

Institut für Theoretische Chemie: Prof. Dr. Gerhard Taubmann, Dr. Luis Mancera

Mathematik I für Biochemie und Molekulare Medizin

Mi. 14:00-16:00 Uhr; N25/2103, O25/H7 Do. 12:00-14:00 Uhr; O25/H7

Übungsblatt 7* Übung am 11.12.2013 und 12.12.2013

Aufgabe 1: Anwendung der Binomischen Formel (3 P)

Bestimmen Sie die Terme mit

(a)
$$x^{-4}$$
 in $\left(\frac{\sqrt{x}}{2} - \frac{2}{x^2}\right)^7$
(b) x^6y^5 in $\left(\frac{1}{5}x^2 - 5y\right)^8$

(a)
$$x^{-4}$$
 in $\left(\frac{\sqrt{x}}{2} - \frac{2}{x^2}\right)$
(b) x^6y^5 in $\left(\frac{1}{5}x^2 - 5y\right)^8$

Aufgabe 2: Anwendung der Binomischen Formel (2 P)

Berechnen Sie näherungsweise $\sqrt[5]{30}$.

Hinweis: $\sqrt[5]{32} = 2$. Man kann also schreiben: $\sqrt[5]{30} \approx (2 - \epsilon)$ mit $0 < \epsilon \ll 1$. Berechnen Sie dann mit dem

Binomialsatz $(2-\epsilon)^5$. Da ϵ sehr klein ist kann man alle Terme mit ϵ^k , $k\geq 2$ vernachlässigen und weglassen. Nun müssen Sie nur noch ϵ bestimmen und einsetzen.

Aufgabe 3: Umwandlung Dezimalzahl in Bruch (2 P)

Formen Sie die folgenden Dezimalzahlen in echte Brüche um. (Kürzen Sie vollständig!)

(a)
$$0, \overline{8}$$
 (b) $0, 58\overline{3}$

Aufgabe 4: Komplexen Zahlen und Binomische Formel (3 P)

Berechnen Sie $(3-\sqrt{2}\,i)^5$ unter Verwendung der Binomischen Formel und bringen Sie das Ergebnis auf die Form eines komplexes Nummer z = a + ib mit $i = \sqrt{-1}$.

Aufgabe 5: Vorlesung (2 P)

Beantworten Sie die Frage aus der Vorlesung vom 06.12.

Aufgabe 6: Vorlesung (1 P)

Fassen Sie die Vorlesung vom 06.12. kurz (höchstens 5 min) zusammen.

 $[*]Die \ \ddot{U}bungsblätter \ k\"{o}nnen \ von \ {\tt http://www.uni-ulm.de/nawi/nawi-theochemie/lehre} \ heruntergeladen \ werden.$