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Unusual experiments

® At the turn of the 20% century some physical .50

observations remained unexplained by
“classical” theories

Black body radiation: Kirchhoff (1859)

Explained by Stefan, Boltzmann,Wien & Planck§
(1879 — 1900)

Photoelectric effect: Hertz (1887)
Explained by Einstein (1905)

Hydrogen spectrum: Kirchhoff & Bunsen ™
(1860); Balmer (1885), Rydberg (1888),
Lymann (1906). Explained by Bohr (191 3)
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Birth of quantum
theory

® De Broglie in 1924 introduces wave—particle
duality

® |nl1926,Schrodinger and Heisenberg formulate
independently a general quantum theory

® Schrodinger’s approach uses differential
equations but Heisenberg’s formulation uses
matrices

1932: Von Neumann “Mathematical
Foundations of Quantum Mechanics”

Wednesday, 15 June 2011 3



Postulates of quantum
mechanics

® Quantum mechanics has a number of postulates
(Axiom) that define the theory

® A postulate is a statement of assumption NOT
necessarily a statement of fact

® [wo main concepts:
® State of a system

® Physical observables (measurable quantities:
position, momentum, energy, ...)
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Postulate |

® “The state of a system is completely determined by
a function that depends on the coordinates of the
particle and the time”

® “This function, ¥ (r,t), is called the wave function (or
state function) and its square modulus represents
the probability of finding that particle in a volume
elementdr, at r and at time t”
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What does this mean?

® Postulate | implies that a wave function exists for
any given system and can be determined

® |f the wave function is known, we can predict the
evolution of the state of the system with time

® Note: there are no mention of exact position or
momentum, just a probability

Trajectory

Wave function
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Square modulus as
probability density

® |f the square modulus of the wave function is a
probability density, we must have:

+00 p400 —|—oo
/ / / )| dxdydz =1

® So that there is a certainty to find pa L
the particle if we look far enough!

45 \

3 Probability
® [he wave function must also: w
® be finite over coordinate range

X + dx

® be single valued and continuous
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Max Born’s
Interpretation

E = Ejcos [27’(‘ (§ - m&)]

® Einstein (1905): light is made of photons with
energy £ = hv

® Woave—particle duality suggests both
descriptions are correct, depending on the type
of observation
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Probability density

o If |U(r,t)|°is large, there is a HiAvernction
high probability of finding the
particle

Probability
density

® |f|¥(r,t)|”is small there is only ‘
a small chance of finding the
particle

® Note that wave function itself
has no physical interpretation.
Only its square modulus does!
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Postulate 2

® “Jo each physical observable in classical
mechanics, there correspond a linear
Hermitian operator in quantum mechanics”

® What is a linear Hermitian operator?

® How do we define these operators for our
purpose!
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Operators

Definition: mathematical construct that
transforms a function into another function

d
Examples: — ; z°: In ; . 5
P dx Vv 2
Operators are usually written as: A = e
L

Operators are linear if:
Alerf(x) + e29(2)] = e Af(2) + e2Ag(2)
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Eigenfunction of an
operator

® |f an operator leaves a function unchanged
and simply multiplies it by a constant, we call
this function an eigenfunction of the operator

® For example: Af(z) = af(z)

® Constantais called the eigenvalue of the
operator
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Hermitian operator

An Hermitian operator is also called a self-
adjoint operator, such that: A = A* = Af

Hermitian operators have real eigenvalues
and are symmetric

This is needed if we want to represent
physical observables using operators

The eigenfunctions of a Hermitian operator
are orthogonal (this will be useful later)
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How to construct the
operator we need?

® Write the classical expression for the observable
needed in terms of cartesian coordinates and
related momenta

® Exchange classical expressions for the

corresponding quantum mechanical operator

. A e _
q — ¢ pq%pq:_Zha_q q=a,Y,=

® This has to be done in cartesian coordinates but

can be changed afterwards .
h=— =1.05459 x 107%* J s

2T
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Examples of operators

Operator
Operation
Position T T multiply by x
. o,
Momentum Py Dy _Zhﬁ_y
. he [ O? 0? 0?
Kinetic energy K K - (8x2 | D12 | 822>
Potential ~ .
energy  |U (%9, 2)| Ul,y, z)| multiply by U (z, y, 2)
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Measurements:
Postulate 3

® “When measuring an observable associated with an
operator, the only values that will ever be observed are
the eigenvalues of the operator”

AU = g

® This means that the measurement of property A
can only result in one of its eigenvalues - even if
the wave function is not an eigenfunction of A

® This is very different from what happens in
“classical” mechanics!
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Total energy operator

® This particular operator is central to quantum
mechanics as it defines the allowed energy states
of a system

® Starting from the classical total energy, this

operator is constructed using the rules established
previously:

E=K+U(zyz2) —H=K+U(z,y,2)

R h2 32 82 82 R
= 2m (ﬁxQ CO0y? 822> U@y, 2)
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Hamiltonian and
solutions

® The eigenvalue equation for the Hamiltonian
operator is also known as the time-independent
Schrodinger equation

HU —FE O

® The allowed energy values, E,,, are the energy levels
(energy of molecular orbitals, for example) and the
eigenfunctions,V,,, represent the allowed steady-
state wave functions for the system
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Energy

Example of eigenstates

B3LYP/TZV2P++
—B,—

A, — LUMO (34 eV)

ofufe
.

42eV

\A = HOMO (-7.6 eV)
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Particle in a box

® Simplest model of a
quantum particle

® Quantum model for
translational motion

® Useful for UV

spectroscopy of 0
conjugated chains

Potential energy

Wall - - Wall
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Closer look at the
,, solutions
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Cyanine dyes

Structure and Spectral Profiles of Cyanine Fluorochromes
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