^{L} \frac{-\hbar^{2}}{2 M_{\mathrm{I}}} \vec{\nabla}_{\mathrm{I}}^{2}, \tag{2}\\
T_{\mathrm{el}}=\sum_{\mathrm{i}=1}^{N} \frac{\vec{p}_{\mathrm{i}}^{2}}{2 m}=\sum_{\mathrm{i}=1}^{N} \frac{-\hbar^{2}}{2 m_{\mathrm{i}}} \vec{\nabla}_{\mathrm{i}}^{2}, \tag{3}
\end{gather*}
$$

Ab initio molecular dynamics simulations of H_{2} dissociation on water-covered $\operatorname{Pt}(111)$

Trajectory

Discussion
H_{2} dissociation through thermalized disordered water layer

After dissociation, H atoms can move almost freely beneath the water layer
H atoms end up at top sites
Disordered water layer rearranges upon H adsorption

Schrödinger Equation Nonrelativistic Schrödinger Equations:

$$
\begin{gather*}
H \Psi(\vec{R}, \vec{r})=E \Psi(\vec{R}, \vec{r}) \tag{7}\\
i \hbar \frac{\partial \Psi(\vec{R}, \vec{r}, t)}{\partial t}=H \Psi(\vec{R}, \vec{r}) . \tag{8}
\end{gather*}
$$

Solution: Eigen and initial value problem, respectively, of a high-dimensional partial differential equation taking into account the appropriate quantum statistics (\rightarrow Pauli principle)

In principle we are ready here, however
Solution of Schrödinger equation in closed form not possible
\Rightarrow Hierarchy of approximate and numerical methods

Theoretical Chemistry

P.A.M Dirac (1930):
"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely know, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

Born-Oppenheimer approximation II

Schrödinger equation for the electrons

$$
\begin{equation*}
H_{\mathrm{el}}(\{\vec{R}\}) \Psi(\vec{r},\{\vec{R}\})=E_{\mathrm{el}}(\{\vec{R}\}) \Psi(\vec{r},\{\vec{R}\}) \tag{11}
\end{equation*}
$$

$E_{\text {el }}(\{\vec{R}\})$ Born-Oppenheimer energy surface: potential for the nuclear motion:

$$
\begin{equation*}
\left\{T_{\mathrm{nucl}}+E_{\mathrm{el}}(\vec{R})\right\} \chi(\vec{R})=E_{\text {nucl }} \chi(\vec{R}) \tag{12}
\end{equation*}
$$

If quantum effects negligible: classical equation of motion

$$
\begin{equation*}
M_{\mathrm{I}} \frac{\partial^{2}}{\partial t^{2}} \vec{R}_{I}=-\frac{\partial}{\partial \vec{R}_{I}} E_{\mathrm{el}}(\{\vec{R}\}) . \tag{13}
\end{equation*}
$$

Born-Oppenheimer approximation

Atoms 10^{4} to 10^{5} heavier than electrons (except for hydrogen and helium)
\Rightarrow electrons are 10^{2} to 10^{3} times faster than the nuclei
Born-Oppenheimer of adiabatic approximation:
electrons follow motion of the nuclei instantaneously

Practical implementation:

Define electronic Hamiltonian $H_{\text {el }}$ for fixed nuclear coordinates $\{\vec{R}\}$

$$
\begin{equation*}
H_{\mathrm{el}}(\{\vec{R}\})=T_{\mathrm{el}}+V_{\text {nucl-nucl }}+V_{\text {nucl-el }}+V_{\text {el-el }} . \tag{9}
\end{equation*}
$$

Nuclear coordinates $\{\vec{R}\}$ do not act as variables but as parameters The Schrödinger equation for the electrons

$$
\begin{equation*}
H_{\mathrm{el}}(\{\vec{R}\}) \Psi(\vec{r},\{\vec{R}\})=E_{\mathrm{el}}(\{\vec{R}\}) \Psi(\vec{r},\{\vec{R}\}) . \tag{10}
\end{equation*}
$$

Born-Oppenheimer approximation (BOA) III

In the BOA electronic transitions neglected
Exact derivation: Expansion of Schrödinger equation in the small parameter m / M

