

Institut für Theoretische Chemie: Prof. Dr. Gerhard Taubmann, Daniela Künzel, Katrin Tonigold

Mathematische Methoden III für Chemie und Wirtschaftschemie

Fr. 10:15 Uhr, H7, O25/346

Die Übungsblätter können von http://www.uni-ulm.de/nawi/nawi-theochemie/lehre heruntergeladen werden.

Übungsblatt 9, Übung am 18. 12. 2009

Aufgabe 1: Determinanten

Überprüfen Sie, ob die folgenden Determinanten den Wert Null haben, ohne sie explizit zu berechnen.

(a)
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 2 \\ 3 & 6 & 1 \end{vmatrix}$$
 (b) $\begin{vmatrix} 4 & 2 & 1 \\ 1 & 0 & 4 \\ 2 & 0 & 1 \end{vmatrix}$ (c) $\begin{vmatrix} i & -2i & 3 \\ 2 & 4 & 2 \\ 2 & -4 & -6i \end{vmatrix}$ (d) $\begin{vmatrix} i & 2 & 3i \\ 2i & 0 & 0 \\ -i & 0 & 0 \end{vmatrix}$

Aufgabe 2: Inverse Matrix

a) Es seien A, B $(n \times n)$ -Matrizen. Zeigen Sie, dass AB nicht invertierbar ist, wenn A singulär ist.

b) Zeigen Sie: Sind A^{-1} und B^{-1} die inversen Matrizen von A und B, dann ist $B^{-1}A^{-1}$ die inverse Matrix von AB.

Aufgabe 3: Inverse Matrix

Gegeben ist die folgende Matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 0 & \frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \end{pmatrix}$$

(a) Berechnen Sie die inverse Matrix A^{-1} mit algebraischen Komplementen. Überprüfen Sie ihe Ergebnis, indem Sie AA^{-1} berechnen.

(b) Berechnen Sie die transponierte Matrix A^T .

(c) Berechnen Sie die adjungierte (hermitisch konjugierte) Matrix A^{\dagger} .

(d) Ist *A* orthogonal, unitär oder hermitisch?

Aufgabe 4: Inverse Matrix: sp^3 Hybridorbital

Die vier sp^3 Hybridorbitale $\vec{\phi}$ von z.B. Silizium, Diamant, oder den Alkane C_nH_{2n+2} können mittels linearer Superposition der s und p Orbitale $\vec{\psi}$ repräsentiert werden:

Die inverse Repräsentation ist $\vec{\psi} = \mathbf{A}^{-1}\vec{\phi}$. Zeigen Sie, dass in diesem speziellen Fall $\mathbf{A}^{-1} = \mathbf{A}^T$ (orthogonal) gilt.