

Institut für Theoretische Chemie: Prof. Dr. Gerhard Taubmann, M.Sc. Anja Kobel

Mathematik I für Chemie und Wirtschaftschemie

Die Übungsblätter können von http://www.uni-ulm.de/theochem/lehre heruntergeladen werden.

Übungsblatt 12, verteilt am 19.01.2011, Übung am 25.01.2011

Aufgabe 1: Umwandlung von Logarithmen

Leiten Sie eine allgemeine Formel für die Umwandlung von Logarithmen her. Gehen sie dabei von der Definition des Logarithmus aus. Berechnen Sie dann ld(e) (ld = \log_2), wenn Sie außerdem wissen, dass ln $2 \approx 0.7$ ist.

Aufgabe 2: Auflösen Logarithmusgleichungen nach x

Berechnen Sie aus den folgenden Gleichungen x:

(a)
$$ln(x) + log_3(x) = 2$$
 (b) $log_2(x^2) + ln(x) = 3$

(b)
$$\log_2(x^2) + \ln(x) = 3$$

(c)
$$\log_5(x) = -1$$

(c)
$$\log_5(x) = -1$$
 (d) $\log_7(\frac{2x+1}{x^2+2}) = 0$

Hinweis: Logarithmusgesetze und Basistransformation.

Aufgabe 3: Vereinfachen von trigonometrischen Funktionen

Vereinfachen Sie folgende Formeln:

(a)
$$\frac{\cos^2 \phi \tan(\frac{\pi}{2} - \phi) - \frac{\cos(-\phi)}{\cos(\frac{\pi}{2} - \phi)}}{\sin(-2\phi)}$$
 (b)
$$\frac{\cos^4 x - \sin^4 x}{\tan(\frac{\pi}{2} - 2x)}$$
 (c)
$$\sin(\pi - x) \tan(x + \frac{\pi}{2})$$

(b)
$$\frac{\cos^4 x - \sin^4 x}{\tan\left(\frac{\pi}{2} - 2x\right)}$$

(c)
$$\sin(\pi - x) \tan\left(x + \frac{\pi}{2}\right)$$

Aufgabe 4: Beweis einiger trigonometrischer Relationen

Zeigen Sie

(a)
$$\sin(2\alpha) = 2\sin\alpha \cdot \cos\alpha$$

(b)
$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

(c)
$$\tan(2\alpha) = \frac{2}{\cot \alpha - \tan \alpha}$$

(a)
$$\sin(2\alpha) = 2\sin\alpha \cdot \cos\alpha$$
 (b) $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$ (c) $\tan(2\alpha) = \frac{2}{\cot\alpha - \tan\alpha}$ (d) $\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1 - \cos\alpha}{2}}$

Hinweis: Benutzen Sie die Additionstheoreme.

Aufgabe 5: Winkelbestimmung mittels trigonometrischer Relationen

Der Cosinuswert zum Winkel $\alpha = 45^{\circ}$ beträgt $\cos \alpha = \frac{\sqrt{2}}{2}$.

Berechnen Sie mit Hilfe des Additionstheorems für die Cosinusfunktion und der Identität $\sin^2 \alpha + \cos^2 \alpha = 1$ die Cosinuswerte zu den Winkeln $\alpha = 22,5^{\circ}$ und $\alpha = 11,25^{\circ}$.

Hinweis: Leiten Sie zunächst eine allgemeine Formel her, in der nur $\cos \alpha$ und $\cos 2\alpha$ vorkommen und lösen Sie diese nach $\cos \alpha$ auf.