BOA very successful, but still its validity hardly directly obvious
Physical arguments

Systems with a band gap: electronic transitions improbable
Metals: electronic system strongly coupled \Rightarrow short lifetimes and fast quenchening of electronic excitations

Interaction between molecules

Consider ions A and B with charge Q_{A} and Q_{B}, respectively

$$
\vec{R}_{A B}=\vec{R}_{B}-\vec{R}_{A}, R_{A B}=\left|\vec{R}_{A B}\right|
$$

Force of Q_{A} acting on Q_{B}

$$
\begin{equation*}
\vec{F}_{A B}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{A} Q_{B}}{R_{A B}^{3}} \vec{R}_{A B} \tag{14}
\end{equation*}
$$

Force of Q_{B} acting on Q_{A}

$$
\begin{gather*}
\vec{F}_{B A}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{A} Q_{B}}{R_{A B}^{3}} \vec{R}_{B A} \tag{15}\\
F_{B A}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{A} Q_{B}}{R_{A B}^{2}} \tag{16}
\end{gather*}
$$

Pairwise additive forces
Force of Q_{A} and Q_{C} acting on Q_{B}

$$
\begin{equation*}
\vec{F}_{B}=\frac{Q_{B}}{4 \pi \epsilon_{0}}\left(Q_{a} \frac{\vec{R}_{A B}}{R_{A B}^{3}}+Q_{C} \frac{\vec{R}_{C B}}{R_{C B}^{3}}\right) \tag{17}
\end{equation*}
$$

Charge distribution

$$
\begin{equation*}
Q_{A}=\int \rho(\vec{r}) d^{3} r \tag{18}
\end{equation*}
$$

Force of Q_{A} acting on Q_{B}

$$
\begin{equation*}
\vec{F}_{A B}=\frac{Q_{B}}{4 \pi \epsilon_{0}} \int \rho(\vec{r}) \frac{\left(\vec{R}_{B}-\vec{r}\right)}{\left|\vec{R}_{B}-\vec{r}\right|^{3}} d^{3} r \tag{19}
\end{equation*}
$$

Many body interaction

Consider system of N atoms; If forces are additive

$$
\begin{equation*}
U_{\mathrm{tot}}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} U_{i j}=\frac{1}{2} \sum_{i \neq j}^{n, n} U_{i j} \tag{23}
\end{equation*}
$$

General case

$$
\begin{equation*}
U_{\mathrm{tot}}=U\left(\vec{R}_{1}, \vec{R}_{2}, \ldots, \vec{R}_{n}\right) \tag{24}
\end{equation*}
$$

Formal expansion

$$
\begin{equation*}
U_{\text {tot }}=\sum_{\text {pairs }} U^{(2)}\left(\vec{R}_{i}, \vec{R}_{j}\right)+\sum_{\text {triples }} U^{(3)}\left(\vec{R}_{i}, \vec{R}_{j}, \vec{R}_{k}\right)+\ldots+U^{(n)}\left(\vec{R}_{1}, \vec{R}_{2}, \ldots, \vec{R}_{n}\right) \tag{25}
\end{equation*}
$$

Nature of the interaction

$$
\begin{equation*}
U=U_{\mathrm{es}}+U_{\mathrm{disp}}+U_{\mathrm{rep}} \tag{26}
\end{equation*}
$$

Potential energy

$$
\begin{equation*}
U_{A B}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{A} Q_{B}}{R_{A B}} \tag{20}
\end{equation*}
$$

Corresponds to the energy it costs to bring the two charges from infinity to the distance $R_{A B}$ Relation between force and potential energy; Energy in one dimension:

$$
\begin{equation*}
E=\frac{m}{2} v^{2}+U(x) \tag{21}
\end{equation*}
$$

Energy conservation, i.e. $d E / d t=0$:

$$
\begin{equation*}
F=-\frac{d U}{d x}, \text { in three dimensions : } \vec{F}=-\nabla U=-\left(\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z}\right) \tag{22}
\end{equation*}
$$

