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Unusual experiments
• At the turn of the 20th century some physical 

observations remained unexplained by 
“classical” theories

• Black body radiation: Kirchhoff (1859)
Explained by Stefan, Boltzmann, Wien & Planck 
(1879 – 1900)

• Photoelectric effect: Hertz (1887)
Explained by Einstein (1905) 

• Hydrogen spectrum: Kirchhoff & Bunsen 
(1860); Balmer (1885), Rydberg (1888), 
Lymann (1906). Explained by Bohr (1913)
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Birth of quantum 
theory

• De Broglie in 1924 introduces wave–particle 
duality

• In1926, Schrödinger and Heisenberg formulate 
independently a general quantum theory

• Schrödinger’s approach uses differential 
equations but Heisenberg’s formulation uses 
matrices

• 1932:  Von Neumann “Mathematical 
Foundations of Quantum Mechanics”
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Postulates of quantum 
mechanics

• Quantum mechanics has a number of postulates 
(Axiom) that define the theory

• A postulate is a statement of assumption NOT 
necessarily a statement of fact

• Two main concepts:

• State of a system 

• Physical observables (measurable quantities: 
position, momentum, energy, ...)
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Postulate 1
• “The state of a system is completely determined by 

a function that depends on the coordinates of the 
particle and the time”

• “This function,          , is called the wave function (or 
state function) and its square modulus represents 
the probability of finding that particle in a volume 
element    , at   and at time   ”
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What does this mean?

• Postulate 1 implies that a wave function exists for 
any given system and can be determined

• If the wave function is known, we can predict the 
evolution of the state of the system with time

• Note: there are no mention of exact position or 
momentum, just a probability
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Square modulus as 
probability density

• If the square modulus of the wave function is a 
probability density, we must have: 

• So that there is a certainty to find
 the particle if we look far enough!

• The wave function must also:

• be finite over coordinate range

• be single valued and continuous
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• Light is an electro-magnetic wave

• Einstein (1905): light is made of photons with 
energy

•  Wave–particle duality suggests both 
descriptions are correct, depending on the type 
of observation

Max Born’s 
interpretation
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Probability density

• If              is large, there is a 
high probability of finding the 
particle

• If             is small there is only 
a small chance of finding the 
particle

• Note that wave function itself 
has no physical interpretation. 
Only its square modulus does!
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Postulate 2

• “To each physical observable in classical 
mechanics, there correspond a linear 
Hermitian operator in quantum mechanics”

• What is a linear Hermitian operator? 

• How do we define these operators for our 
purpose?
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Operators

• Definition: mathematical construct that 
transforms a function into another function

• Examples:

• Operators are usually written as:

• Operators are linear if:

11Wednesday, 15 June 2011



Eigenfunction of an 
operator

• If an operator leaves a function unchanged 
and simply multiplies it by a constant, we call 
this function an eigenfunction of the operator

• For example:

• Constant   is called the eigenvalue of the 
operator
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Hermitian operator

• An Hermitian operator is also called a self-
adjoint operator, such that:

• Hermitian operators have real eigenvalues 
and are symmetric

• This is needed if we want to represent 
physical observables using operators

• The eigenfunctions of a Hermitian operator 
are orthogonal (this will be useful later)
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How to construct the 
operator we need?

• Write the classical expression for the observable 
needed in terms of cartesian coordinates and 
related momenta

• Exchange classical expressions for the 
corresponding quantum mechanical operator

• This has to be done in cartesian coordinates but 
can be changed afterwards
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Examples of operators
ObservableObservable OperatorOperator

Name Symbol Symbol Operation

Position  multiply by!!!!!

Momentum

Kinetic energy

Potential 
energy

 multiply by!!!!!
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Measurements:
Postulate 3

• “When measuring an observable associated with an 
operator, the only values that will ever be observed are 
the eigenvalues of the operator”

• This means that the measurement of property A 
can only result in one of its eigenvalues - even if 
the wave function is not an eigenfunction of

• This is very different from what happens in 
“classical” mechanics!
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Total energy operator

• This particular operator is central to quantum 
mechanics as it defines the allowed energy states 
of a system

• Starting from the classical total energy, this 
operator is constructed using the rules established 
previously:
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Hamiltonian and 
solutions

• The eigenvalue equation for the Hamiltonian 
operator is also known as the time-independent 
Schrödinger equation

• The allowed energy values,     , are the energy levels 
(energy of molecular orbitals, for example) and the 
eigenfunctions,     , represent the allowed steady-
state wave functions for the system

18Wednesday, 15 June 2011



Example of eigenstates

LUMO (–3.4 eV)

HOMO (–7.6 eV)

4.2 eV

Au

Bg

Bu

B3LYP/TZV2P++

Ag

Au

Bg
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Particle in a box

• Simplest model of a 
quantum particle

• Quantum model for 
translational motion

• Useful for UV 
spectroscopy of 
conjugated chains
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Closer look at the 
solutions

Wave Function for the Particle in a Box

Figure 28.21
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