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Computational Quantum chemistry

Virtual chemistry lab

Inst. f. Theoretische Chemie, O25

Computational Chemistry

• Evaluation of the electronic, geometric and
chemical porperties of molecules, surfaces and
solids with modern methods of electronic
structure theory

• Quantum chemical program packages
(Gaussian, NWChem, . . . ) and Plane-Wave-
Methods (VASP, Abinit, . . . )

• Empirical programs, e.g. force fields and code
development

• Analysis and visualisation of the results

Adsorption of organic molecules
Study of the electronic, chemical, catalytic and optic properties of organic molecules on

anorganic substrates

Structure of oligopyridine on graphite

Close collaboration with experimental groups



Surface reactions: Methanol oxidation on O(2×2)/Cu(110)

S.Sakong and A. Groß, J. Catal. 231, 420 (2005).
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Energy scheme of the partial oxidation of CH3OH on clean and (2×2) oxygen-precovered Cu(110)

Methanol oxidation on Cu:
Analysis of the electronic structure

S.Sakong and A. Groß, J. Catal. 231, 420 (2005).

CH2O/Cu(110): Chemical interaction analyzed using electronic orbitals and charge densities
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Detection of the electronic factors that determine the reactivity

Exhaust catalyst

Structure of the exhaust catalyst

H.-J. Freund, Surf. Sci. 500, 271 (2002)

Elementary steps in the CO oxidation

Without movies

Schematic animation of the CO oxidation

(C.Stampfl, FHI Berlin)

Adsorption of H2/(3×3)7H/Pd(100)

Dissociation

Without movies

Energy redistribution

0 500 1000 1500 2000 2500 3000

Run time (fs)

0.0

0.2

0.4

0.6

0.8

T
o

ta
l 
k
in

e
ti
c
 e

n
e

rg
y
 (

e
V

) Impinging H
2
 molecule (eV)

Hydrogen overlayer

Pd substrate atoms

Large energy transfer to the hydrogen layer upon the dissociative adsorption of H2

Weak H-Pd coupling: hydrogen layer still not in thermal equilibrium after 3 ps



Elektrochemistry and electro catalysis

Interaction O2 with a Zundel ion on Pt(111) in an aqueous environment

Initial configuration Adsorbed OOH Adsorbed O + OH

Presence of water leads to activation barriers for the oxygen reduction on Pt(111)

Study of systems that are relevant for the electrochemical energy conversion and storage

Ab initio molecular dynamics simulations of H2 dissociation
on water-covered Pt(111)

Trajectory

Without movies

Discussion

H2 dissociation through thermalized
disordered water layer

After dissociation, H atoms can move
almost freely beneath the water layer

H atoms end up at top sites

Disordered water layer rearranges upon
H adsorption

Quantum Mechanics: Hamiltonian

Chemistry:
Only electrostatic interaction taken into account ⇒ Hamiltonian:

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el (1)
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Schrödinger Equation

Nonrelativistic Schrödinger Equations:

H Ψ(~R,~r) = E Ψ(~R,~r). (7)

i~
∂Ψ(~R,~r, t)

∂t
= H Ψ(~R,~r). (8)

Solution: Eigen and initial value problem, respectively, of a
high-dimensional partial differential equation taking into account the

appropriate quantum statistics (→ Pauli principle)

In principle we are ready here, however

Solution of Schrödinger equation in closed form not possible

⇒ Hierarchy of approximate and numerical methods



Theoretical Chemistry

P.A.M Dirac (1930):

“The underlying physical laws
necessary for the mathematical theory
of a large part of physics and
the whole of chemistry are thus
completely know, and the difficulty
is only that the exact application of
these laws leads to equations much
too complicated to be soluble.”

Born-Oppenheimer approximation
Atoms 104 to 105 heavier than electrons

(except for hydrogen and helium)

⇒electrons are 102 to 103 times faster than the nuclei

Born-Oppenheimer of adiabatic approximation:

electrons follow motion of the nuclei instantaneously

Practical implementation:
Define electronic Hamiltonian Hel for fixed nuclear coordinates {~R}

Hel({~R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el. (9)

Nuclear coordinates {~R} do not act as variables but as parameters

The Schrödinger equation for the electrons

Hel({~R}) Ψ(~r, {~R}) = Eel({~R}) Ψ(~r, {~R}). (10)

Born-Oppenheimer approximation II

Schrödinger equation for the electrons

Hel({~R}) Ψ(~r, {~R}) = Eel({~R}) Ψ(~r, {~R}). (11)

Eel({~R}) Born-Oppenheimer energy surface: potential for the nuclear motion:

{Tnucl + Eel(~R)} χ(~R) = Enucl χ(~R). (12)

If quantum effects negligible: classical equation of motion

MI
∂2

∂t2
~RI = −

∂

∂ ~RI

Eel({~R}) . (13)

Born-Oppenheimer approximation (BOA) III

In the BOA electronic transitions neglected

Exact derivation: Expansion of Schrödinger equation in the small parameter m/M

BOA very successful, but still its validity hardly directly obvious

Physical arguments

Systems with a band gap: electronic transitions improbable

Metals: electronic system strongly coupled
⇒ short lifetimes and fast quenchening of electronic excitations



Interaction between molecules

Consider ions A and B with charge QA and QB, respectively
~RAB = ~RB − ~RA, RAB = |~RAB|

Force of QA acting on QB

~FAB =
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Pairwise additive forces
Force of QA and QC acting on QB
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Charge distribution

QA =

∫

ρ(~r)d3r (18)