Force is directed along the steepest decent of U

Vibrational potentials

> Harmonic potential

$$
\begin{equation*}
U_{\mathrm{vib}}=\frac{1}{2} k\left(R-R_{e}\right)^{2}, E_{\mathrm{vib}}=\hbar \omega\left(v+\frac{1}{2}\right) \tag{27}
\end{equation*}
$$

Morse potential, $\beta=\frac{\omega}{2} \sqrt{2 \mu / D_{e}}$

$$
\begin{equation*}
U_{\mathrm{vib}}=D_{e}\left[1-\exp \left(-\beta\left(R-R_{e}\right)\right)\right]^{2}, E_{\mathrm{vib}}=\hbar \omega\left(v+\frac{1}{2}\right)-\chi_{e} \hbar \omega\left(v+\frac{1}{2}\right)^{2} \tag{28}
\end{equation*}
$$

Molecular mechanics and force fields

Molecular Mechanics

Application of classical mechanics to determinations of molecular equilibrium properties
Force field: Parametrized interaction potential

$$
\begin{align*}
U= & \sum_{\text {stretch }} U_{\mathrm{AB}}+\sum_{\text {bend }} U_{A B C}+\sum_{\text {dihedral }} U_{A B C D}+\sum_{\text {inversion }} U_{A B C D}+ \\
& +\sum_{\text {nonbonded }} U_{A B}+\sum_{\text {Coulomb }} U_{A B}+ \tag{29}\\
= & \sum_{\text {bonds }} \frac{1}{2} k_{A B}\left(R_{A B}-R_{e, A B}\right)^{2}+\sum_{\text {bends }} \frac{1}{2} k_{A B C}\left(\Theta_{A B C}-\Theta_{e, A B C}\right)^{2} \\
& +\sum_{\text {dihedrals }} \frac{U_{0}}{2}\left(1-\cos \left(n\left(\chi-\chi_{0}\right)\right)\right)+\sum_{\text {inversions }} \frac{k}{2 \sin ^{2} \psi_{e}}\left(\cos \psi-\cos \psi_{e}\right)^{2} \\
& +\sum_{\text {nonbonded }}\left(\frac{C_{A B}^{12}}{R_{A B}^{12}}-\frac{C_{A B}^{6}}{R_{A B}^{6}}\right)+\sum_{\text {charges }} \frac{1}{4 \pi \epsilon_{0}} \frac{Q_{A} Q_{B}}{R_{A B}} \tag{30}
\end{align*}
$$

Potential curves

Torsional potential
Ethane and chlorine-substituted ethane

(-S)

C

Multiple minima

Potential curves

Multiple minima

Potential energy surfaces (PES)

Saddle point

Two minima
Multiple minima

FHI Berlin

Saddle points correspond to transition states in chemical reaction, minima to (meta)-stable intermediates

Reaction barriers are calculated as the difference between the the lowest saddle point towards the product state and the energy minimum corresponding to the reactant state

$$
\begin{equation*}
E_{\mathrm{barr}}=E_{\mathrm{TS}}-E_{\mathrm{ini}} \tag{31}
\end{equation*}
$$

Sticking probability of H_{2} on $\mathrm{Pd}(100)$

Steering effect

Exp.: K.D. Rendulic et al., Surf. Sci. 208, 404 (1989), Theory: A. Groß et al., PRL 75, 2718 (1995).

All six hydrogen degrees of freedom treated quantum dynamically
Initial decrease in $S\left(E_{\mathrm{i}}\right)$ caused by the suppression of the steering effect
Oscillations quantum effect: opening of new scattering channels with increasing energy

Potential energy surfaces

Complex PES, for example describing a polymer or protein

UC Berkeley

Finding minima and saddle points of potential energy surfaces is crucial for the determination of energy minimum structures and reaction barriers

Tight-binding molecular dynamics simulations: $\mathbf{O}_{2} / \mathrm{Pt}(111)$
A. Groß, A. Eichler, J. Hafner, M.J. Mehl, and D.A. Papaconstantopoulos, Surf. Sci. Lett. 539, L542-L548 (2003).

