

Institut für Theoretische Chemie: Prof. Dr. Gerhard Taubmann, Daniela Künzel, Benedikt Weggler

Mathematische Methoden III für Chemie und Wirtschaftschemie

Fr. 10:15 Uhr, H7, H21

Die Übungsblätter können von http://www.uni-ulm.de/nawi/nawi-theochemie/lehre heruntergeladen werden.

Übungsblatt 9, Übung am 21. 12. 2012

Aufgabe 1: Frage aus der Vorlesung

Beantworten Sie die Frage aus der Vorlesung.

Aufgabe 2: Zweidimensionale Geschwindigkeitsverteilung

Mit der kinetischen Gastheorie wird die Bewegung der Moleküle in einem Gas beschrieben. Im eindimensionalen Fall wird folgende Geschwindigkeitsverteilung erhalten:

$$w_1(v_x) = N_1 \exp\left(-\frac{mv_x^2}{2k_B T}\right)$$

- a) Wie lautet der Ansatz für die Verteilung der Geschwindigkeitsvektoren im zweidimensionalen Fall?
- b) Normieren Sie die Geschwindigkeitsverteilung $w_2(\vec{v})$ aus a).
- c) Formen Sie $w_2(\vec{v}) dv_x dv_y$ in ebene Polarkoordinaten um und berechnen Sie die Verteilung $w_2(v) dv$ der Geschwindigkeitsbeträge.
- d) Berechnen Sie die mittlere Geschwindigkeit $\bar{v}.$ Hinweise:

$$I = \int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$$

$$I = \int_0^\infty x^2 \cdot e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$$

Aufgabe 3: Funktionaldeterminante

Bei der Ableitung der Funktionaldeterminante für die Umwandlung von kartesische in Polarkoordinaten wird die 3×3 -Determinante A durch Entwickeln nach dem Element \vec{e}_z in eine 2×2 -Determinante überführt. Überprüfen Sie diesen Rechenschritt, indem Sie sowohl die 3×3 als auch die 2×2 -Determinante mit anderen Methoden berechnen und die Ergebnisse vergleichen.

$$A = \left| \begin{array}{ccc} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial x}{\partial v} dv & \frac{\partial y}{\partial v} dv & 0 \\ \frac{\partial x}{\partial u} du & \frac{\partial y}{\partial u} du & 0 \end{array} \right| = \vec{e}_z \ dv \ du \left| \begin{array}{ccc} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \end{array} \right|$$

Aufgabe 4: Tripelintegrale

Berechnen Sie:

a)
$$\int_{1}^{4} \int_{1}^{3} \int_{0}^{2} (x^{2} - 2yz) \, dx \, dy \, dz$$

b)
$$\int_0^3 \int_0^{\pi/2} \int_1^{e^2} \left(\frac{x}{z} \sin(xy) \right) dz dy dx$$

Aufgabe 5: Tripelintegral

Berechnen Sie das Dreifachintegral:

(Hinweise: Umformen in Polarkoordinaten, Integration durch Substitution und partielle Integration)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{4\pi} \left| \frac{2}{\sqrt{a^3}} exp \left[-\frac{\sqrt{x^2 + y^2 + z^2}}{a} \right] \right|^2 dx dy dz$$

Aufgabe 6: Tripelintegral

Berechnen Sie:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^2 + y^2 + z^2} \frac{3}{4\pi} \left| \frac{z}{2\sqrt{6a^5}} exp\left[-\frac{\sqrt{x^2 + y^2 + z^2}}{2a} \right] \right|^2 dx dy dz$$