Force of QA acting on QB
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Potential energy
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(20)

Corresponds to the energy it costs to bring the two charges from infinity to the distance RAB

Relation between force and potential energy; Energy in one dimension:

E =
m

2
v2 + U(x) (21)

Energy conservation, i.e. dE/dt = 0:

F = −
dU

dx
, in three dimensions : ~F = −∇U = −

(
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,
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,
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Force is directed along the steepest decent of U

Many body interaction

Consider system of N atoms; If forces are additive

Utot =
n−1
∑

i=1

n
∑

j=i+1

Uij =
1

2

n,n
∑
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Uij (23)

General case

Utot = U(~R1, ~R2, . . . , ~Rn) (24)

Formal expansion

Utot =
∑
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Nature of the interaction

U = Ues + Udisp + Urep (26)

Vibrational potentials

Harmonic potential

Uvib =
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Morse potential, β = ω
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Molecular mechanics and force fields

Molecular Mechanics:

Application of classical mechanics to determinations of molecular equilibrium properties

Force field: Parametrized interaction potential
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∑
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∑
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Potential curves

Torsional potential Ethane

Multiple minima

Potential curves

Torsional potential Ethane and chlorine-substituted ethane

Multiple minima

Potential energy surfaces (PES)
Saddle point Two minima Multiple minima

FHI Berlin

Saddle points correspond to transition states in chemical reaction,

minima to (meta)-stable intermediates

Reaction barriers are calculated as the difference between the the lowest saddle point
towards the product state and the energy minimum corresponding to the reactant state

Ebarr = ETS − Eini (31)



Sticking probability of H2 on Pd(100)

Comparison theory-experiment
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Steering effect

Surface
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All six hydrogen degrees of freedom treated quantum dynamically

Initial decrease in S(Ei) caused by the suppression of the steering effect

Oscillations quantum effect: opening of new scattering channels with increasing energy

Tight-binding molecular dynamics simulations: O2/Pt(111)

A. Groß, A. Eichler, J. Hafner, M.J. Mehl, and D.A. Papaconstantopoulos, Surf. Sci. Lett. 539, L542-L548 (2003).

Sticking probability
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Comparison of calculated and measured sticking probability as

a function of the kinetic energy

Over the whole energy range sticking
probability is determined by the trapping
into the molecular chemisorption states

Dissociation?

1.0 2.0 3.0
1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

0.2
-0.6

1.6

 !
"#$%&'
()$%*+
,-./
012
3)34
567839
(:1;&<
"#$
.=*>,?
0
(@A<$
3BC;*>
.D1E"F
$GH
I JKL

MNO MP Q RST U VW XY Z [
Projection of a trajectory of a O2 molecule onto the Zd plane,

initial kinetic energy Ekin = 0.6 eV

O2 molecules do not directly dissociate on
Pt(111) because of steric hindrance
→ dissociation of O2/Pt(111) is a two-step
process involving thermalisation

Potential energy surfaces

Complex PES, for example describing a polymer or protein

UC Berkeley

Finding minima and saddle points of potential energy surfaces is crucial for the
determination of energy minimum structures and reaction barriers

Characterization of potential energy surfaces

p = 3n− 6 degrees of freedom, Coordinates q and gradient g :

q =
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...
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, g =
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. (32)

At stationary points, the gradient is zero

Characterization of stationary points: Calculate Hesse matrix at that points:

H =
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. (33)

Eigenvalues all positive ⇒ Minimum, Eigenvalues all negative ⇒ Maximum, ⇒ Maximum

otherwise ⇒ Saddle point

Transition state (barrier): Hesse matrix has exactly one negative eigenvalue



Finding minima
Finding minima = Optimization problem

Grid methods: multivariate and univariate grid search

Derivative methods

Green: steepest descent

Green: conjugate gradient

First-order methods
Steepest descent: Search minina along the negative of the
gradient Problem: many perpendicular steps

Solution: Conjugate gradient method:

In k-th iteration, move in direction given by

v(k) = −g(k) + γ(k)v(k−1), γ(k) =

(

g(k)
)T

g(k)

(
(

g(k−1)
)T

g(k−1)

(34)
Conjugate directions: perpendicular in isotropic
configuration space

Second-order methods

Computationally more expansive since second derivative is required

Further methods: Simulated annealing, Monte Carlo methods, generic algorithms, . . .

Molecular Mechanics (MM)
Molecular Mechanics (MM) useful for the determination of possible equilibrium properties of

molecules

Many software packages available

Commercial products often offer convenient graphical user interfaces (GUI)

GaussView (GAUSSIAN) Materials Visualizer (Materials Studio)

Besides MM programmes, often quantum chemistry codes included in the packages

Statistical Mechanics

Statistical mechanics provides a relation between microscopic (atomistic) and macroscopic
description of matter using mean values and deviations

Statistical description ⇒ Mean values of significant importance

Mean value < x >:

< x > =
1

n

n
∑
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xi (35)

Root mean square deviations (fluctuations):
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√

√
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(xi− < x >)2 (36)

Central entity in statistical mechanics: ensemble

Self-consistent field solution
Effective one-particle Hartree-Fock Hamiltonians contain solution:

⇒ Self-consistent iteration scheme

Initial guess:

n
0
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?

Solve Schrödinger equations:
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∇
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Determine new density:
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N
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No
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Mixing scheme:

v
(j+1)
eff

(~r) = αv
j
eff

(~r)

+ (1 − α)v
new
eff (~r)

with α > 0.9

�

Flow-chart diagram of a self-consistent field solution scheme