Comparison of calculated and measured sticking probability as a function of the kinetic energy

Over the whole energy range sticking probability is determined by the trapping into the molecular chemisorption states

Dissociation?

O-O distance $[\AA]$
Projection of a trajectory of a O_{2} molecule onto the $Z d$ plane, initial kinetic energy $E_{\text {kin }}=0.6 \mathrm{eV}$
O_{2} molecules do not directly dissociate on $\mathrm{Pt}(111)$ because of steric hindrance \rightarrow dissociation of $\mathrm{O}_{2} / \mathrm{Pt}(111)$ is a two-step process involving thermalisation

Characterization of potential energy surfaces

$$
p=3 n-6 \text { degrees of freedom, Coordinates } \mathbf{q} \text { and gradient } \mathbf{g}:
$$

$$
\mathbf{q}=\left(\begin{array}{c}
q_{1} \tag{32}\\
q_{2} \\
\vdots \\
q_{p}
\end{array}\right), \quad \mathbf{g}=\left(\begin{array}{c}
\frac{\partial U}{\partial q_{1}} \\
\frac{\partial U}{\partial q_{2}} \\
\vdots \\
\frac{\partial U}{\partial q_{p}}
\end{array}\right)
$$

At stationary points, the gradient is zero
Characterization of stationary points: Calculate Hesse matrix at that points:

$$
\mathbf{H}=\left(\begin{array}{ccc}
\frac{\partial^{2} U}{\partial q_{1}^{2}} & \cdots & \frac{\partial^{2} U}{\partial q_{1} \partial q_{p}} \tag{33}\\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} U}{\partial q_{p} \partial q_{1}} & \cdots & \frac{\partial^{2} U}{\partial q_{p}^{2}}
\end{array}\right)
$$

Eigenvalues all positive \Rightarrow Minimum, Eigenvalues all negative \Rightarrow Maximum, \Rightarrow Maximum otherwise \Rightarrow Saddle point
Transition state (barrier): Hesse matrix has exactly one negative eigenvalue

Finding minima

Finding minima $=$ Optimization problem
Grid methods: multivariate and univariate grid search

Green: steepest descent
Green: conjugate gradient

Derivative methods

First-order methods

Steepest descent: Search minina along the negative of the gradient Problem: many perpendicular steps

Solution: Conjugate gradient method:

$$
\begin{align*}
& \text { In k-th iteration, move in direction given by } \left.\mathbf{g}^{(k)}\right)^{\mathrm{T}} \mathbf{g}^{(k)} \tag{34}\\
& \qquad \mathbf{v}^{(k)}=-\mathbf{g}^{(k)}+\gamma^{(k)} \mathbf{v}^{(k-1)}, \quad \gamma^{(k)}=\frac{\left(\mathbf{g}^{(k-1)}\right)^{\mathrm{T}} \mathbf{g}^{(k-1)}}{}
\end{align*}
$$

Conjugate directions: perpendicular in isotropic configuration space

Second-order methods

Computationally more expansive since second derivative is required
Further methods: Simulated annealing, Monte Carlo methods, generic algorithms, . . .

Statistical Mechanics

Statistical mechanics provides a relation between microscopic (atomistic) and macroscopic description of matter using mean values and deviations
Statistical description \Rightarrow Mean values of significant importance

$$
\text { Mean value }\langle x>\text { : }
$$

$$
\begin{equation*}
<x>=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{35}
\end{equation*}
$$

Root mean square deviations (fluctuations):

$$
\begin{equation*}
\sigma_{n}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-<x>\right)^{2}} \tag{36}
\end{equation*}
$$

Central entity in statistical mechanics: ensemble

Molecular Mechanics (MM)

Molecular Mechanics (MM) useful for the determination of possible equilibrium properties of molecules

Many software packages available
Commercial products often offer convenient graphical user interfaces (GUI)
GaussView (GAUSSIAN)
Materials Visualizer (Materials Studio)

Besides MM programmes, often quantum chemistry codes included in the packages

Self-consistent field solution

Effective one-particle Hartree-Fock Hamiltonians contain solution: \Rightarrow Self-consistent iteration scheme

Flow-chart diagram of a self-consistent field solution scheme

